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ABSTRACT1
This paper introduces AutonoVi-Sim, a novel high-fidelity simulation platform for testing au-2
tonomous driving algorithms. AutonoVi-Sim is a collection of high-level extensible modules3
which allows for the rapid development and testing of vehicle configurations, and facilitates con-4
struction of complex road networks. Autonovi-Sim supports multiple vehicles with unique steering5
or acceleration limits, as well as unique tire parameters and overall vehicle dynamics profiles. En-6
gineers can specify the specific vehicle sensor systems and vary time of day and weather conditions7
to gain insight into how conditions affect the performance of a particular algorithm. In addition,8
AutonoVi-Sim supports navigation for non-vehicle traffic participants such as cyclists and pedes-9
trians, allowing engineers to specify routes for these actors, or to create scripted scenarios which10
place the vehicle in dangerous reactive situations. AutonoVi-Sim also facilitates data analysis, al-11
lowing for capturing video from the vehicle’s perspective, exporting sensor data such as relative12
positions of other traffic participants, camera data for a specific sensor, and detection and classifi-13
cation results. Thus, AutonoVi-Sim allows for the rapid prototyping, development and testing of14
autonomous driving algorithms under varying vehicle, road, traffic, and weather conditions.15

16
Keywords: Autonomous Driving, Self-driving Cars, Traffic Simulation17
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INTRODUCTION1
Autonomous driving represents an imminent challenge encompassing a number of domains in-2
cluding robotics, computer vision, motion planning, civil engineering, and simulation. Central to3
this challenge is the safety considerations autonomous vehicles navigating the roads surrounded4
by unpredictable actors. Humans, whether drivers, pedestrians, or cyclists, often behave errat-5
ically, inconsistently, or dangerously, forcing other vehicles (including autonomous vehicles) to6
react quickly to avoid hazards. In order to facilitate acceptance and guarantee safety, vehicles must7
be tested not only in typical, relatively safe scenarios, but also in these dangerous, less frequent8
scenarios.9

Aside from safety concerns, costs pose an additional challenge to the testing of autonomous10
driving algorithms. Each new configuration of a vehicle or new sensor requires re-calibration of11
a physical vehicle, which is labor intensive. Furthermore, the vehicle can only be tested under12
condition limited either by a testing track, or the current traffic conditions if a road test is being13
performed. This means the vehicle can be tested no faster than real-time and without any speedups14
or parallel testing.15

The ability to test a driving algorithm in a high-fidelity, physics driven simulation would16
allow for testing novel approaches without incurring intense labor costs. New vehicles or novel17
sensor configurations could be explored on many scenarios at once under a wide array of traffic18
and weather conditions. Engineers could also test the driving algorithm under conditions which19
may be too dangerous for a real vehicle. For example, engineers could test how the vehicle would20
respond to erratic behavior from other drivers, pedestrians, or cyclists without endangering the21
vehicle’s passengers or other traffic participants. Insights gained from simulation would provide22
critical information on algorithmic inefficiencies before actual vehicle testing.23

In an effort to provide such a testing platform, this paper introduces AutonoVi-Sim, a sim-24
ulation framework for testing autonomous driving algorithms and sensors. AutonoVi-Sim is a25
collection of high-level, extensible modules designed to allow researchers and engineers to rapidly26
configure novel road networks, driving scenarios, and vehicle configurations, and to test these in27
a variety of weather and lighting conditions. AutonoVi-Sim captures a variety of autonomous28
driving phenomena and testing requirements including:29

• Varying vehicle types and traffic density: AutonoVi-Sim includes various vehicle mod-30
els allowing for training sensors on differing vehicle shapes, sizes, and colors. In addi-31
tion, AutonoVi-Sim provides high fidelity traffic simulation, supporting dynamic changes32
in traffic density and the capacity to model the diversity and dynamics of surrounding ve-33
hicles.34

• Rapid Scenario Construction: Typical road networks can be easily laid out using spline35
painting and are automatically connected into searchable graphs. This enables the rapid36
generation of complex, and realistic road networks which support routing and naviga-37
tion automatically. AutonoVi-Sim supports many lane configurations and atypical road38
geometry such as cloverleaf overpasses.39

