
Reciprocal Collision Avoidance with Acceleration-Velocity Obstacles

Jur van den Berg Jamie Snape Stephen J. Guy Dinesh Manocha

Abstract— We present an approach for collision avoidance for
mobile robots that takes into account acceleration constraints.
We discuss both the case of navigating a single robot among
moving obstacles, and the case of multiple robots reciprocally
avoiding collisions with each other while navigating a common
workspace. Inspired by the concept of velocity obstacles [3], we
introduce the acceleration-velocity obstacle (AVO) to let a robot
avoid collisions with moving obstacles while obeying accelera-
tion constraints. AVO characterizes the set of new velocities the
robot can safely reach and adopt using proportional controlof
the acceleration. We extend this concept toreciprocal collision
avoidance for multi-robot settings, by letting each robot take
half of the responsibility of avoiding pairwise collisions. Our
formulation guarantees collision-free navigation even asthe
robots act independently and simultaneously, without coordi-
nation. Our approach is designed for holonomic robots, but
can also be applied to kinematically constrained non-holonomic
robots such as cars. We have implemented our approach, and
we show simulation results in challenging environments with
large numbers of robots and obstacles.

I. I NTRODUCTION

Collision avoidance is a fundamental problem in robotics.
The problem can generally be defined in the context of
an autonomous mobile robot navigating in an environment
with obstacles and/or other moving entities, where the robot
employs a continuous cycle of sensing and acting. In each
time step, an action for the robot must be computed based
on local observations of the environment, such that the robot
stays free of collisions with the moving obstacles and the
other robots, and progresses towards a goal.

Many works in robotics have addressed the problem of col-
lision avoidance with moving obstacles [5], [9], [14]. Most
approaches predict where the moving obstacles might be in
the future by extrapolating their observed velocities, andlet
the robot avoid collisions accordingly. Velocity obstacles [3]
formalize this principle by characterizing the set of velocities
for the robot that result in a collision at some future time.
Continually selecting a velocity outside of this set will then
guarantee collision-free navigation for the robot. A major
shortcoming, however, is that it requires the robot to change
its velocity instantaneously, which is not possible in many
cases due to constraints on the acceleration of the robot.
Ignoring these constraints may lead to unsafe navigation [4],
in particular when the robot moves at high speeds.

In this paper, we introduce the concept ofacceleration-
velocity obstacles (AVO) for guaranteed collision-avoidance
with moving obstacles that accounts for constraints on the ac-
celeration of the robot. AVO lets the robot accelerate towards

The authors are with the Department of Computer Science, University
of North Carolina at Chapel Hill, USA. E-mail:{berg, snape, sjguy,
dm}@cs.unc.edu. Website with videos: http://gamma.cs.unc.edu/AVO/

Fig. 1. Two robots with acceleration constraints avoid collisions with each
other while exchanging positions, and pass their target location with high
speed. Newer frames are on top of older frames and darker.

a new velocity using proportional control, i.e. the applied
acceleration is continually proportional to the difference be-
tween the new velocity and the current velocity. If the robot
would collide at any point in time along its trajectory, the
new velocity is considered forbidden. Continually selecting a
new velocity outside the forbidden set guarantees collision-
free motions that obey the acceleration constraints.

Our work is motivated by robots moving at high speeds,
such as unmanned aerial vehicles, airplanes, car-like robots,
etc., for which acceleration constraints are particularlysig-
nificant. We present our approach for a simplified robot
model: each robot is a disc moving in a two-dimensional
workspace, able to perfectly infer the shape, position and
velocity of obstacles and other robots in the environment, and
capable of accelerating in any direction up to a maximum.
This model applies directly to holonomic robots, and we
will show that it applies to a large class of non-holonomic
robots with kinodynamic constraints (e.g. cars, airplanes,
differential drives), as long as their speed is nonzero.

Approaches that assume that obstacles are non-responding
and moving at a constant velocity are insufficient for multi-
robot settings, where the robot encounters other robots that
also make decisions based on their surroundings: Consid-
ering them as moving obstacles overlooks the fact that they
react to the robot in the same way as the robot reacts to them,
and inherently causes undesirable oscillations in the motion
of the robots [10], [18]. We present areciprocal collision
avoidance approach based on acceleration-velocity obstacles
that specifically accounts for the reactive nature of the
other robots. Each robot independently and simultaneously
computes its actions, without coordination, by reducing the
problem to a 2-D linear program.

We experimented with our approach on several simulation
scenarios containing up to a thousand robots. As each robot
navigates independently, we can fully parallellize the com-
putation of the actions for each robot and report fast running
times. Furthermore, our experiments show that our approach
achieves convincing motions that are smooth, collision-free,
and obey the acceleration constraints (see Fig. 1).

The remainder of this paper is organized as follows.

In Section II we discuss background and related work. In
Section III we introduce our concept ofacceleration-velocity
obstacles for navigation of a single robot among moving
obstacles, and in Section IV we extend this concept to
reciprocal collision avoidance for multiple robots. We show
how our concept is applied to kinematically constrained
robots in Section V. We present simulation results in Section
VI, and conclude in Section VII.

