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Figure 1: Dress simulation: Four different images of a 210 step sequence taken from a dynamic cloth simulation and consisting of 40K triangles. By updating
in real-time instead of rebuilding the BVH of the deforming model according to our heuristic, we are able to render the animation at 13 frames per second with
5122 screen resolution using a dual-core P4 processor at 2.8 GHz.

ABSTRACT

We present an efficient approach for interactive ray tracing of de-
formable or animated models. Unlike many of the recent ap-
proaches for ray tracing static scenes, we use bounding volume
hierarchies (BVHs) instead of kd-trees as the underlying acceler-
ation structure. Our algorithm makes no assumptions about the
simulation or the motion of objects in the scene and dynamically
updates or recomputes the BVHs. We also describe a method to
detect BVH quality degradation during the simulation in order to
determine when the hierarchy needs to be rebuilt. Furthermore, we
show that the ray coherence techniques introduced for kd-trees can
be naturally extended to BVHs and yield similar improvements. Fi-
nally, we compare BVHs to spatial kd-trees, which have been used
recently as a replacement for AABB hierarchies. Our algorithm has
been applied to different scenarios arising in animation and simu-
lation and consisting of tens of thousands to a million triangles. In
practice, our system can ray trace these models at 3-13 frames a
second on a desktop PC including secondary rays.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: ray tracing, bounding volume hierarchies, deformable
models, animation

1 INTRODUCTION

Ray tracing is a classic problem in computer graphics and has been
studied in the literature for more than three decades. Most of the
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earlier ray tracing algorithms were used to generate high quality
images for offline rendering, but int the last few years, there has
been renewed interest in real-time ray tracing. At a broad level,
most of the work in real-time ray tracing algorithms can be clas-
sified into three main categories: improved techniques to compute
acceleration structures, exploiting ray coherence, and parallel algo-
rithms on shared memory or distributed memory systems.

Most current interactive ray tracing algorithms use kd-trees as an
acceleration data structure [22, 31]. In practice, kd-trees are simple
to implement, can be stored in a compact manner, and are used for
efficient tree traversal during ray intersections. However, one of the
the main disadvantages of kd-trees is the high construction time;
current algorithms can take seconds even on models composed of
tens of thousands of triangles [9, 30]. Although fast build methods
exist (e.g. [37]), the relative performance penalty for using a faster
kd-tree build algorithm is severe compared to doing the same with
object hierarchies. Furthermore, no simple and fast algorithms are
known for incrementally updating the kd-tree hierarchy, even when
the primitives undergo a simple deformation. As a result, current
algorithms for interactive ray tracing are mainly limited to static
scenes.

Main results: In this paper, we present a simple and efficient al-
gorithm for interactive ray tracing of dynamic scenes of deformable
objects, i.e. where the number of primitives does not change. We
analyze many issues with respect to computation and incremental
updates of hierarchies. Our algorithm uses bounding volume hierar-
chies (BVHs) of axis-aligned bounding boxes (AABBs), for which
we describe efficient techniques to recompute or update these hi-
erarchies during each frame. In practice, rebuilding of BVHs can
be expensive, so we minimize these computations by measuring
BVH quality degradation between successive frames. We also ap-
ply the ray coherence techniques developed for kd-trees to BVHs
and obtain similar speedups. Finally, we describe techniques to
parallelize these computations on multi-core architectures and im-
prove the cache efficiency of the resulting algorithms. We have
implemented our algorithm and highlight its performance on sev-
eral dynamic scenes. Our system can render these datasets with



secondary rays at 3−13 frames per second on a dual-core desktop
PC.

Overall, our approach offers the following advantages:

1. Simplicity: Our algorithm is very simple and easy to imple-
ment.

2. Interactivity: We are able to handle dynamic scenes with up
to a million triangles at interactive rates on current desktop
PCs.

3. Generality: Our algorithms make no assumptions about the
motion of the objects or the underlying simulation or anima-
tion, as long as no primitives are added or deleted.

