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Abstract— Existing state-of-the-art object tracking can run
into challenges when objects collide, occlude, or come close
to one another. These visually based trackers may also fail to
differentiate between objects with the same appearance but
different materials. Existing methods may stop tracking or
incorrectly start tracking another object. These failures are
uneasy for trackers to recover from since they often use results
from previous frames. By using audio of the impact sounds
from object collisions, rolling, etc., our audio-visual object
tracking (AVOT) neural network can reduce tracking error and
drift. We train AVOT end to end and use audio-visual inputs
over all frames. Our audio-based technique may be used in
conjunction with other neural networks to augment visually
based object detection and tracking methods. We evaluate its
runtime frames-per-second (FPS) performance and intersection
over union (IoU) performance against OpenCV object tracking
implementations and a deep learning method. Our experiments,
using the synthetic Sound-20K audio-visual dataset, demon-
strate that AVOT outperforms single-modality deep learning
methods, when there is audio from object collisions. A proposed
scheduler network to switch between AVOT and other methods
based on audio onset maximizes accuracy and performance
over all frames in multimodal object tracking.

I. INTRODUCTION

Deep learning has enabled state-of-the-art techniques for
image classification and object detection in images and
video [39], [49], [50]. Object tracking classifies bounding
boxes for each object in a video over time. These methods are
useful for applications in autonomous driving [17], mobile
robotics [52], person tracking [11], speaker recognition [48],
[55], and 3D reconstruction [47]. For more granularity be-
yond bounding boxes, object segmentation provides pixel-
level annotations [46], [58]. These existing object trackers
achieve real-time performance and continue to improve on
accuracy and the number of classes that they can detect.

However, occlusion, similar object categories, and smaller
object sizes remain a challenge for visually based track-
ers [39]. Auditory cues can assist in these exacting areas,
especially when similar and/or smaller objects are of a dif-
ferent material [4]. In this paper, we propose an audio-visual
object tracker (AVOT) that augments visual only trackers
with fused audio in a jointly trained end-to-end model. It is
evaluated using synthetic Sound-20K dataset [63], consisting
of tabletop sized objects of different geometry and materials.
The data contains videos with multiple objects of various
shapes (e.g. bottle, knife, etc.) and materials (e.g. steel, wood,
etc.) colliding in a virtual scene. Colliding includes objects
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Fig. 1. An example failure case improved by our audio-visual object
tracker. (Top row) best baseline, CSRT in this case, incorrectly latches to
the wrong object after collision. (Middle row) our AVOT method continues
to correctly track the object post-collision. (Bottom row) ground truth
annotated by the experimenter. For clarity, we show the bounding box for
only one of the objects being tracked, although the methods track both
objects. Please see the Supplementary Video for more demonstration.

colliding within the scene, with each other, rolling, etc. We
use videos with one, two, or three colliding objects.

Other than speaker recognition, this is the first use of
an audio-visual neural network for tracking tabletop sized
objects and enhancing visual object trackers. The key con-
tributions of this work include:

• An end-to-end, jointly trained audio-visual object
tracker (AVOT) to enhance visual object tracking;

• Ground truth bounding box annotations for Sound-20K
audio-visual dataset with 1, 2, and 3 object scenes;

• Scheduler for object detection re-initialization based on
audio onset detection when using multimodal tracking.

Fusing audio with visual data, AVOT achieves 77.7%
IoU post-collision tracking accuracy compared to 68.6% IoU
using deep-learning visual tracking, SSD– [39], and 38.4%
using CSRT [40] for virtual scenes with multiple objects
based on our annotated Sound-20K dataset of 19 tabletop
sized object classes of varying geometry and materials.