II. BACKGROUND AND RELATED WORK

Our work builds mainly on the concept of velocity obsta-
cles [3], which has been employed successfully in practice
for collision avoidance with moving obstacles [15]. How-
ever, it requires the robot to change its velocity instanta-
neously, which may not be possible for physical robots.
Many attempts have been made to incorporate acceleration
constraints into the formalism. One approach is to limit the
set of valid velocities to those that can be reached within
the next time step of the sensing-acting cycle [3]. However,
as the time step can be arbitrarily small, only a small set of
valid velocities is available, which diminishes look-ahead. A
better strategy, therefore, is to clamp down a selected velocity
to one that obeys the acceleration constraint [8]. However,
collision avoidance may then no longer be guaranteed.

A few variants of velocity obstacles have been proposed
that address acceleration constraints specifically. The works
of [2], [7] are related toinevitable collision states [4],
and define velocities as forbidden if no escape maneuver
exists given the acceleration constraints to avoid collisions.
However, this does not imply that a velocity that is not
forbidden is guaranteed to be collision-free, as what may
be a safe escape maneuver with respect to one obstacle may
be a collision course with respect to another obstacle. In
[13], velocity obstacles are defined for the special case of a
car-like robot that controls its speed and turning radius, and
incorporates second-order constraints on the speed.

Other related concepts include non-linear velocity ob-
stacles [16] and generalized velocity obstacles [20]. The
former accounts for higher-order motion of obstacles, while
the latter defines “control input obstacles” for kinematically
constrained robots. The probabilistic velocity obstacle of [6]
addresses uncertainty in the future trajectory of obstacles.

Existing approaches that addressreciprocal collision
avoidance include [1], [17], [10], [18]. The approach of [19]
guarantees collision avoidance for multiple robots. However,
none of these approaches deal with acceleration constraints.
We will combine the approach of [19] with acceleration-
velocity obstacles to guarantee collision-free navigation of
multiple robots subject to acceleration constraints.

A. Notation

We will use the following notational convention in this
paper: Scalarsx are set in lower case italics, vectorsx in
lower case bold, and sets (of vectors)X in upper case italics.
Further, we denote the measure of a setX by |X |, the length
of a vectorx by ‖x‖, and use the following notation for an

(a) (b) (c)

Fig. 2. (a) A configuration of robotA and moving obstacleB. (b) The
evolution of their relative position over time when the relative velocityvAB

is applied.A andB collide as soon as they are closer to each other than
the sum of their radii (disc). (c) The velocity obstacleV Oτ

AB with time
horizon τ = 2 shown as a union of discs.

open disc of radiusr centered atp, scalar-set multiplication,
and the Minkowski sum of two sets, respectively:

D(p, r) = {q | ‖q− p‖ < r} (1)

aX = {ax | x ∈ X} (2)

X ⊕ Y = {x+ y | x ∈ X,y ∈ Y }. (3)

III. C OLLISION AVOIDANCE WITH MOVING OBSTACLES

In this section we discuss how a robotA subject to
acceleration constraint‖aA‖ < amax

A can avoid collisions
with moving obstacles. We will first review the existing
concept ofvelocity obstacles [3] (Section III-A), and then
introduce our new concept ofacceleration-velocity obstacles
(Section III-B). In Section III-C we discuss how acceleration-
velocity obstacles are used to navigate a robot among mul-
tiple moving obstacles.

A. Velocity Obstacles

Let A be a robot andB a moving obstacle with current
positionspA andpB, and radiirA andrB , respectively. The
velocity obstacle [3] can be used to select a velocity forA
such that collisions withB are avoided, assuming that this
velocity can be adopted instantaneously.

Definition 1 The velocity obstacle V Oτ
AB (read: the veloc-

ity obstacle forA induced byB for time horizonτ) is the set
of all relative velocitiesvAB = vA − vB of A with respect
to B that will result in a collision betweenA andB before
time τ .

More formally, letpAB = pA−pB be the current relative
position ofA with respect toB and letrAB = rA + rB be
the sum of their radii, thenA andB will collide at time t if
(see Fig. 2(b)):

‖pAB + vABt‖ < rAB. (4)

Dividing both sides byt, and rearranging gives:

‖vAB − (−
pAB

t
)‖ <

rAB

t
, (5)

which defines the disc of all relative velocitiesvAB that let
A andB collide at timet (see Eq. (1)). As such, we can

define the velocity obstacleV Oτ
AB as a union of discs (see

Fig. 2(c)):

V Oτ
AB =

⋃

0<t≤τ

D(−
pAB

t
,
rAB

t
). (6)

Geometrically, it can be interpreted as a truncated cone with
its apex at the origin (in velocity space) and its sides tangent
to the Minkowski sumB⊕−A of the obstacle and the robot.

The definition of the velocity obstacle implies that if
obstacleB is moving at aconstant velocity vB, and robot
A chooses its velocityvA outsideV Oτ

AB ⊕ {vB} (i.e. the
velocity obstacle translated byvB), robot A is guaranteed
not to collide withB before timeτ if A and B maintain
their velocities for at leastτ time. Acceleration constraints
may prohibitA from instantaneously adopting velocityvA,
however, in which case collision avoidance is not guaranteed.

