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A Modal Synthesis Background74

We adopt tetrahedral finite element models to represent any given75

geometry [O’Brien et al. 2002]. The displacements, x ∈ R3N , in76

such a system can be calculated with the following linear deforma-77

tion equation:78

Mẍ+Cẋ+Kx = f , (1)

where M, C, and K respectively represent the mass, damping79

and stiffness matrices. We approximate the damping matrix with80

Rayleigh damping: C = αM + βK, which is a well-established81

practice. The system can be decoupled into the following form:82

q̈+ (αI+ βΛ)q̇+Λq = UT f , (2)

where Λ is a diagonal matrix.The solution to Eqn. 2 is a bank of83

modes, i.e. damped sinusoidal waves. The i’th mode is84

qi = aie
−dit sin(2πfit+ θi), (3)

where fi is the frequency of the mode, di is the damping coefficient,85

ai is the excited amplitude, and θi is the initial phase. (fi, di, ai)86

together define the feature of mode i.87

The values in Eqn. 3 depend on the material properties, the geome-
try, and the run-time interactions: ai and θi depend on the run-time
excitation of the object, while fi and di depend on the geometry
and the material properties:

di =
1

2
(α+ βλi), (4)

fi =
1

2π

√
λi −

(
α+ βλi

2

)2

. (5)

where the eigenvalues λi’s are calculated from M and K, which in88

turn depend on mass density ρ, Young’s modulus E, and Poisson’s89

ratio ν.90

B Feature Extraction91

We extract the features {fi, di, ai} from the example audio using92

a time-varying frequency representation called power spectrogram.93

A power spectrogram P for a a time domain signal s[n], is obtained94

by first breaking it up into overlapping frames, and then performing95

windowing and Fourier transform on each frame:96

P[m,ω] =

∣∣∣∣∣∑
n

s[n]w[n−m]e−jωn

∣∣∣∣∣
2

, (6)

where w is the window applied to the original time domain signal.97

Figure 2

The features are then extracted from the power spectrogram through98

the process shown in Figure 2. First, a peak is detected in a power99

spectrogram at the location of a potential mode (Figure 2a, where100

f=frequency, t=time). Then a local shape fitting of the power spec-101

trogram is performed to estimate the frequency, damping and am-102

plitude of the potential mode (Figure 2b). Finally, if the fitting error103

is below a certain threshold, we collect it in the set of extracted fea-104

tures, shown as the red cross in the feature space (Figure 2c, where105

only the frequency f and damping d are shown).106

C Parameter Estimation107

C.1 Optimization Framework108

The material parameters are estimated through an optimization109

framework. We first create a virtual object that is roughly the same110

size and geometry as the real-world object whose impact sound was111

recorded. We then calculate its mass matrix M and stiffness matrix112

K and find the assumed eigenvalues λ0
i ’s using some initial values113

for the Young’s modulus, mass density, and Poisson’s ratio, E0, ρ0,114

and ν0. The eigenvalue λi for general E and ρ is just a multiple of115

λ0
i :116

λi =
γ

γ0
λ0
i (7)

where γ = E/ρ is the ratio of Young’s modulus to density, and117

γ0 = E0/ρ0 is the ratio using the assumed values. Applying a unit118

impulse on the virtual object at a point corresponding to the actual119

impact point in the example recording gives an excitation pattern of120

the eigenvalues as Eqn. 3, where the excitation amplitude of mode j121

is a0
j . If the actual (unknown) impulse is not unit, then the excitation122

amplitude is just scaled by a factor σ,123

aj = σa0
j (8)

2 Combining Eqn. 4, Eqn. 5, Eqn.7, and Eqn.8, we obtain a map-124

ping from an assumed eigenvalue and its excitation (λ0
j , a

0
j ) to an125

estimated mode with frequency f̃j , damping d̃j , and amplitude ãj :126

(λ0
j , a

0
j )

{α,β,γ,σ}−−−−−−→ (f̃j , d̃j , ãj). (9)