The rest of the paper is organized in the following manner: We
give a brief overview of previous methods in Section 2. We present
our BVH hierarchy computation algorithm and evaluate its features
with other approaches in Section 3. Section 4 describes our ray trac-
ing algorithm for dynamic scenes based on BVHs and addresses the
issue of utilizing multi-core architectures. We show the results ob-
tained by our approach on several benchmarks in section 5. Finally,
we compare our method to a recent related approach in section 6.

2 PREVIOUS WORK

In this section, we give a brief overview of prior work in interactive
ray tracing and dynamic scenes.
Interactive ray tracing: Since its early introduction in [1,38], the
ray tracing algorithm has been very well studied in computer graph-
ics due to its generality and high rendering quality. Several systems
have been presented that are capable of generating ray traced im-
ages at interactive speeds. A recent survey is given in [25]. Parker
et al. [20] present a real-time ray tracing algorithm on a shared-
memory supercomputer. Several approaches use ray coherence to
improve performance and achieve interactive performance on com-
modity desktop systems for large static datasets, such as coherent
rat tracing [31, 33]. Recently, MLRT [22] combines kd-tree traver-
sal with frustum culling to further improve performance. Addi-
tionally, level-of-detail approaches have been used to improve the
performance of ray tracing massive models [3, 12, 41].
Dynamic Scenes: There is relatively less work on ray tracing dy-
namic scenes. Reinhard et al. [21] use a grid structure that can
be updated efficiently for any type of animation. Lext et al. [16]
present a general purpose framework and benchmarks for ray trac-
ing animated scenes. They also propose an algorithm that uses ori-
ented bounding boxes along with regular grids [17]. Wald et al. [32]
describe a distributed system for dynamic scenes that differentiates
between transformations and unstructured movement in the scene.
Recently, Wald et al. [36] proposed a coherent grid traversal algo-
rithm to handle dynamic models. Another current approach keeps
the kd-tree, but uses the bounds of the primitives over the whole
animation [8] so that the kd-tree structure is correct for each frame,
at the cost of increased traversal overhead.
Bounding volume hierarchies: BVHs have been widely used to
accelerate the performance of ray tracing algorithms [23, 26]. In
the case of static scenes, algorithms based on kd-trees and nested
grids seem to outperform BVH-based algorithms [9]. Larsson and
Akenine-Möller [15] present a lazy evaluation and hybrid update
method to efficiently update BVHs in collision detection. They
also use the algorithm to ray trace models composed of tens of thou-
sands of polygons [14]. BVHs have also been used to accelerate the
performance of collision detection algorithms for deformable mod-
els [28, 29]. Interactive ray tracing using BVHs has been demon-
strated by Geimer and Müller [5] as well as Wald et al. [34]. The
latter also use BVH updates to handle animated scenes. The main

difference to our system is that we do not assume advance knowl-
edge of the animation in order to find the best hierarchy, but are
able to detect when the hierarchy needs to be recomputed. Finally,
Boulos et al. [2] demonstrate interactive distribution ray tracing on
a medium-sized shared memory system.

3 BVHS FOR DYNAMIC SCENES

In this section, we analyze the problem of ray tracing using BVHs.
We show that BVHs can offer better performance than kd-trees on
dynamic environments and present optimizations to speed up ren-
dering.

3.1 Choice of Hierarchies
A BVH is a tree of bounding volumes. Each inner node of the
tree corresponds to a bounding volume (BV) containing its chil-
dren and each leaf node consists of one or more primitives. Com-
mon choices for BVs include spheres, AABBs, oriented bounding
boxes (OBBs) or k-DOPs (discretely oriented polytopes). Many ef-
ficient algorithms have been proposed to compute sphere-trees [11],
OBB-trees [7], and k-DOP-trees [13]. However, we use AABBs as
the BV as they provide a good balance between the tightness of fit
and computation cost and employ efficient algorithms for ray-box
intersection [19, 24, 39].