To overcome this issue, we may let the robot choose
an acceleration rather than a velocity. In a similar way as
velocity obstacles, we can define theacceleration obstacle
AOτ

AB as the set of all relative accelerations that will
result in a collision before timeτ . In contrast to velocity
obstacles, however, acceleration obstacles are not suitable for
navigation in most practical cases. While it is reasonable to
assume that the obstacle and robot maintain their velocities
for a while (at least approximately), accelerations tend to
change frequently and it is unreasonable to assume that either
robotA or obstacleB will maintain an observed acceleration
for an extended amount of timeτ . The value ofτ signifies the
look-ahead, and reducing it would lead to unsafe navigation.
To address this flaw, we will defineacceleration-velocity
obstacles.

B. Acceleration-Velocity Obstacles

Instead of letting the robotA choose an acceleration, we
want to let the robot choose a velocity, as is the case with
velocity obstacles. The acceleration constraint‖aA‖ < amax

A

may prohibit adopting anew velocityv′
A instantaneously, but

we can apply valid accelerations toarrive at this new velocity
at some point in time. To ensure that the robot smoothly
arrives at its new velocity, we use proportional control of the
acceleration. That is, the accelerationaA(t) applied at time
t is proportional to the difference between the new velocity
v′
A and the velocityvA(t) at time t:

aA(t) = v̇A(t) =
v′
A − vA(t)

δ
, (7)

where δ is a control parameter whose dimension is time.
Solving this differential equation forvA(t) gives:

vA(t) = v′
A − e−t/δ(v′

A − vA), (8)

wherevA = vA(0) is the current velocity ofA. Integrating
vA(t) gives the trajectorypA(t) of the robot:

pA(t) = pA + tv′
A + δ(e−t/δ − 1)(v′

A − vA), (9)

wherepA = pA(0) is the current position ofA.
If an obstacleB follows a similar trajectorypB(t) to

arrive at a new velocityv′
B with the same control parameter

(a) (b) (c)

Fig. 3. (a) A configuration of robotA and moving obstacleB. (b) The
evolution of their relative position over time when the new relative velocity
v
′

AB
is approached by proportional control of the relative acceleration (δ =

2). A andB collide as soon as they are closer to each other than the sum
of their radii (disc). (c) The acceleration-velocity obstacle AV O

δ,τ
AB

for
control parameterδ = 2 and time horizonτ = 4.

δ, then the relative position pAB(t) = pA(t) − pB(t),
the relative velocityvAB(t) = vA(t) − vB(t), and the
relative accelerationaAB(t) = aA(t)−aB(t) of robotA and
obstacleB are also described by Equations (9), (8), and (7),
respectively, wherepAB = pA − pB is the current relative
position,vAB = vA−vB is the current relative velocity, and
v′
AB = v′

A − v′
B is the new relative velocity. It is in terms

of these that we define the acceleration-velocity obstacle.

Definition 2 The acceleration-velocity obstacle AV Oδ,τ
AB

(read: the acceleration-velocity obstacle forA induced byB
for time horizonτ and control parameterδ) is the set of all
new relative velocitiesv′

AB of A with respect toB that will
result in a collision betweenA andB before timeτ , where
proportional control of the acceleration (with parameterδ)
is used by bothA andB to reach the new relative velocity
v′
AB from the current relative velocityvAB.

More formally, letrAB = rA+rB be the combined radius
of A andB, thenA andB collide at timet if ‖pAB(t)‖ <
rAB . By Eq. (9), that is:

‖pAB + tv′
AB + δ(e−

t

δ − 1)(v′
AB − vAB)‖ < rAB . (10)

Dividing both sides byt+δ(e−t/δ−1) and rearranging gives:

‖v′
AB−

δ(e−
t

δ − 1)vAB − pAB

t+ δ(e−
t

δ − 1)
‖ <

rAB

t+ δ(e−
t

δ − 1)
, (11)

which defines the disc of all new relative velocitiesv′
AB

that letA andB collide at timet (see Eq. (1)). Hence, the
acceleration-velocity obstacleAV Oδ,τ

AB is a union of discs:

AV Oδ,τ
AB =

⋃

0<t≤τ

D(
δ(e−

t

δ −1)vAB−pAB

t+ δ(e−
t

δ − 1)
,

rAB

t+δ(e−
t

δ −1)
).

(12)
A closed form expression can be obtained for the boundary
of the acceleration-velocity obstacle (see Appendix).

The definition of the acceleration-velocity obstacle implies
that if obstacleB is moving with aconstant velocityvB (i.e.
v′
B = vB), and robotA chooses its new velocityv′

A outside
AV Oδ,τ

AB ⊕ {vB}, robotA is guaranteed not to collide with

(a) (b)

Fig. 4. (a) A configuration of robotA amidst moving obstacles. The arrows
indicate their current velocities. (b) The acceleration-velocity obstacles
induced by the obstacles forδ = 2 and τ = 4 (dark grey). The white
region is the setCAA of safe new velocitiesv′

A for A.

B before timeτ if A uses control parameterδ to arrive at its
new velocityv′

A. Alternatively, if B applies an acceleration
aB and also uses control parameterδ to arrive at a new
velocity v′

B, it follows from Eq. (7) thatv′
B = vB + δaB.

Then, robotA should choose its new velocityv′
A outside

AV Oδ,τ
AB ⊕ {v′

B} to be guaranteed not to collide withB
before timeτ .