• Cyclists and Pedestrians: Non-vehicle traffic can be included in a scenario as part of40
the larger simulation or given specific scripted parameters. Cyclists and pedestrians are41
supported and can be given navigation destinations like vehicles or specific scenario be-42
haviors to test the ego-vehicle’s ressponse time (e.g. walking intro the road in front of43
the ego-vehicle).44

• Varied Sensor Configurations: Sensor placement can be varied per-vehicle to determine45
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FIGURE 1 The eight modules composing AutonoVi-Sim encompass varying aspects of au-
tonomous driving. The Road, Road Network, and Infrastructure modules define the driving
environment. The Environment module allows engineers to specify specific environment con-
ditions including time of day and weather. The Non-Vehicle traffic module allows engineers
to specify navigation goals for pedestrians and cyclists, or setup specific triggered behaviors.
The Drivers and Vehicles modules work as a pair to define current traffic conditions and
specific driving destinations and decisions for the vehicles in the simulation. Each vehicle
in the simulation has a unique set of sensing capabilities and a single driver which operates
the vehicle during the simulation. Finally, the Analysis module is used to catalog and export
data, including agent positions and sensor readings, for analysis.

how a particular approach responds to differing environmental information. At runtime,1
sensor failure or loss of fidelity can be simulated as well.2

The rest of the paper is organized as follows. "Related Work" motivates simulation as a tool3
for advancing autonomous driving and detailed related work in the field. "Simulation Modules" de-4
tails the core modules provided by AutonoVi-Sim. "Autonomous Driving Modules" discusses the5
two vehicle related modules which form the core of the autonomous driving component. Results6
and demonstrative scenarios are given in "Results".7

RELATED WORK8
Engineers in numerous disciples have focused on simulating vehicles and traffic for research and9
commercial purposes. MATSim (1) provides the macroscopic simulation of large-scale traffic10
networks of thousands of vehicles. SUMO (2) offers modular agent-based simulation of traffic11
networks from a 2D perspective. Approaches to modelling hybrid networks of agents and macro-12
scopic flow have been proposed (3). In these simulations, the underlying physics and dynamics13
of the vehicles are coarsely approximated or neglected as the traffic flow patterns are the principle14
focus of the studies. However, for autonomous driving approaches, high-fidelity physics driven15
simulations are necessary to train algorithms.16

Simulation has been an integral tool in the development of controllers for autonomous17
vehicles. (4), (5), and (6) offer in-depth surveys of the current state of the art and the role simulation18
has played. Many successful vehicle demonstrations of autonomy were first tested in simulation19
(7–9). Recent work in traffic modelling has sought to increase the fidelity of the modelled drivers20
and vehicles (10).21

Recent studies support the use of high-fidelity microscopic simulation for data-gathering22
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and training of vision systems. (11) and (12) leveraged Grand Theft Auto 5 to train a deep-learning1
classifier at comparable performance to manually annotated real-world images. Several recent2
projects seek to enable video games to train end-to-end driving systems, including ChosenTruck3
and DeepDrive-Universe which leverages the OpenAI Universe(13) platform. Using video game4
data provides access to relatively high-fidelity vehicle models but limits the ability to implement5
sensing systems and access data beyond visual data. A dedicated high-fidelity simulator can ad-6
dress these limitations and provide access to point-cloud data, visual data, and other vehicle sensors7
without the limitations imposed by adapting gaming software.8

Modeling Vehicle Kinematics and Dynamics: A number of approaches have been devel-9
oped to model the motion of a moving vehicle, offering trade-offs between simplicity, efficiency10
and physical accuracy of the approach. Simpler models are typically based on linear dynamics11
and analytical solutions to the equations of motion (14). More accurate models provide a better12
representation of the physical motion, but require more computational power to evaluate and incor-13
porate non-linear forces in the vehicle dynamics (15). The Reeds-Shepp formulation is a widely14
used car model with forward and backward gears (16). Margolis and Asgari (17) present several15
representations of a car including the widely used single-track bicycle model. Borrelli et al. (15)16
extend this model by including detailed tire-forces.17