The estimated sound s̃[n] is generated by mixing all the estimated127

modes,128

s̃[n] =
∑
j

(
ãje

−d̃j(n/Fs) sin(2πf̃j(n/Fs))
)

(10)

where Fs is the sampling rate.129

The estimated sound s̃[n] can then be compared against the exam-130

ple sound s[n] and a difference metric can be computed. An op-131

timization process is used to find the parameter set with minimal132

difference metric value.133

C.2 Psychoacoustic Metric134

A combination of two metrics is used: an ‘image domain metric’135

that evaluates the perceptual similarity of sound clips, and a ‘feature136

domain metric’ that measures the audio material resemblance.137

Image Domain Metric: Given an reference sound s[n] and an es-138

timated sound s̃[n], their power spectrograms are computed using139

Eqn. 6. The power spectrograms are transformed before the differ-140

ence is taken. The frequency axis is transformed to critical band141

rate z to account for humans’ better ability to distinguish lower fre-142

quencies than higher frequencies [Zwicker and Fastl 1999]. The in-143

tensity is transformed from pressure to loudness, a perceptual value144

that measures human sensation to sound intensity.145

Feature Domain Metric: To measure the resemblance between ex-146

tracted (real) features and estimated (synthesized) features, we use147

a point set matching metric. First the frequency and damping of fea-148

ture points, (f, d), are transformed. The frequency is transformed149
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to the critical band rate as described previously. The damping is150

transformed to duration, which is proportional to the inverse of the151

damping value. Figure 3 shows the effect of the transformation.152

A matching score can then be computed between the transformed153

point sets.154
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Figure 3: Point set matching problem in the feature domain: (a)
in the original frequency and damping, (f, d)-space. (b) in the
transformed, (x, y)-space, where x = X(f) and y = Y (d). The
blue crosses and red circles are the reference and estimated feature
points respectively. The three features having the largest energies
are labeled 1, 2, and 3.

D Residual Compensation155

D.1 Residual Computation156

Figure 4 illustrates the residual computation process. From a157

recorded sound (Figure 4a), the reference features are extracted158

(Figure 4b), with frequencies, dampings, and energies depicted as159

the blue circles (Figure 4f). After parameter estimation, the syn-160

thesized sound is generated (Figure 4c), with the estimated features161

shown as the red crosses (Figure 4g), which all lie on a curve in the162

(f, d)-plane. Each reference feature may be approximated by one163

or more estimated features, and its match ratio number is shown.164

The represented sound is the summation of the reference features165

weighted by their match scores, shown as the solid blue circles (Fig-166

ure 4h). Finally, the difference between the recorded sound’s power167

spectrogram (Figure 4a) and the represented sound’s (Figure 4d) are168

computed to obtain the residual (Figure 4e).

Figure 4: Residual computation.

169

D.2 Residual Transfer170

As discussed in previous sections, modes transfer naturally with171

geometries in the modal analysis process, and they respond to exci-172

tations at runtime in a physical manner. In other words, the modal173

component of the synthesized sounds already provides transferabil-174

ity of sounds due to varying geometries and dynamics. Hence, we175

compute the transferred residual under the guidance of modes. Al-176

gorithm 1 shows the complete feature-guided residual transfer al-177

gorithm.

Algorithm 1: Residual Transformation at Runtime

Input: source modes Φs = {ϕs
i}, target modes Φt = {ϕt

j}, and
source residual audio ssresidual[n]

Output: target residual audio stresidual[n]
Ψ← DetermineModePairs(Φs,Φt)

foreach mode pair (ϕs
k, ϕ

t
k) ∈ Ψ do

Ps′ ← ShiftSpectrogram( Ps, ∆frequency)
Ps′′ ← StretchSpectrogram( Ps′, damping ratio)
A← FindPixelScale(Pt, Ps′′)
Ps

residual
′← ShiftSpectrogram(Ps

residual, ∆frequency)
Ps

residual
′′← StretchSpectrogram(Ps

residual
′, damping ratio)

Pt
residual

′′←MultiplyPixelScale(Ps
residual

′′, A)
(ωstart, ωend)← FindFrequencyRange(ϕt

k−1, ϕt
k)