C. Navigation among Multiple Moving Obstacles

Acceleration-velocity obstacles can be used to navigate a
robot among multiple moving obstacles as follows. The robot
A performs a continuous cycle of sensing and acting with a
(small) time step∆t. In each iteration, the robot determines
its preferred velocity v

pref
A ,1 and senses the radiusrB , the

current positionpB and the current velocityvB of each
obstacleB. The robot either assumes that the obstacle moves
with a constant velocity, i.e.v′

B = vB , or alternatively that
v′
B = vB+δaB if an accelerationaB is also observed. Based

on this information, the robot computes the acceleration-
velocity obstacleAV Oδ,τ

AB ⊕ {v′
B} induced byB. The set

CAA of new velocities forA that avoid collisions with all
obstacles is the complement of the union of the acceleration-
velocity obstacles. In addition, the robot must obey the
acceleration constraint‖aA‖ < amax

A , which by Eq. (7)
means that‖v′

A − vA‖ < δamax
A . So (see Fig. 4):

CAA = D(vA, δa
max
A) \

⋃

B

(AV Oδ,τ
AB ⊕ {v′

B}). (13)

Next, the robot selects the velocity inCAA that is closest
to its preferred velocityvpref

A as its new velocityv′
A:

v′
A = argmin

v∈CAA

‖v− v
pref
A ‖. (14)

1The preferred velocityvpref
A

is the velocityA would have taken if there
were no moving obstacles, for instance the vector in the direction of its goal
with a magnitude equal toA’s preferred speed.

It can be shown that this velocity is either (i) the preferred
velocity itself, (ii) an intersection point of the boundaries
of two acceleration-velocity obstacles, or (iii) an orthogonal
projection of the preferred velocity on the boundary of an
acceleration-velocity obstacle [8]. To determinev′

A, all these
points are computed and checked whether they are inCAA.
The one closest to the preferred velocity is selected as the
new velocity forA.

Finally, the robot applies the accelerationaA = (v′
A −

vA)/δ, and the sensing-acting cycle repeats after∆t time.

IV. RECIPROCAL COLLISION AVOIDANCE

Above, we have shown how a robot can avoid moving
obstacles with the assumption that their future trajectories
can be estimated solely by extrapolating current information
about the obstacles’ motion. However, in many cases the
“moving obstacles” are not passively moving entities, but
actually other robots that also make decisions based on their
surroundings. Simply considering them as moving obstacles
will lead to oscillations if the other entities too consider all
other robots as moving obstacles [10], [18]. Therefore, the
reactive nature of the other robots must be specifically taken
into account in order to guarantee that collisions are avoided.

This problem is referred to asreciprocal collision avoid-
ance, and is addressed in this section. An approach to
reciprocal collision avoidance based on velocity obstacles
was introduced in [19]. Here, we present a similar approach
based on acceleration-velocity obstacles taking into account
acceleration constraints on the robots. We assume that the
robots act independently using the same collision-avoidance
strategy (with the same value ofδ), and are able to estimate
or observe the relevant physical properties of other robots.

A. Sets of Reciprocal Collision Avoidance

Let us consider the configuration of Fig. 3(a), but in this
case assume that bothA andB are decision-making robots
that both attempt to avoid collisions with control parameter
δ and time horizonτ . To obey the acceleration constraints,
A will choose its new velocityv′

A in D(vA, δa
max
A) andB

will choose its new velocityv′
B in D(vB , δa

max
B). Hence,

the newrelative velocity v′
AB = v′

A−v′
B of A with respect

to B will be in D(vAB , δa
max
AB), wherevAB = vA − vB is

the current relative velocity andamax
AB = amax

A + amax
B is the

sum of the maximum accelerations ofA andB. In addition,
to avoid collisions betweenA andB before timeτ , the new
relative velocityv′

AB should be outsideAV Oδ,τ
AB. We denote

the set of safe new relative velocitiesV ′
AB (see Fig. 5(a)):

V ′
AB = D(vAB , δa

max
AB) \AV Oδ,τ

AB . (15)

SinceA andB select their new velocities independently
and simultaneously,A does not know what new velocityB
selects, and vice versa. So, neither robot can guarantee that
v′
AB ∈ V ′

AB. However, if we apportion sets of potential new
velocitiesV ′

A ⊂ D(vA, δa
max
A) andV ′

B ⊂ D(vB , δa
max
B) to

A andB, respectively, such thatV ′
A ⊕ −V ′

B ⊂ V ′
AB, then

collisions are guaranteed to be avoided:

Lemma 3 If V ′
A ⊕−V ′

B ⊂ V ′
AB , then

v′
A ∈ V ′

A ∧ v′
B ∈ V ′

B =⇒ v′
AB ∈ V ′

AB .

There are infinitely many pairs of setsV ′
A ⊂ D(vA, δa

max
A)

andV ′
B ⊂ D(vB, δa

max
B) such thatV ′

A ⊕−V ′
B ⊂ V ′

AB. The
question is which pair is “fair” (i.e. both robots share the
responsibility of avoiding collisions equally) and “maximal”
(i.e. both sets contain a maximal amount of safe new veloc-
ities). Also, bothA andB should be able to independently
determine its set of safe new velocities without coordination
among them.