3.2 AABB hierarchies vs. kd-trees
In this section, we evaluate some features of BVHs based on
AABBs and compare them with kd-trees for ray tracing. Recently,
many efficient and optimized ray tracing systems have been pro-
posed based on kd-trees [31]. As far as static scenes are concerned,
analysis has shown that optimized algorithms based on kd-trees will
outperform BVH-based algorithms [9]. There are multiple reasons
to explain this behavior: First, even the most optimized ray-AABB
intersection test (e.g. from [39]) is more expensive than split plane
intersection for kd-trees. This is due to the fact that in the worst
case (i.e. no early rejection) up to 6 ray-plane intersections need to
be computed for AABB trees, as opposed to just one for a kd-tree
node. Another important aspect is that a BVH does not provide real
front-to-back ordering during traversal. As a result, when a primi-
tive intersects the ray, the algorithm cannot terminate (as is the case
for a kd-tree), but needs to continue the traversal to find all other
intersections. Furthermore, kd-tree nodes can be stored more effi-
ciently (8 bytes per node [35]) than an AABB possibly could. On
the other hand, we found that BVHs often need fewer nodes overall
to represent the scene as compared to a kd-tree (please see Table
1). This is mainly due to the fact that primitives are referenced only
once in the hierarchy, whereas kd-trees usually have multiple ref-
erences because no better split plane could be found. In addition,
AABBs have the advantage of providing a tighter fit to the geomet-
ric primitives with fewer levels in the tree, e.g. kd-trees need multi-
ple subdivisions in order to discard empty space. Most importantly,
the major benefit of BVHs is that the trees can be easily updated in
linear time using incremental techniques. No similar algorithms are
known for updating kd-trees.

3.3 BVH Construction
We construct an AABB hierarchy in a top-down manner by recur-
sively dividing an input set of primitive into two subsets until each
subset has the predetermined number of primitives. We have found
that subdividing until each leaf just contains one primitive yields the
best results at the cost of a deeper hierarchy, as – similar to kd-trees
– node intersection is comparably cheaper than primitive intersec-
tion, although other authors have reported best performance for 6
primitives per node [18]. During hierarchy construction, the most
important operation is to find a divider for the two subsets that will



Figure 2: Cloth on Bunny Simulation: Two shots of a 315 step dynamic
simulation of cloth dropping on the Stanford bunny. We achieve 13 frames
per second at 5122 screen resolution using a dual-core P4 processor at
2.8 GHz.

optimize the performance of runtime ray hierarchy traversal. One
of the best known heuristics for tree construction for ray tracing is
the surface-area heuristic (SAH) [6, 9], which has been shown to
yield higher ray tracing performance. However, despite recent im-
provements [30], it also has a much higher construction cost and
will commonly take longer than the actual frame rendering time
for dynamic environments. Because of this, we use the spatial me-
dian of one of the dimensions and sort the primitives into the child
nodes depending on their location with respect to the midpoint. We
observe that the spatial median build is usually about an order of
magnitude faster to compute and provides rendering performance
of 50-90% of SAH for most scenes. Note that even though we just
split along one dimension, the bounding box will still be tight along
all the three dimensions. As this method will often distribute a sim-
ilar number of primitives to both children, the resulting tree will
likely be nearly balanced. As we are storing just one primitive per
leaf, it is also easy to see that the total number of nodes in the tree
for n primitives will always be 2n− 1, which allows us to allocate
the space needed for any subtree during construction.

Regardless of the heuristic for finding a split, the time complex-
ity, T (n), of the top-down AABB hierarchy construction algorithm
is Ω(n logk n), where k is the number of children of each node and
n the number of primitives. It is easy to see that for each split,
every primitive in the node needs to be processed at least once to
see which child it belongs in. Since at each level of the tree during
construction all n primitives are examined and the smallest possible
number of levels is logk n, any top-down construction has to take at
least Ω(n logk n) time.