II. BACKGROUND AND RELATED WORK

While object detection methods must search over the entire
search space to first detect an object, tracking algorithms
can be much faster by leveraging knowledge from previous
frames to reduce the search space. However, this can make
error recovery difficult. Tracking is also more complex be-
cause unlike object detection bounding boxes which are class
specific, tracking is object specific. It assigns identifiable
bounding boxes to each object and attempts to maintain each
assignment over all frames. So, tracking not only detects but
also maintains bounding box assignment for each object, over
all frames. More granular than bounding boxes, segmentation
may also be performed for pixel-level annotations. For an



Object Detection/Tracking Datasets
Dataset # Class # Img/Vid
COCO [37] 80 330K img
DAVIS [10] 384 10.5K img
ILSVRC [51] 1000 1.4M img
KITTI [42], [58] 8 10.9K img
OTB [60] 100 100 vid
PASCAL VOC [15] 20 21K img
Sound-20K [63] 55+ 20K vid
VOT2018 [32] 35 147K img
YouTube–VOS [61] 7800+ 4K+ vid

TABLE I
IN CONTRAST TO OTHER DATASETS, THE SOUND-20K DATASET

CONTAINS THE LARGEST AUDIO-VISUAL DATA FOR OBJECT

INTERACTIONS IN A VIRTUAL SCENE AND PROVIDES AN EXCELLENT

BASELINE FOR ASSESSING THE ACCURACY OF OUR AVOT METHOD

AGAINST OTHERS.

attribute and performance comparison, object tracking bench-
mark [60] provides attribute and performance comparisons
between various methods and evaluation criteria.

The majority of object detection and tracking methods
are visually based, even though some datasets are generated
from videos with audio. Table I lists commonly used datasets
for object detection and tracking evaluation. We add ground
truth bounding box annotations to the Sound-20K dataset
and use it as a baseline for assessing the accuracy of our
AVOT method. While the general methodology of research
areas such as speaker detection and person tracking leverage
both audio and visual information, their implementations
are specifically aimed at tracking human speakers (e.g. face
detection is part of their pipeline). Our method aims to be ap-
plicable in a broader context and does not make assumptions
about the targets. It currently can track up to nineteen object-
material classes. Next we discuss object detection, tracking,
and audio-visual techniques in more detail, as compared to
our work.

A. Object Detection

In addition to overall classification of an image, re-
searchers are interested in also detecting and classifying
the specific objects within an image. This can be achieved
by using object detection methods to locate and label each
object with a class-specific bounding box. As is similar in
image classification, object detection techniques require large
amounts of training data but in its case, more annotations
for each example. Because, in the case of object detection,
training data requires both class labels and bounding box
coordinates for each object. For example, the PASCAL
Visual Object Classes (VOC) dataset contains images, object
annotations, and segmentations for twenty different classes.
Other available datasets are mentioned in Table I. Unfortu-
nately, only a few datasets make available the video and
accompanying audio, making audio-visual methods more
time-consuming to explore. We contribute our Sound-20K
ground truth annotations to aid future audio-visual research
in this area.

Video object detection: object detection can be performed
not only on images but on video as well. Here, additional

contextual information is available such as sound and im-
age sequence. This temporal memory has allowed video
detection to achieve start-of-the-art performance and speeds
by learning lightweight scene features for mobile [38] and
shifting channels along the dimension of time [36]. However,
video also introduces new challenges such as motion blur,
defocus, and various poses. Temporal coherence can also
be used to overcome these defects with flow-guided feature
aggregation [65], for instance. Finally, in addition to scene
features, time shifting, and temporally coherent features,
temporal propagation for on demand detection has also
yielded efficiency gains [12].

B. Object Tracking

Object tracking differs from object detection in that the
labels and bounding boxes are dependent. In other words,
tracking attempts to establish correspondences of the same
object over multiple frames, for example, one particular
car in traffic over time. While object tracking has been
studied for decades, numerous factors remain a challenge,
such as illumination variation, occlusion, and background
clutters [60]. Given the sequential nature of the task and
method, tracking can be fast and efficient but also accumulate
error and drift. Moreover, it is not easy for object trackers
to recover from failure or an incorrect assignment to another
object. Approaches such as frame skipping, Siamese trackers,
and deep learning are a few of the existing techniques being
used to perform object tracking and segmentation quickly
and accurately.

Frame skipping: this baseline approach detects every
N-th frame and tracks frames in between. Advantages of
frame skipping are realized in terms of speed and precision
by efficiently tracking on a majority of the frames while
still allowing for correction by performing detection every
N keyframes. This can be referred to as a fixed scheduler.
Dynamic schedulers have also been considered. For instance,
Detect or Track [41] uses a scheduler network to determine
whether to detect or track at certain frames. In our research,
we propose an audio-based scheduler procedure that can alter
tracking during audio onset detection in videos (Alg. 1).