B. Finding a Convex Subset of V ′
AB

For a convex setX holds thatαX ⊕ (1 − α)X = X for
any 0 < α < 1. We could use this rule to determineV ′

A and
V ′
B if V ′

AB were convex. However, in general it is not (see
Fig. 5(a)). Therefore, we construct a (large) convex subset
V̂ ′
AB ⊂ V ′

AB by intersectingV ′
AB with a halfplane H :

V̂ ′
AB = V ′

AB ∩H (16)

Without making any assumptions on the properties of the
shape ofAV Oτ,δ

AB , we want to findH such thatV̂ ′
AB =

V ′
AB ∩H is convex and|V̂ ′

AB | is maximal. We constructH
as follows.

Let CH be theconvex hull of D(vAB , δa
max
AB)∩AV Oτ,δ

AB,
and letq be the closest point on the boundary ofCH to
vAB. Then, we defineH as the halfplane that is tangent to
CH at q (see Fig. 5(a)). It follows from the construction
of H thatH ∩ (D(vAB , δa

max
AB)∩AV Oτ,δ

AB) = ∅. Therefore,
V̂ ′
AB = V ′

AB ∩H = D(vAB , δa
max
AB)∩H , which ensures that

V̂ ′
AB is convex and a subset ofV ′

AB. Also, H was chosen
such that|V̂ ′

AB | is maximal among all possible halfplanes
for which H ∩ (D(vAB , δa

max
AB) ∩ AV Oτ,δ

AB) = ∅.

C. Determining Sets of Reciprocal Collision Avoidance

Given the convex set̂V ′
AB of safe new relative velocities,

we apportion setsV ′
A andV ′

B to A andB, respectively, such
that V ′

A ⊂ D(vA, δa
max
A), V ′

B ⊂ D(vB , δa
max
B) and V ′

A ⊕
−V ′

B = V̂ ′
AB. We do this as follows:

V ′
A = αAB(V̂

′
AB ⊕ {−vAB})⊕ {vA} (17)

V ′
B = −(1− αAB)(V̂

′
AB ⊕ {−vAB})⊕ {vB}, (18)

for parameter0 < αAB < 1 that determinesA’s share of the
responsibility of avoiding collisions betweenA andB. We
can prove thatV ′

A ⊕−V ′
B = V̂ ′

AB as follows:

V ′
A ⊕−V ′

B = αAB(V̂
′
AB ⊕ {−vAB})⊕ {vA} ⊕

(1− αAB)(V̂
′
AB ⊕ {−vAB})⊕ {−vB}

= (V̂ ′
AB ⊕ {−vAB})⊕ {vA} ⊕ {−vB}

= V̂ ′
AB ⊕ {−vAB} ⊕ {vAB} = V̂ ′

AB , (19)

where we used thatαX ⊕ (1− α)X = X for convexX .
Second, we need to determineA’s shareαAB of the

responsibility to avoid collisions betweenA and B. As A
andB may have different acceleration constraints, we let

αAB =
amax
A

amax
AB

. (20)

(a) (b)

Fig. 5. (a) The setV ′

AB
(white) of safe new relative velocitiesv′

AB
for the

configuration of Fig. 3(a). The halfplaneH maximizes|D(vAB, amax
AB

)∩
H| for D(vAB, amax

AB) ∩ H ⊂ V ′

AB . (b) The sets (white) of safe new
velocitiesv′

A andv′

B for robotA andB, respectively, that guarantee that
collisions between them before timeτ are avoided.

Note thatB’s shareαBA = 1 − αAB =
amax

B

amax

AB

, so the share
of the responsibility is proportional to each robot’s ability to
change its velocity and avoid collisions. We can now prove
that V ′

A ⊂ D(vA, δa
max
A) andV ′

B ⊂ D(vB, δa
max
B):

V ′
A =

amax
A

amax
AB

(V̂ ′
AB ⊕ {−vAB})⊕ {vA}

⊂
amax
A

amax
AB

(D(vAB , δa
max
AB)⊕ {−vAB})⊕ {vA}

=
amax
A

amax
AB

D(0, δamax
AB)⊕ {vA} = D(0, δamax

A)⊕ {vA}

= D(vA, δa
max
A). (21)

The proof for V ′
B ⊂ D(vB , δa

max
B) is constructed simi-

larly. In fact, |V ′
A|/|D(vA, δa

max
A)| = |V ′

B |/|D(vB, δa
max
B)|,

which confirms that the potential new velocities are dis-
tributed fairly according to each robot’s ability to change
velocity and avoid collisions (see Fig. 5(b)).

Note that the definitions ofV ′
A andV ′

B are fully symmetric.
Reasoning fromB’s perspective, we havevBA = −vAB

andAV Oτ,δ
BA = −AVOτ,δ

AB . Therefore,V ′
BA = −V ′

AB and
V̂ ′
BA = −V̂ ′

AB (see Eqs. (15) and (16)). Further,αBA =
1 − αAB. Substituting these identities into Eq. (18) gives
V ′
B = αBA(V̂

′
BA ⊕ {−vBA}) ⊕ {vB}, which is of exactly

the same form as Eq. (17) for robotA. As a result, robots
A andB can construct their setsV ′

A andV ′
B , respectively,

independently without coordination. We formally callV ′
A and

V ′
B the sets ofoptimal reciprocal collision avoidance.