3.4 Updating the hierarchy
The main advantage of using BVHs for ray tracing is that animated
or deforming primitives can be handled by updating the BVs as-
sociated with each node in the tree. Our algorithm makes no as-
sumptions about the underlying motion or simulation. In order to
efficiently update the hierarchy, we recursively update the BVHs
by using a postorder traversal. We initially traverse down to leaves
from the root nodes. As we encounter a leaf node, we efficiently
compute a new BV that has the tightest fit to the underlying de-
formed geometry. As we traverse from the leaf node in a bottom-up
manner, we initialize the BV of an intermediate node with a BV
of the leftmost node and expand it with the BVs of the rest of the
sibling nodes.

The time complexity of this approach is O(n), which is lower
than the construction method. This is reflected by update times that
we have found to be about 4 times faster than rebuilding the tree
for our benchmark models (see Table 1 for detailed results). There-
fore, we rely on hierarchy update operations to maintain interactive

performance for dynamic environments.

3.5 BVHs for deformable scenes
We initially build an AABB tree of a given scene. As the model
deforms or some objects in the scene undergo motion, the BVH
needs to be updated or rebuilt. Updating the BVH is to recompute
the bounds of each BV node, and rebuilding the BVH is to recom-
pute the entire BVH from scratch and re-clustering the primitives.
At runtime, we traverse the BVH to compute the intersections be-
tween the rays and the primitives.

If the algorithm only updates the BVH between successive
frames, the runtime performance of BVHs can degrade over the an-
imation sequence because the grouping of the primitives and struc-
ture of the hierarchy does not change. As a result, the BVs may not
provide a tight fit to the underlying geometric primitives. This is
often characterized by growing and increasingly overlapping BVs,
which subsequently deteriorate the quality of the BVH for fast run-
time BVH traversal by adding more intersections between the ray
and AABBs. In such cases, rebuilding the AABB tree or parts of it
is desirable.

We found that updating the BVH works well with relatively
small changes to the scene or structured movement to groups of
primitives such as meshes. When primitives move independently,
however, for example in different directions, changes to the actual
tree structure may be necessary to reflect the new positions of the
deforming geometry. Still, rebuilding the BVH can be considerably
more expensive than updating the BVH. As a result, we want to
minimize the number of times rebuilding is performed. Therefore,
we need to efficiently decide when updating the BVH is sufficient
or rebuilding the BVH is required. This is non-trivial because the
actual degradation of a BVH depends on many factors, such as the
speed with which primitives move and the general characteristics of
the motion of objects in the scene. Simple approaches such as re-
building the tree every t frames have the disadvantage of not being
adaptable to different characteristics over the animation and need to
be chosen a priori. Conservatively choosing t means adding a lot of
rebuilding overhead, which is especially unwanted in an interactive
context. In order to efficiently detect when updating tree or rebuild-
ing tree is required, we use a simple heuristic that is described in
the next section.

3.6 Rebuilding criterion
We assume that BVH quality degradation is marked by bounding
box growth that is not caused by actual primitive size, but by dis-
tribution of primitives or subtrees in the box. For example, con-
sider two primitives moving in opposite directions. The parent node
containing them will have to grow to accommodate for the move-
ment, resulting in a bounding box that is relatively large, but mostly
empty. Since the probability that a box will be intersected by a
ray rises with its surface area, we want to rebuild a subtree to find
a more advantageous tree topology. To find these cases and pre-
vent them from impacting performance, we need to measure BVH
degradation during each frame by using a simple and inexpensive
heuristic.