Modeling Traffic Rules: As well as planning the appropriate paths to avoid collisions,18
autonomous vehicles must also follow applicable laws and traffic norms. Techniques have been19
proposed to simulate typical traffic behaviors in traffic simulation such as Human Driver Model20
(18) and data-driven models such as (19). Logic-based approaches with safety guarantees have21
also been demonstrated (20). An extensive discussion on techniques to model these behaviors in22
traffic simulation can be found in (10).23

Path Planning and Collision Avoidance: Prior approaches to path planning for autonomous24
vehicles are based on random-exploration (21), occupancy grids (22), potential-field methods (23),25
driving corridors (24), etc. Recent approaches seek to incorporate driver behavior prediction in26
path planning using Bayesian behavior modeling (25) and game-theoretic approaches (26). Con-27
tinuous approaches for collision-avoidance have been proposed based on spatial decomposition or28
velocity-space reasoning. Ziegler et al. (27) utilize polygonal decomposition of obstacles to gen-29
erate blockages in continuous driving corridors. Sun et al. (28) demonstrate the use of prediction30
functions and trajectory set generation to plan safe lane-changes. Berg et al. (29) apply velocity-31
space reasoning with acceleration constraints to generate safe and collision-free velocities. Bareiss32
et al. (30) extend the concept of velocity obstacles into the control space to generate a complete set33
of collision-free control inputs.34

SIMULATION MODULES35
Drawing from recent work in crowd simulation, (31), AutonoVi-Sim is divided into eight extensi-36
ble modules, each with various sub-components. The modules are Environment, Road Network,37
Road, Drivers, Infrastructure, Vehicles, Non-vehicle Traffic, and Analysis. Each module captures38
some aspect of autonomous driving simulation and can be extended and modified to suit the spe-39
cific needs of a particular algorithm. FIGURE 1 shows the connection between components in40
AutonoVi-Sim. This section details the modules which make up the basic simulation system, re-41
serving discussion of the vehicle and driving strategy modules for the subsequent section.42
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Roads1
Roads in AutonoVi-Sim are represented by their center line, a number of lanes and directions2
thereof, and the surface friction of the road. Roads are placed interactively by drawing splines on a3
landscape which allows quick construction. Each road maintains occupancy information, average4
flow, and can maintain hazard information. The road module also maintains the set of hazards such5
as potholes or debris, which can be specified by density (number of hazards per km) or interactively6
by placing them on the road.7

Alternately, roads can be specific pieces of geometry as in the case of intersections. This8
provides the flexibility to place specific intersections and model atypical road features for mod-9
elling specific environments. FIGURE 3(A) shows an example of road placement in AutonoVi-10
Sim.11

Infrastructure12
Infrastructure controllers represent traffic lights, signage, and any other entity which modifies the13
behaviors of vehicles on the road. These controllers can be added specifically to roads, as in the14
case of intersections, or placed independently as in signage or loop detectors. Vehicles implement15
their own detection of these entities as is described in the Vehicles module below. Infrastructure16
components are provided with basic detection capability. For example, traffic lights can determine17
which lanes are congested and adjust the light cycle accordingly to more traffic more effectively.18

Road Network19
The Road Network in AutonoVi-Sim provides the basic connectivity information for the traffic20
infrastructure to the vehicles in the simulation. At run-time, the network is automatically con-21
structed by connecting the roads into a directed graph. The Road Network provides GPS style22
routing to vehicles and localization for mapping purposes. Coupled with the Roads and Infrastruc-23
ture modules, the Road Network also provides information about upcoming traffic and current road24
conditions. As part of the Road Network, vehicle spawners are provided which generate vehicles25
and can provide specific destinations for each vehicle. The Road Network can be used to specify26
per-road initial density as well or to specify a general initial traffic density over the network.27

Environment28
The environment module allows engineers to specify the specific environmental conditions for a29
given driving scenario. This currently includes time of day and weather. The system implements30
varying levels of fog and rain conditions. Environmental effects such as road friction reduction are31
controlled by the environment module.32