Siamese trackers: Siamese neural networks take two
inputs and, with shared weights, predict if the two inputs
belong to the same output class. Fully-convolutional Siamese
approaches can be used for object tracking [7], [22], [35],
[62], [66] and unlike batch processing, online Siamese meth-
ods can perform tracking on streaming video with access
only to current and previous frames [59]. To improve initial-
ization of online adaption-based deep networks such as these,
offline meta-learning has been applied [45]. Asymmetric
Siamese networks have also been studied and learn a linear
template to search test images by cross-correlation [57].

Deep learning: last but not least, object tracking per-
formed using deep learning. Faster R-CNN [50] is a real-
time, state-of-the-art object tracker and four staged end-to-
end neural network. First, a convolutional feature map of
the image is obtained by extracting from a convolutional
layer of a pre-trained CNN (e.g. ImageNet [33], ResNet [23],



Fig. 2. Audio-Visual Object Tracker (AVOT) neural network architecture. AVOT is a feed-forward convolutional neural network that classifies and scales
a fixed number of anchor bounding boxes to track objects in a video. Here, we define an object based on its geometry and material. Convolutional layers
from the visual and audio inputs are fused using an add merge layer before being input into a base network of convolutional layers similar to standard
classification networks. The base is then followed by predictor layers for detection, as is done in SSD, however designed and optimized for our audio-visual
dataset and task. The single best detection for each object is then selected using non-maximum suppression.

MobileNets [28], DenseNet [29], etc.). The second stage is
a Region Proposal Network, which are reference bounding
boxes uniformly placed across the image. In this stage,
specific regions are identified and adjusted based on the
convolutional feature map from the first step. The third stage
applies Region of Interest (RoI) Pooling to extract features
from the convolutional map for each region. The fourth and
final step then uses those features to classify the content in
the bounding box (e.g. bottle, table, etc., background) and
adjust the classified bounding box to a better fit, predicting
∆xcenter,∆ycenter,∆width,∆height from an anchor.

Single Shot MultiBox Detector (SSD) [39] is another real-
time, state-of-the-art object tracker. SSD is slightly better
than YOLO [49] in terms of speed while improving upon
accuracy with additional feature layers on top of a base
network 1. Furthermore, SSD is slightly better than Faster R-
CNN in terms of accuracy while eliminating object proposals
with multiple feature maps of differing resolution. Although
SSD uses similar default boxes, it applies them to several
feature maps of different resolutions. In addition to a single
unified framework for training and prediction, SSD input
images are smaller at 300 x 300, compared to 512 x 512 for
Faster R-CNN and 448 x 448 for YOLO [39]. This enables
faster processing over other single shot, region proposal, and
pooling techniques. This permits a wider range of computer
vision applications to leverage this architecture. We use SSD
as both a baseline and base network for our AVOT tracker.

C. Audio-Visual Methods

Audio-visual techniques have been used for speech sep-
aration [14], object and geometry classification [56], [63],
[64], and audio-visual correspondence learning [3], [4]. Most
directly related to audio-visual object tracking is speaker
recognition [48], [55], tracking from audio-visual data using
a linear prediction method [2], and object detection and

1ImageNet VGG-16 was used as a base, but other neural networks should
also produce good results.

Fig. 3. Existing object trackers performance decline when objects collide
in a moving two object Sound-20K virtual scene whereas AVOT improves
with audio onset. Post-collision (i.e. when there’s audio), deep learning
(DL) methods achieve nearly 40% higher in accuracy over other methods
and AVOT further outperforms SSD– by another 10% in mean Intersection
over Union (mIoU) with an added benefit of audio-visual input. A scheduler
network gated on audio can be used to achieve the best run performance
and/or the highest accuracy across all cases using multimodal trackers.

tracking with audio and optical signals [27]. For speaker
recognition, a face tracking algorithm and microphone array
are used to estimate speaker position. These methods fuse
audio and visual data by leveraging time delays in audio and
motion changes in visual. While both modalities, in theory,
can distinguish these changes, one may be more adept to do
so. Also, the fusion of the two can decrease uncertainty and
increase reliability [44]. Finally, audio can also come from
contact microphones or acoustical sensors to capture touch
sounds and optical signals for gesture recognition [27]. In our
approach, we leverage audio from impact sounds of objects
and images from video.