Our heuristic is based on the idea that we can find nodes that are
large relative to their children by comparing their surface area. In
order to have a relative metric independent of scale, we measure the
ratio of each parent node’s surface area to the sum of the area of its
two children. The larger the ratio becomes, the more imbalance ex-
ists in the sizes. We first compute the ratio during tree construction
and store it in a field of the optimized AABB data structure (see
next section). Whenever the tree is updated, the changed surface
areas are automatically computed and each inner node can easily
calculate its new ratio. Since we assume that the ratio stored from
the construction is as good as we can do, we find the difference be-



Figure 3: Bunny blowing up : Two images show frames from a 113 step an-
imation of a deforming Stanford bunny. We achieve an average 6 frames per
second during ray tracing this deforming model with shadow and reflection
rays at 5122 screen resolution using a dual-core P4 processor at 2.8 GHz.

tween the new and old ratio and add them to a global accumulation
value. Once the bottom-up update reaches the root, we have com-
puted the sum of all the differences. To assure that this value can be
tested independently of the tree size, we normalize it by dividing by
the number of nodes that contribute to the sum, i.e. the sum of inner
nodes, which is always n−1. This yields a relative value describing
the overhead incurred by updating the BVH instead of rebuilding it.
This value is then simply compared to a predefined threshold value
(we found a threshold of 40% to work well in our tests) and the tree
is rebuilt if the threshold is exceeded.

This approach has several advantages: it will detect a good time
to rebuild regardless of the actual frame rate and without any scene-
specific settings. Furthermore, in scenes where there is little to no
degradation, the heuristic will never need to initiate a rebuild. It
is also possible to use the method to just rebuild subtrees, but we
found that this cannot fully replace a complete rebuild since degra-
dations in the upper levels of the hierarchy typically have the high-
est impact on the performance of ray tracing. Therefore, an imple-
mentation that rebuilds only subtrees will have to either do a full
rebuild sometimes, or support a top-level update where only the
upper levels of the tree are rebuilt.

4 RAY TRACING WITH BVHS

In this section we describe our runtime BVH traversal algorithm.
Also, we present techniques to extend the algorithm to multi-core
architectures.

4.1 Traversal and Intersection with BVHs
We use a simple algorithm to compute the intersection of a ray and
the scene primitives using the BVH. The ray is checked for inter-
sections with the children of the current node starting at the root
of the tree. If it intersects the child BV, the algorithm is applied
recursively to that child, otherwise that child is discarded. When-
ever a leaf node is reached, the ray is intersected with the primitives
contained in that node. For most rays, the goal is to find the first
hit point on the ray, so even if a ray-primitive intersection is found,
the algorithm has to search the other sub-trees for potential inter-
sections. An exception to this are shadow rays, where (at least for
directional lights) any hit is considered sufficient and traversal can
stop.

BVH traversal optimizations: Experience with kd-trees has
shown that front-to-back ordering is a major advantage for ray trac-
ing. Although BVHs do not provide a strict ordering, we found that
storing the axis of maximum distance between children for each
AABB and using that information during traversal together with

the ray direction to determine a ’near’ and ’far’ child improves the
traversal speed, especially for scenes with a high depth complexity
(this has also been reported in [18]. Another issue is cache coher-
ence during traversal: similar to the compact kd-tree representa-
tions [35], we can optimize the AABB representation to fit within
32 bytes. We achieve this by storing the bounding box as 6 floating
point values, one child pointer (such that the second child is ex-
pected to be directly after the first one in memory) and one float for
storing quality information for the rebuild heuristic. Our profiling
shows that BVH traversal using our AABBs has the same cache ef-
ficiency as the kd-tree traversal. To use an even more compact rep-
resentations, other implementations also have used nodes where the
actual coordinates were quantized and compressed to save memory
(such as [4, 18]).