Non-Vehicle Traffic33
AutonoVi-Sim implements two non-vehicle traffic participants: pedestrians and cyclists. Pedestri-34
ans operate separately from the road network and can be given specific destinations. By default,35
pedestrians follow safe traffic rules to navigate to their goal. They can also be setup to trigger36
specific occurrences. For example, as a target vehicle nears, a pedestrian can be triggered to walk37
into the street in front of the vehicle to test its reaction time.38

Cyclists operate similarly to vehicles in AutonoVi-Sim. Cyclists are given destinations and39
route over the road network. Similarly to pedestrians, cyclists can be programmed to trigger erratic40
behavior under specified conditions. For example, as a target vehicle approaches, a cyclist can be41
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(A) (B) (C)

FIGURE 2 This figure shows examples of AutonoVi-Sim sensor setup. (A): The ray-cast sen-
sors provide a simple interface for sensing nearby objects. Each sensor is shown in its own
color, has a unique range, and a unique detection uncertainty value. (B): An example con-
figuration of a hatchback with a laser rangefinder navigating around traffic cones. Reflected
beams are illustrated in red. Beams which do not return hits are illustrated in cyan for de-
bugging. (C): An example camera configuration for a test vehicle. A 180 degree forward
facing camera, a 180 degree rear-facing camera, and a dashboard camera are illustrated.

triggered to stop in the road, suddenly change direction, or enter the road in an unsafe fashion.1

Analysis and Data Capture2
AutonoVi-Sim implements a module for logging positions, velocities, and behaviors of the various3
traffic participants. It also supports logging egocentric data from the vehicle, such as relative4
positions of nearby entities at varying times during simulation. Specific sub-routines of the vehicle5
can be timed, profiled, and logged using a simple interface. Camera-based sensors can record6
out the video data captured during simulation as can LIDAR based sensors. The Vehicles section7
describes sensors in more detail.8

AUTONOMOUS DRIVING MODULES9
The simulation modules described in the prior section serve as the basis for AutonoVi-Sim. This10
section describes the two core modules which allow for testing autonomous driving and sensing11
algorithms under varying conditions i.e. the Vehicles and Drivers modules.12

Vehicles13
A vehicle in AutonoVi-Sim is represented as a physics-driven entity with specific tire, steering,14
and sensor parameters. Physics parameters include the base tire coefficient of friction, the mass15
of the vehicle, engine properties such as gear ratios, and the physical model for the vehicle. Each16
of these parameters can vary between vehicles and relevant properties such as tire friction or mass17
can even vary at runtime as needed.18

Control and Dynamics19
Vehicle control is provided via three axes: steering, throttle, and brake inputs. The specific inputs20
are determined at each simulation step by the driver model, described below. The vehicle’s dynam-21
ics are implemented in the NVidia PhysX engine. This allows the simulator to model the vehicle’s22
dynamics and communicate relevant features such as slipping as needed by the driving algorithm.23
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(D) (E) (F)

(A) (B) (C)

FIGURE 3 (A): Road networks in Autonovi-Sim are easily constructed by dragging splines
along the landscape. The roads automatically connect into a road network. (B): Heavy fog
obstructs the view of the vehicle. (C): Vehicles pass through a slick intersection during rainy
conditions. (D): Closed-circuit road networks such as this simulated city block allow engi-
neers to test driving algorithms over long timescales by assigning new navigation goals pe-
riodically. (E): An SUV navigating with AutonoVi changes lanes and passes a cyclist safely.
(F): A hatchback navigating with AutonoVi detects a jaywalking pedestrian and generates a
stopping point to wait for the pedestrian to cross.