III. TECHNICAL APPROACH

Unlike visually based object trackers, our method defines
each object by its geometry and material. With audio-visual



data, the same shape (e.g. bottle) with different materials
(e.g. steel vs. wood) are distinguishable and are therefore
considered to be different objects. Our work also consid-
ers colliding objects. While a challenge for visually based
tracking methods (Fig. 3), they provide auditory cues for an
audio-visual object tracker. Scheduling between trackers can
then be enabled based on audio availability.

Given the location of an object in the first frame of video,
the object tracking task is to quickly and accurately estimate
its position in all successive frames [54]. More specifically,
for each video frame in a sequence F = f1, f2, ..., fN
where N is number of frames, obtain bounding boxes B =
b1, b2, ..., bM where M is the number of objects.

A. AVOT Neural Network Architecture

Similar to existing object tracking architectures, AVOT is a
feed-forward convolutional neural network that classifies and
scales a fixed number of anchor bounding boxes to fit each
object in an image. We define an object based on its geometry
and material. AVOT leverages audio and visual data for a
more granular definition of an object to distinguish between
objects with the same appearance but different materials.

Audio input: Audio frames from Sound-20K [63] videos
match the image frame rate of 33 frames per second. As
a result, each jpeg image has a corresponding 29 ms audio
wav file. The audio is converted to mel-scaled spectrograms
and serve as the audio input given their performance in
CNNs for other tasks [30]. They are computed using a short-
time Fourier transform with a 512 sample Hann window
and 12.5% overlap. A Hanning (Hann) window was selected
for its suitability for a variety of signals, good frequency
resolution, and reduced spectral leakage. Each spectrogram
is individually normalized and downsampled to a size of 62
frequency bins by 25 time bins (Fig. 4). Binning provides
for appropriate fusion with image dimensions and weight
matching to the logarithmic perception of frequency [56].

Image input: image dimensions are 500 x 375 pixels.
Since SSD evaluated input sizes 300 x 300 and 512 x
512 (YOLO 448 x 448), our images are augmented but
input dimensions unmodified as they fall within range of
previous work. For data augmentation, we use common
image transformations and sampling strategy similar to SSD
and YOLO. Random cropping can be especially useful for
creating zoomed in and out training examples to aid the
classification of small objects in PASCAL VOC and Sound-
20K. Each training image randomly samples from a data
augmentation sequence to make the model more robust
to object size and shape [39]. We use a reduced layer
variation of VGG16 [53] as the base network leading up to
our detection prediction layers. Images were extracted from
video using ffmpeg with CRF scale set to 0 (lossless) and
libx264 set to vcodec [63]. Each image is fused with its
corresponding audio via an add-merge layer.

Architecture: Fig. 2 illustrates the layers of our multi-
modal object tracker neural network. The early visual layer
is based on [34] and audio layer based on impact [56] and
environmental sound [30] classification. Convolutional layers

Fig. 4. AVOT needs ground truth boxes (left), input audio from the
scene video converted to a mel-scaled spectrogram (center), and input
image (right) for each object during training. We predict shape offsets
and confidences for all object categories where an object is defined by its
geometry and material.

from the visual and audio inputs are fused using an add
merge layer. A multiply-merge layer was also considered
and resulted in a similar training loss, however, at 1.5x the
number of training epochs. Fused features are then input into
a base network. Given our relatively small annotated audio-
visual dataset, our base network is a reduced version of the
standard image classification architecture [33]. The base is
then followed by predictor, or also referred to as feature or
classifier layers. Upper and lower feature maps are used for
detection, as is done in SSD, to promote consistency and
capture fine details respectively. The single best detection for
each object is then selected using non-maximum suppression.