Use of ray coherence techniques: One of the main techniques
used in current real-time ray tracers is to exploit ray coherence to
reduce the number of traversal steps and primitive intersections per
ray. Those algorithms were originally designed for the kd-tree ac-
celeration structure. It is relatively straightforward to extend them
to work with BVHs as well. In order to use coherent ray tracing [33]
the BVH traversal has to be changed so that a node is traversed if
any of the rays in the packet hits it and skipped if all of the rays miss
it. A hit mask is maintained throughout the traversal to keep track
of which rays have already hit an object and their distance. How-
ever, the traversal does no longer require that the rays have the same
direction signs because unlike kd-trees the traversal order does not
determine the correctness for a BVH. We have implemented ray
packet traversal for 2× 2 ray bundles using 4-wide SIMD instruc-
tions and found that it yields an overall speedup of about 2 to 3,
which is even above the improvement obtained for kd-trees. We
assume this is mainly because ray-AABB intersections are more
costly than the kd-tree’s ray-plane computation and therefore the
reduction in traversal steps has a more pronounced effect on over-
all performance. Furthermore, we also support arbitrary-sized ray
packets, which can be implemented very efficiently by using frus-
tum culling such as presented in [22]. Depending on the detail level
of the scene and the screen resolution, 16x16 or 8x8 packets will
yield an even higher speedup to rendering and performs much bet-
ter than the normal packet traversal code that tests each ray [18].

4.2 Multi-Core Architectures
One of major features of current computing trends is that there are
multiple cores and hyper-threading functionality available on com-
modity architectures. Therefore, it is desirable to design our hier-
archy update and runtime traversal such that they take advantage of
available parallelism.

Hierarchy Update: Our update method takes advantage of multi-
core processors by using a bottom-up update method. Given the
number of available threads, n, we decompose an input BVH into
n sub-BVHs. For this, we simply compute n different children by
traversing the tree from the root in the breadth-first manner. Then,
each thread performs a bottom-up update from one of the computed
nodes in parallel. After all the threads are done, we then sequen-
tially update the upper portion of the n nodes. We particularly
choose the bottom-up approach since it is well suited to parallel
processing. For example, we do not require any expensive synchro-
nization for each thread since data that are accessed by threads are
mutually exclusive to each other. Since our current BVHs are rela-
tively well balanced, this simple scheme provides reasonably good
load balancing in practice.

Runtime traversal: We employ image-space partitioning to al-
locate coherent regions to each thread. Also, in order to achieve
reasonably good load balancing, we first decompose image-space
into small tiles (e.g., 16× 16) and, then, allocate each tile to each



thread. After a thread finishes its computation, it continues to pro-
cess another tile. A more elaborate tile distribution may be neces-
sary when using highly-parallel machines [27], but we have found
that this approach works well for workstation-class machines and
provides perfect scaling.

5 IMPLEMENTATION AND RESULTS

In this section, we describe our implementation and highlight the
results of our ray tracer on different benchmarks.

5.1 Implementation
We have implemented our interactive ray tracer for deformable
models using BVHs in a dual-core Intel Pentium 4 machine at
2.8 GHz. To compare the performance of BVHs with previous in-
teractive ray tracing work for rendering static scenes, we also im-
plemented kd-tree rendering (without animation capability). All
acceleration structures support ray packet traversal using the SSE
SIMD instruction set on Intel processors. For efficiency reasons,
we only support triangles as primitives. We employ multi-threaded
rendering and hierarchy updates using OpenMP.

5.2 Results
We have tested our system on four animated scenes of varying com-
plexity as well as one more complex static model to measure per-
formance of our approach (see Tables 1 and 2). In general, building
a BVH tree using the naive midpoint method is more than one or-
der of magnitude faster than the optimized surface-area heuristic
kd-tree construction. In most cases, both structures have a similar
memory footprint, but kd-trees need more nodes because references
to primitives can be located in multiple nodes.