Definition 4 The set ofoptimal reciprocal collision avoid-
ance ORCAδ,τ

AB of robotA induced by robotB for control
parameterδ and time horizonτ is the setV ′

A as defined by
Eqs. (17) and (20).

The definition implies that if robotA chooses its new velocity
v′
A in ORCAδ,τ

AB and robotB chooses its new velocityv′
B

in ORCAδ,τ
BA, robotsA andB are guaranteed not to collide

with each other before timeτ if both A andB use control
parameterδ to arrive at their new velocities.

(a) (b)

Fig. 6. (a) The halfplanes induced by the other robots for theconfiguration
of Fig. 4(a) for δ = 2 and τ = 4 where all entities are assumed to be
decision-making robots with the same acceleration constraint amax

A
. The

white region is the setCAA of safe new velocitiesv′

A for A. (b) The
kinematic model of a car-like robot. Even though it cannot move sidewards,
it can accelerate omni-directionally when its speed is nonzero.

D. Multi-Robot Navigation

The ORCA formulation can be used for independent nav-
igation of multiple robots sharing a common workspace as
follows. Each robotA independently performs a continuous
cycle of sensing and acting with time step∆t. In each
iteration, the robot determines its preferred velocityv

pref
A ,

and senses the radiusrB , the current positionpB and the
current velocityvB of each other robotB. The robot also
needs to know the maximum accelerationamax

B of each other
robot, which may be estimated from its physical properties.
Based on this information, the robotA infers the set of safe
new velocitiesORCAδ,τ

AB ⊕{vA} with respect to each other
robot B. The setCAA of new velocities forA that avoid
collisions with all robots is the intersection of these sets(see
Fig. 6(a)):

CAA =
⋂

B

ORCAδ,τ
AB . (22)

Next, the robot selects the velocity inCAA that is closest
to its preferred velocityvpref

A as its new velocityv′
A:

v′
A = argmin

v∈CAA

‖v− v
pref
A ‖. (23)

It can be seen thatCAA is the intersection of the disc
D(vA, δa

max
A) of new velocities obeying the acceleration

constraint and a set of halfplanes (one halfplane for each
other robot). Hence,CAA is convex, and the new velocity
v′
A as defined in Eq. (23) can be efficiently found using 2-D

linear programming. It may happen thatCAA = ∅, i.e. no
safe new velocities are available to the robot, particularly in
very dense scenarios. In that case, the “least unsafe” velocity
can be found using 3-D linear programming (see [19] for
details).

Finally, the robot applies the accelerationaA = (v′
A −

vA)/δ, and the sensing-acting cycle repeats after∆t time.
Note that all robots apply this cycle simultaneously.

V. ROBOTS WITH K INEMATIC CONSTRAINTS

Our robot model assumes that the robot is capable of
accelerating omni-directionally. This not only applies to

holonomic robots, but also to a rich class of kinematically
constrained non-holonomic robots, as we show here using the
example of a car-like robot. As illustrated in Fig. 6(b), the
state of a car-like robot may be given by the center position
p = (px, py) of its rear axle, its orientationθ, and its linear
speedv. Its state-transition equations are then given by:

ṗx = v cos θ, ṗy = v sin θ, θ̇ = vκ, v̇ = a, (24)

where the linear accelerationa and the steering wheel angle
φ are the control inputs, from which the curvatureκ =
tan(φ)/d of the car’s trajectory directly follows (d is the
distance between the car’s front and rear axle).

From Eq. (24), it follows that the velocityv = (ṗx, ṗy)
and accelerationa = (p̈x, p̈y) of the car are given by:

v = R(θ)

[

v
0

]

, a = R(θ)

[

a
v2κ

]

, (25)

whereR(θ) =
[

cos θ −sin θ
sin θ cos θ

]

. Now, let the linear acceler-
ation be bounded by|a| < amax, and the curvature by
|κ| < amax/v2, such that extreme steering wheel angles are
forbidden at high speeds. It follows that ifv 6= 0, the vector
(a, v2κ) can be controlled to lie anywhere in the axis-aligned
squareS centered at0 with side2amax. Hence, by Eq. (25),
the set of accelerationsa that the robot can attain is given by
R(θ)S. The incircleD(0, amax) of S therefore contains the
accelerations that can be attained regardless of orientation θ.

As a result, by modeling the robot as a disc centered at
p that encompasses the car, we can apply our approach to
perform (reciprocal) collision avoidance for a car-like robot,
as long as its speedv is nonzero. A similar approach can be
taken for other types of kinodynamically constrained robots,
such as airplanes and differential-drives.

VI. I MPLEMENTATION AND RESULTS

We have implemented the collision avoidance techniques
based on AVO for simulated robots. We assume each robot
has a limited sensing radius, within which it can obtain
accurate knowledge of the relative position and velocity of
neighboring robots. In addition to an acceleration constraint,
we let the robots be constrained to a maximum speedvmax.
All timing results are taken on an Intel Core i7 CPU at
3.2GHz with 4 SMT CPUs.