B. AVOT Dataset

Ground truth annotations were manually labeled by the
experimenter for 18 objects. Each object is unique by ge-
ometry and material. The dataset is comprised of 17 three
second videos of 103 image and audio frames each. This
resulted in a total of 1,752 audio and visual segments. Videos
contained one, two, and three colliding objects per scene. Our
training and test datasets are split 80% and 20% respectively.
The test dataset randomly samples frames from each video
that are held out from training and used only for evaluation.
For example, a video with 100 frames will have 20 frames
randomly selected for test and the remaining 80 frames used
for training. Fig. 5 shows loss by epoch for our AVOT tracker
compared to a variation of visually based SSD.

C. Implementation Details

All models were implemented with Tensorflow [1] and
Keras [13]. AVOT was run with early stopping at a maximum
of 100 epochs, 100 steps per epoch, and batch size of 16 (Fig.
5). Training was performed using an Adam optimizer [31]
and loss as defined by the weighted sum of localization
loss (Smooth L1) and confidence loss (Softmax). We use
a reduced variation SSD for predictor layers. AVOT anchor
box scaling factors were set to 0.08, 0.16, 0.32, 0.64, and
0.96 and aspect ratios 0.5, 1.0, and 2.0 [39]. Here, we do not
use SSD aspect ratios 1/3 or 3 given a smaller number of
target classes. There are five scaling factors for four predictor
layers because the last scaling factor is used for the second
aspect ratio box of the last predictor layer. Although fewer
layers, detections are still based on small 3 x 3 kernels at
each feature map offset [39].



Fig. 5. The training (circle) and validation (line) loss for SSD– (blue) and
AVOT (orange). Multimodal AVOT loss seems to decrease more consistently
than visual only SSD with reduced layers, denoted as SSD–.

Initialization: our AVOT neural network uses he normal
initialization [21]. For evaluation, we also initialize baseline
methods with he normal rather than fine tune on pre-trained
networks. Recent research suggests equivalent performance
between random initialization for training instead of pre-
trained weights [24]. Furthermore, given a smaller dataset of
Sound-20K with ground truth annotations, we have reduced
the layers of baseline implementations to avoid overfitting.

Non-maximum suppression (NMS) [43]: object trackers
may produce more than one overlapping bounding box that
are greater than the confidence and IoU thresholds for
the same object. NMS is a post-process that selects the
bounding box with the greatest confidence and suppresses
remaining bounding boxes that overlap this maximum by
some threshold. Here, NMS confidence and IoU threshold
are set to 0.5 [39].

Scheduler network: Impact sounds from objects colliding
emulate a type of scheduler network that can improve
detections post collision. For added efficiency, only visual
inputs can be processed leading up to audio onset. After,
both audio and visual inputs can be used. In the case of our
synthetic dataset, there is no audio prior to collision which
makes audio onset easier to detect than videos with noise.

Algorithm 1 AVOT Scheduler Network
1: procedure AUDIOVISUALOBJECTTRACKER
2: trackers← initializeBoundingBoxes
3: top:
4: trackers← update
5: if Audio then RunScheduler
6: goto top
7: procedure RUNSCHEDULER
8: AVOT detects objects
9: re-initialize object trackers

10: goto top

mIoU / mFPS Object Tracking Accuracy by Method
Method 2 Objects 3 Objects
AVOT (Ours) 58.3% / 101.6 66.1% / 101.0
CSRT [40] 46.9% / 17.1 30.1% / 4.7
KCF [26] 13.5% / 24.9 1.7% / 38.6
MIL [6] 43.0% / 2.5 21.6% / 1.6
MOSSE [8] 7.6% / 70.4 1.0% / 74.5
SSD– [39] 55.5% / 108.7 65.9% / 103.8

TABLE II
MULTIPLE NETWORK MODELS WERE EVALUATED ON ACCURACY AND

TIME USING MEAN INTERSECTION OVER UNION (MIOU) AND MEAN

FRAMES PER SECOND (MFPS). OURS IS AVOT. FAILURE CASES FOR

BASELINE METHODS WITHOUT AUDIO TEND TO CLASSIFY TO THE

CORRECT GEOMETRY BUT WRONG MATERIAL. BY EXPLOITING BOTH

VISUAL AND AUDIO DATA, AVOT ACHIEVES THE HIGHEST LEVEL OF

TRACKING ACCURACY, WITH NEARLY COMPARABLE BEST RUNTIME

PERFORMANCE, OVER EXISTING VISUAL TRACKING METHODS.