Perception1
The perception module of a vehicle provides the interface for gathering and storing information2
about the surroundings. The basic sensing module in AutonoVi-Sim employs a ray-cast with con-3
figurable detection noise, detection time, classification error rate, and sensor angle / range. This4
module is sufficient to test scenarios such as late detection or misclassification of pedestrians with5
minimal intervention. A vehicle can be equipped with multiple sensors with varying angles and6
fidelity. This allows, for example, for the vehicle to simulate high-fidelity sensors in the longitudi-7
nal directions and broader, less accurate sensors in lateral directions. In addition, interaction with8
environmental conditions can be specified for the basic sensors, including performance impacts9
and uncertainty caused by weather effects. FIGURE 2(A) shows an example of a basic 4-sensor10
setup on a vehicle.11

The perception module provides interfaces to a generic camera interface and Monte-Carlo12
scanning ray-casts to simulate various sensor types. These interfaces can be extended to implement13
LIDAR or camera-based neural network classifiers in simulation. The LIDAR can be configured14
to change the scanning range, angle, and resolution. Similarly, the camera resolution, color param-15
eters, and refresh rate can be configured for each camera sensor. FIGURE 2(B) and (C) show an16
example of a camera-based sensor and simple laser rangefinder.17

Drivers18
Driving decisions in AutonoVi-Sim, including routing and control inputs, are made by driver mod-19
els. A driver model fuses information from the road network and the vehicle’s sensors to make20
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appropriate decisions for the vehicle. The specific update rate of the driver model can be con-1
figured as well as what sensors the model supports and prefers. Each model can implement any2
necessary parameters needed for the specific approach.3

AutonoVi-Sim currently implements three driver models. The Basic Driver is a sim-4
ple lane-following approach which employs control methods similar to a driver assistance lane-5
keeping system. This driver model is used to generate passive vehicles travelling along their desti-6
nations without aberrant or egocentric behaviors. These vehicles are capable of lane-changes and7
turns, but follow simple rules for these maneuvers and rely on perfect sensing models to accom-8
plish them.9

At each planning step, the Basic Driver projects the positions of nearby entities into the10
future by a pre-determined time threshold. It leverages these projections to exclude choices of11
control inputs which would lead to a collision with its neighbors. It then chooses the closest speed12
to its target speed that avoids potential collisions.13

The more extensive driver,the AutonoVi Driver, is described in detail in (32). This model14
uses optimization-based maneuvering with traffic constraints to generate behaviors such as over-15
taking, and combines steering and braking maneuvers through a data-driven vehicle dynamics16
prediction model. At each planning-step, AutonoVi uses a modified control-obstacle (30) formu-17
lation to avoid collisions and determines the best control for the next step using a sampling-based18
approximation of a multi-objective optimization function.19

The simulator also implements the Manual Driver. The Manual Driver can be activated20
from any autonomous driver. It allows an engineer to drive the vehicle using a keyboard, game-21
pad, or steering wheel and pedal combination. As described in (33), this manual operation is being22
employed to test vehicle signalling and connected vehicle operation. It can also be used to collect23
data for neural network-based methods.24

RESULTS25
This section provides an overview of several scenarios that have been tested in AutonoVi-Sim26
and provide performance results for large-scale traffic simulations. Results have been gathered27
on a desktop PC running Windows 10, with a quad-core Intel Xeon processor, NVIDIA Ti-28
tanX gpu, and 16 gb ram. An extended video demonstration of the results can be found at29
http://gamma.cs.unc.edu/AutonoVi/.30

FIGURE 3 demonstrates several environmental effects simulated in AutonoVi-Sim. FIG-31
URE 3(B) demonstrates fog obscuring the view of a vehicle as it navigates an intersection. Fog32
can be introduced in a scenario to reduce visibility and impede sensor accuracy. The density of33
fog can be configured dynamically to reflect changing conditions. FIGURE 3(C) demonstrates34
vehicles navigating wet roads during a rainstorm. The friction of road surfaces decrease as wet-35
ness increases. The road material can be specified and the effects of rain on each surface can be36
configured independently.37

Autonomous Driving Scenarios38
As part of (32), a set of specific behavior benchmarks for Autonovi-Sim was designed to test an39
autonomous vehicle under challenging conditions. Visual demonstrations and extended details of40
the scenarios below can be found in (32).41

Jaywalking Pedestrian: The vehicle must react quickly to safely decelerate or stop to42
avoid a pedestrian stepping into the road in front of the vehicle.43
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FIGURE 4 To test AutonoVi-Sim’s performance scaling, repeated trials were conducted on
a road network similar to FIGURE 3(A), with increasing numbers of vehicles in each trial.
Each vehicle is equipped with two basic ray-cast sensors with perfect accuracy. This graph
details the computation time for each simulation step as a function of the number of vehicles
simulated. The limit of 30 frames per second (FPS) and 10 FPS are shown for reference. Re-
sults show that the computation time scales approximately linearly in the number of vehicles
simulated, with the ability to simulate 160 vehicles at 30 fps and up to 420 vehicles at 10 FPS.