Pt
residual [m, ωstart, . . . , ωend]← Pt

residual
′′ [m, ωstart, . . . , ωend]

end
stresidual[n]← IterativeInverseSTFT(Pt

residual)

178

E Results179

Parameter estimation: We estimate the material parameters from180

various real-world audio recordings: a wood plate, a plastic plate, a181

metal plate, a porcelain plate, and a glass bowl. For each recording,182

the parameters are estimated using a virtual object that is of the183

same size and shape as the one used to record the audio clips. When184

the virtual object is hit at the same location as the real-world object,185

it produces a sound similar to the recorded audio, as shown in Fig. 5186

and the supplementary video.187

Fig. 6 compares the refenece features of the real-world objects and188

the estimated features of the virtual objects as a result of the param-189

eter estimation.190

Transfered parameters and residual: The parameters estimated191

as well as the residuals can be transfered to virtual objects with192

different sizes and shapes as shown in Fig. 7. From an example193

recording of a porcelain plate (a), the parameters for the porcelain194

material are estimated, and the residual computed (b). The parame-195

ters and residual are then transfered to a smaller porcelain plate (c)196

and a porcelain bunny (d).197

Comparison with real recordings: Fig. 8 shows a comparison of198

the transferred results with the real recordings. From a recording199

of glass bowl, the parameters for glass are estimated (column (a))200

and transfered to other virtual glass bowls of different sizes. The201

synthesized sounds ((b) (c) (d), bottom row) are compared with the202

real-world audio for these different-sized glass bowls ((b) (c) (d),203

top row). More examples of transferring the material parameters as204

well as the residuals are demonstrated in the supplementary video.205

F Perceptual Study206

we also designed an experiment to evaluate the auditory perception207

of the synthesized sounds of five different materials. Each subject is208

presented with a series of 24 audio clips: 8 are audio recordings of209

sound generated from hitting a real-world objec; 16 are synthesized210

using the techniques described in this paper. For each audio clip,211
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Figure 5: Parameter estimation for different materials. For each material, the material parameters are estimated using an example recorded
audio (top row). Applying the estimated parameters to a virtual object with the same geometry as the real object used in recording the audio
will produce a similar sound (bottom row).
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Figure 6: Feature comparison of real and virtual objects. The blue circles represent the reference features extracted from the recordings of
the real objects. The red crosses are the features of the virtual objects using the estimated parameters. Because of the Rayleigh damping
model, all the features of a virtual object lie on the depicted red curve on the (f, d)-plane.

Recognized Material

Recorded Wood Plastic Metal Porcelain Glass
Material (%) (%) (%) (%) (%)

Wood 50.7 47.9 0.0 0.0 1.4
Plastic 37.5 37.5 6.3 0.0 18.8
Metal 0.0 0.0 66.1 9.7 24.2

Porcelain 0.0 0.0 1.2 15.1 83.7
Glass 1.7 1.7 1.7 21.6 73.3

Table 1: Material Recognition Rate Matrix: Recorded Sounds

the subject is asked to identify among a set of 5 choices (wood,212

plastic, metal, porcelain, and glass), from which the sound came.213

Table 1 presents the recognition rates of sounds from real-world214

materials, and Table 2 reflects the recognition rates of sounds from215

synthesized virtual materials. We found that the successful recogni-216

tion rate of virtual materials using our synthesized sounds compares217

favorably to the recognition rate of real materials using recorded218

sounds.219
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Figure 7: Transfered material parameters and residual: from a real-world recording (a), the material parameters are estimated and the
residual computed (b). The parameters and residual can then be applied to various objects made of the same material, including (c) a smaller
object with similar shape; (d) an object with different geometry. The transfered modes and residuals are combined to form the final results
(bottom row).

Figure 8: Comparison of transfered results with real-word recordings: from one recording (column (a), top), the optimal parameters and
residual are estimated, and a similar sound is reproduced (column (a), bottom). The parameters and residual can then be applied to different
objects of the same material ((b), (c), (d), bottom), and the results are comparable to the real-world recordings ((b), (c), (d), top).
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