IV. EXPERIMENTS AND RESULTS

Evaluation was performed using ground truth annotations
on the Sound-20K audio-visual dataset. This dataset is com-
prised of synthetic videos of multiple objects colliding in a
scene. Training took roughly 30 minutes running on Ubuntu
16.04.6 LTS with a single Titan X GPU. We use Intersection
over Union (IoU) for accuracy between ground truth and
predicted object bounding boxes. As a general rule of thumb,
a true positive prediction occurs when IoU ≥ 0.5, according
to the PASCAL VOC challenge. We measure the speed in
mean frames per second (mFPS) with a batch size of 16
using a Titan X and cuDNN v7.4.2.

OpenCV implementations: online Multiple Instance
Learning (MIL) [6], Kernelized Correlation Filters
(KCF) [26], Discriminative Correlation Filter with Channel
and Spatial Reliability (CSRT) [40], and an adaptive
correlation filter known as Minimum Output Sum of
Squared Error (MOSSE) [8] are a few trackers available
in OpenCV [9]. We selected to evaluate these as baselines
due to their advantages in terms of accuracy and/or speed.
For these methods, appearance is learned from first frame
bounding boxes that are initialized with ground truth
coordinates.

A. Our Results vs. Baselines

Given our limited number of training examples in our
audio-visual dataset, we used a reduced layer implementation
of SSD (labeled in Table II as SSD–) for a baseline and base
network for AVOT. Our AVOT neural network outperforms
SSD– and other baseline methods after collision (Fig. 3).
As shown in Fig. 3, AVOT was able to achieve the highest
level of accuracy of 80% in mean Intersection over Union
(mIoU)– about 10% more accurate than SSD. While these
results are AVOT only, we further propose a scheduler
network (Algorithm 1) to switch between AVOT and other
methods based on audio onset to maximize accuracy and
performance over all frames in multimodal object tracking.



Fig. 6. We compare CSRT and SSD to our AVOT method for multi-object tracking. Two colliding objects with the same geometry but different materials are
tracked free-falling in a virtual scene from Sound-20K [63]. CSRT is unable to maintain tracking post-collision and while SSD recovers, it temporarily loses
tracking at the time of occlusion. Audio-visual AVOT maintains tracking across all frames. Please see the Supplementary Video for more demonstrations.

Fig. 7. Examples of AVOT applied to virtual scene of Sound-20K
with predicted bounding box. These are exemplary screenshots of AVOT
performing object tracking before and after collisions for one, two, and
three object virtual scenes. Notice alphanumeric labels (e.g. bottle1 and
bottle1) to differentiate the same geometry with different materials.

B. Maximization Activation

We analyzed activation maximizations to visualize the
spectrogram audio and visual input which would produce the
highest activation for a given volume class. They demon-
strate features being learned by both modalities for the
object tracking task. Please see the Supplementary Video for
demonstration.

V. CONCLUSION
We present AVOT, an end-to-end trained neural network

for object tracking using audio and visual data from videos.
To distinguish between similar objects with different materi-
als, we define an object based on its geometry and material.
This more granular categorization benefits from a multimodal
learning approach using audio and visual data, where audio is
typically available from the sources of video but are currently
underutilized. By fusing audio with visual data, our audio-
visual object tracker (AVOT) outperforms single-modality
methods when audio is present from impact, collision, and
rolling sounds while maintaining real-time performance. We
evaluated against Sound-20K and make our audio-visual data
along with ground truth bounding box annotations available
for future research in this area.

Future work: we will expand the size of our training set by
annotating more objects in the Sound-20K dataset, increase
the number of object classes that we are predicting, evaluate
alternative fusion methods, and perform sensitivity analysis
on scaling factors and aspect ratios. We would also like to
augment our audio data and experiment with a variation of
our object tracker with audio only.
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