A. Implementation Details

To compute the AVOs we approximate the boundary as
a series of line segments derived from Eq. (29) in the
Appendix. We found that 25 samples along the boundary are
enough to approximate it well and smoothly avoid collisions.
For avoiding moving obstacles we followed the approach of
[8], in which the new velocity of the robot is computed as
the projection of the preferred velocity onto the boundary
of the union of the AVOs. For multi-robot navigation with
reciprocal collision avoidance, we used the approximate
AVOs to compute the ORCA constraint halfplanes, and
used linear programming to find the new velocity for each
robot. The implementation was parallelized using OpenMP
to exploit the independence of the computations for each

Fig. 7. A robot with acceleration constraints avoid collisions with an
oncoming obstacle. Newer frames are on top of older frames and darker.

robot, and take advantage of the multiple cores available on
our testbed system.

The control parameterδ and the time horizonτ are tuning
parameters of our algorithm. Settingδ too low diminishes
the set of valid new velocities, while setting it too high
causes the robot to respond too slow to its environment. Its
optimal setting depends on the maximum acceleration and
speed of the robots. Our experiments suggest that a setting
δ such that the set of valid new velocities covers all valid
speeds, i.e.δ = 2vmax

amax
, is a good heuristic. The value of

τ signifies the look-ahead of the robot; setting it too low
causes unsafe navigation, while setting it too high reduces
the set of new velocities available to the robot. Typically,
its value should match the average duration of the validity
of extrapolations based on current observations. We have
used the values ofδ = 4s, τ = 10s, amax = 1m/s2 and
vmax = 2m/s in our experiments, and our results suggest
that these give convincing behavior in typical scenarios.

B. Benchmarks

We have implemented several benchmarks of simulated
robots in a variety of situations to demonstrate the avoidance
behavior and analyze runtime.

Moving ObstacleOne robot with acceleration constraints
avoids collisions with an obstacles moving at a fixed velocity.
Fig. 7 shows the trajectories of the robot and the obstacle.
The robot reaches its goal without collisions.

Positions ExchangeTwo robots, both with acceleration
constrains, exchange positions. Fig. 1 shows the trajectory
of each robot. Each dot, represents the center of an robot
separated by fixed time steps. The spacing between the dots
increases as the robots accelerate to avoid collision.

Circle-n Robots are initialized in a circle ofn robots. Each
robots is given a goal at the antipodal position across the
circle. Three time-lapsed images from the Circle-100 demo
are shown in Fig. 8.

Car-Like Robots We implemented our approach for car-
like robots as discussed in Section V. Our approach computes
accelerations for the cars, which are translated into proper
control inputs using Eq. (25), and integrated according to Eq.
(24) to obtain the updated state of the cars. In this scenario
(see Fig. 9), 100 cars have random initial positions, orien-
tations, and goals. Their kinematic and dynamic constraints
are obeyed while avoiding collisions with each other.

Videos of these and other benchmark scenarios are avail-
able athttp://gamma.cs.unc.edu/AVO/.

C. Performance Results

To test the performance of our model we implemented the
Circle-n benchmark with a varying number of robots. The

Fig. 9. Car-Like Robots Benchmark 100 cars move through the scene
and avoid collisions.

Fig. 10. Performance & Scalability Performance on the circle-n demo
up to 1000 robots. For all robots, new velocity computation took under 30
ms and the simulation ran at over 30 FPS.

results are shown in Fig. 10, which graphs the total time
taken to compute a new velocity for all the robots as the
number of robots increases. We observe an approximately
linear increase in the computation time as the number of
robots increase. We are able to achieve a simulation rate of
over 30FPS for 1,000 robots.

If used in a performance critical application, our imple-
mentation could easily be further optimized. For example,
our method is well poised to take advantage of data-parallel
processing units found in modern CPUs and GPUs.

VII. C ONCLUSION AND FUTURE WORK

In this paper we have introduced theacceleration-velocity
obstacle for collision-avoidance among moving obstacles
by robots subject to acceleration constraints. We have used
this concept to derive a formulation forreciprocal collision
avoidance for multiple robots. Our experiments have shown
that our approach achieves fast running times and produces
convincing collision-free motions obeying the acceleration
constraints, even in dense environments.

We have assumed that the robots move in a 2-D
workspace, are disc-shaped, and capable of omni-directional
acceleration. Even though we have shown that this model can
be made applicable to non-holonomic robots such as cars,
the question arises whether an approach can be formulated
directly for arbitrarily kinematically constrained systems.
As shown in [20], it is possible to derive “control input
obstacles” for collision avoidance with moving obstacles.For

Fig. 8. Circle-n Benchmark 100 robots move to their antipodal position on the circle. Asthey pass through the center, the density increases, but the
motions remain smooth and collision-free.

reciprocal collision avoidance, however, the key is that the
relative motion of two robots can be expressed in terms of the
difference between their control inputs. This is not generally
the case for kinematically constrained robots.

One of the motivations of this work is to apply it to
collision-avoidance for teams of quadrotor helicopters flying
at high speeds in tight airspaces. As the attitude and motion
control of these vehicles are typically decoupled [12], they
can essentially be treated as holonomic robots capable of
omni-directional acceleration. Still, it requires extending our
approach to dealing with 3-D workspaces and uncertainty in
the sensor data. This is subject of ongoing research.