Sudden Stop at High Speed: The vehicle must execute an emergency stop on a highway1
at high speeds when the vehicle in front of it stops suddenly. Autonovi-Sim supports configuring2
the density of surrounding traffic. This allows for testing the vehicle in conditions where swerving3
is not executed simply and must account for surrounding traffic.4

Passing a cyclist: the vehicle must pass a cyclist on a four-lane road. The vehicle must5
maintain a safe distance from the cyclist, changing lanes if possible to avoid the cyclist. This6
scenario can be configured for the density of surrounding traffic to prevent the vehicle from passing7
without adjusting its speed.8

Car Suddenly entering Roadway: The vehicle travels along a straight road at constant9
speed when a vehicle suddenly enters the road from a side street, blocking the vehicle’s path. The10
vehicle must decelerate and swerve to avoid colliding with the blocking vehicle. The speed of the11
vehicle is configurable. In (32), the vehicle was tested at 10, 30, and 50 mph and with the blocking12
vehicle obstructing either the right lane or both lanes.13

S-turns: The vehicle must navigate a set of tight alternating turns, or S turns. The under-14
lying vehicle dynamics yield different speeds and safety parameters for each vehicle type.15

High-Density Traffic Approaching a Turn: The vehicle approaches a stoplight at which16
it must execute a turn, but the current travel lane is congested by slow traffic. To make optimal17
progress, the vehicle should execute a lane change to the adjoining lane and return to the correct18
lane with sufficient time to execute the turn.19

Simulated City: The vehicle navigates to several key points in a small simulated city. The20
vehicle encounters cyclists, pedestrians, and other vehicles. The vehicle executes lane changes to21
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perform various turns as it obeys traffic laws and navigates to its goals.1

Performance2
A series of repeated traffic trials was conducted to determine the expected performance of AutonoVi-3
Sim. Results indicate that computational costs scale approximately linearly with the number of4
vehicles simulated. During testing, over 400 vehicles were simulated simultaneously at high-5
densities at interactive simulation rates. FIGURE 4 shows the results of the performance tests.6

CONCLUSION7
This paper has presented AutonoVi-Sim, a platform for autonomous vehicle simulation with the8
capacity to represent various vehicles, sensor configurations, and traffic conditions. It has demon-9
strated AutonoVi-Sim’s applicability to a number of challenging autonomous-driving situations10
and detailed the ways in which AutonoVi-Sim can enhance the state of the art in testing autonomous-11
driving algorithms. AutonoVi-Sim is a modular, extensible framework. While many modules cur-12
rently represent preliminary implementations of advanced functionality, the extensible nature of13
the framework provides the basis for progress in the various disciplines which define autonomous14
driving.15

This work is in active development and still faces a number of limitations. AutonoVi-Sim16
contains basic implementations of the various modules such as sensors for perception, a physics en-17
gine to simulate dynamics etc. However, each of these modules can be extended to more accurately18
reflect real world conditions. For example, AutonoVi-Sim currently lacks calibration information19
to replicate specific sensors and sensor configurations.20

In future work, the simulator can be improved by modelling specific sensing packages and21
algorithms to test specific real-world configurations. In addition, it will be beneficial to explore22
the transfer between algorithms trained on AutonoVi-Sim and actual test vehicles. Future work23
will also explore the integration of AutonoVi-Sim with prior approaches to macroscopic traffic24
simulation to generate hybrid multi-scale traffic simulations similar to (3). This would allow the25
simulation of substantially larger traffic flows. The individual driver models could also be im-26
proved by incorporating behavior prediction for nearby traffic.27
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