Another potential application of our approach is to use it in
motion planning for efficiently checking whether the robot
is in an inevitable collision state [4], which is considered
a challenging problem in the context of multiple moving
obstacles [11]. If no valid new velocity is available in the set
CAA of Fig. 4, no trajectory towards a new velocity is safe
for at leastτ time, and one may (conservatively) conclude
that a collision is inevitable.

REFERENCES

[1] Y. Abe, M. Yoshiki. Collision avoidance method for multiple au-
tonomous mobile agents by implicit cooperation.Proc. IEEE RSJ Int.
Conf. on Intelligent Robots and Systems, 2001.

[2] B. Damas, J. Santos-Victor. Avoiding moving obstacles:the forbidden
velocity map.Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2009.

[3] P. Fiorini, Z. Shiller. Motion planning in dynamic environments using
Velocity Obstacles.Int. J. of Robotics Research 17(7):760–772, 1998.

[4] T. Fraichard, H. Asama. Inevitable collision states - a step towards
safer robots?Advanced Robotics 18(10):1001–1024, 2004.

[5] D. Fox, W. Burgard, S. Thrun. The dynamic window approachto
collision avoidance.IEEE Robotics and Automation Magazine 4:23-
33, 1997.

[6] C. Fulgenzi, A. Spalanzani, C. Laugier. Dynamic obstacle avoidance
in uncertain environment combining PVOs and occupancy grid. Proc.
IEEE Int. Conf. on Robotics and Automation, 2007.

[7] O. Gal, Z. Shiller, E. Rimon. Efficient and safe on-line motion planning
in dynamic environments.Proc. IEEE Int. Conf. on Robotics and
Automation, 2009.

[8] S. Guy, J. Chhugani, C. Kim, N. Satish, P. Dubey, M. Lin, D.
Manocha. ClearPath: Highly parallel collision avoidance for multi-
agent simulation. Proc. ACM SIGGRAPH/Eurographics Symp. on
Computer Animation, 2009.

[9] D. Hsu, R. Kindel, J. Latombe, S. Rock. Randomized kinodynamic
motion planning with moving obstacles.Int. J. Robotics Research
21(3):233-255, 2002.

[10] B. Kluge, E. Prassler. Reflective navigation: Individual behaviors and
group behaviors.Proc. IEEE Int. Conf. Robotics and Automation,
2004.

[11] L. Martinez-Gomez, T. Fraichard. Collision avoidancein dynamic
environments: an ICS-based solution and its comparative evaluation.
Proc. IEEE Int. Conf. on Robotics and Automation, 2009.

[12] N. Michael, D. Mellinger, Q. Lindsey, V. Kumar. The GRASP multiple
mirco-UAV test bed: experimental evaluation of multirobotaerial con-
trol algorithms.IEEE Robotics and Automation Magazine 17(3):56–
65, 2010.

[13] E. Owen, L. Montano. Motion planning in dynamic environments
using the velocity space.Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, 2005.

[14] S. Petti, T. Fraichard. Safe motion planning in dynamicenvironments.
Proc. IEEE RSJ Int. Conf. on Intelligent Robots and Systems, 2005.

[15] E. Prassler, J. Scholz, P. Fiorini. A robotics wheelchair for crowded
public environment.IEEE Robotics and Automation Magazine 8(1):38-
45, 2001.

[16] Z. Shiller, F. Large, and S. Sekhavat. Motion planning in dynamic
environments: obstacles moving along arbitrary trajectories. Proc.
IEEE Int. Conf. on Robotics and Automation, 2001.

[17] J. Snape, J. van den Berg, S. Guy, D. Manocha. Independent navigation
of multiple robots with Hybrid Reciprocal Velocity Obstacles. Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2009.

[18] J. van den Berg, M. Lin, D. Manocha. Reciprocal VelocityObstacles
for real-time multi-agent navigation.Proc. IEEE Int. Conf. on Robotics
and Automation, 2008.

[19] J. van den Berg, S. Guy, M. Lin, D. Manocha. Reciprocaln-body
collision avoidance.Proc. Int. Symposium of Robotics Research, 2009.

[20] D. Wilkie, J. van den Berg, D. Manocha. Generalized Velocity
Obstacles.IEEE/RSJ Int. Conf. on Intel. Robots and Systems, 2009.

APPENDIX

The left and right tangent pointsq+(p, r) andq−(p, r)
on a circle of radiusr centered atp to a line through the
origin are given by:

q±(p, r) =

[

ℓ ∓r
±r ℓ

]

p
ℓ

‖p‖2
, ℓ =

√

‖p‖2 − r2. (26)

Let the centers and the radii of the discs that form the
acceleration-velocity obstacle be denotedc(t) and r(t) re-
spectively (see Eq. (12)):

c(t) =
δ(e−t/δ − 1)vAB − pAB

t+ δ(e−t/δ − 1)
, (27)

r(t) =
rAB

t+ δ(e−t/δ − 1)
. (28)

Then, the left and right boundariesb+(t) andb−(t) of the
acceleration-velocity obstacleAV Oτ

AB are given by:

b±(t) = c(t) −
r(t)

ṙ(t)
ċ(t) + q±(

r(t)

ṙ(t)
ċ(t), r(t)), (29)

for 0 < t ≤ τ .