Benchmarks: We show five different test cases (refer to Table
1): Bunny/Cloth (shown in Fig. 2) and Dress (shown in Figure 4
on colour plate) in the respective rows of the table demonstrate per-
formance on a typical animation including simulated cloth at differ-
ent complexity, both rendered including shadow rays. Even though
most of the mesh is moving, BVH updates turn out to be sufficient
to maintain the quality of the structure. Bunny (shown in Fig. 3)
applies a non-rigid deformation to the Stanford bunny model with
reflection and shadow rays. To maintain BVH quality, some parts
of the tree have to be rebuilt. BART (shown in Fig. 4) is a part of
the BART animated ray tracing benchmark [16] and shows a set of
triangles with mostly unstructured, random movement. Since it has
high depth complexity and overlapping primitives, this scene is one
of the worst cases for BVH rendering as well as hierarchy updates.
For the former, we have found that the ordering approach for BVHs
ameliorates the effects of depth complexity. Additionally, the in-
dependent movement of each triangle leads to extreme degradation
in BVH quality, so that our heuristic rebuilds the tree quite often.
Finally, we tested a more complex static scene of the 1M triangle
Stanford Buddha (not shown) to demonstrate that BVH ray tracing
can compete with kd-trees even for larger models. Unfortunately,
the update time grows linearly with model size, so a more efficient
update scheme would be needed to be able to render this or any
larger model at high frame rates.

We tested our heuristic for tree rebuilding on the test models
and found that in all cases except the BART model, just hierarchy
updates can be efficient enough for rendering. The unstructured,
random movement of triangles in the BART scene makes several
tree rebuilds necessary, however. Without doing that, we found that
frame rates will decrease by over an order of magnitude in just a few
frames. To test how well the rebuild times are chosen, we bench-
marked the animation while rebuilding only via heuristic (with the
threshold set to 0.4) as well as rebuilding the hierarchy every frame.

Figure 4: BART Museum triangles: Two image shots from 170 steps of a
randomly deforming model from the BART deforming data benchmark. We
achieve an average of 11 frames per second at 5122 screen resolution using
a dual-core P4 processor at 2.8 GHz.

Scene Tris build update time/frame avg. fps
Bunny/Cloth 16K 13 ms 4ms 13
BART model 16K 23 ms 6ms 11
Dress model 40K 41 ms 14ms 13
Bunny 69K 90 ms 23ms 6
Buddha 1M 1659 ms 220ms 3

Table 1: Benchmarks and Timings: Results for BVH ray tracing of several
scenes. The benchmark configuration for each of the scenes is described in
section 5. All benchmarks were performed at 5122 resolution on a dual-core
P4 machine at 2.8 GHz using 8x8 ray packet traversal and secondary rays
(shadows and reflections). Performance numbers are given as an average
over the whole animation, tree build times are for the spatial median build.

We found that even when looking just at pure rendering time with-
out counting rebuilding and updating, the animation rendered with
new hierarchy in each frame was only 20% faster than rendering
using our heuristic. The latter needed only a few rebuilds, so the
total overhead incurred by updates and rebuilds was only 2s over
the whole sequence, as compared to 15s for rebuilding.

6 COMPARISON TO SPATIAL KD-TREES

Recently, several acceleration structures were proposed that could
be seen as a hybrid between BVHs and kd-trees. The basic idea
is that when looking at BVH construction, it is apparent that stor-
ing full bounding boxes may be redundant if a node essentially just
stores the geometry as split along one dimension. Unlike kd-trees,
which solve this by storing just the actual split coordinate and di-
mension, spatial kd-trees for ray tracing [10, 37] store two coordi-
nates which represent the limits of the bounding boxes of the left
and right child in the split dimension (which are allowed to over-
lap in case the contained geometry does). This reduces the mem-
ory requirements from storing 6 to 2 coordinates only. Similarly,
Woop et al. [40] present a hardware implementation called the b-
kd-tree in which they store the left and right bounds for both chil-
dren and therefore use 4 coordinates per node. Construction for
both structures is almost identical to BVHs by just storing the re-
spective bounding box coordinates. Both approaches also decrease
the actual work done for one intersection as only 2 or 4 planes need
to be intersected against the ray. In general, the traversal algorithm
for spatial kd-trees is more similar to kd-trees with the difference
that rays are now intersected against multiple planes. However, un-
like kd-trees, no real depth sorting is provided, so traversal cannot
stop after the first hit.
Implementation: To compare our BVH implementation against
those approaches, we implemented a spatial kd-tree structure with



BVH: kd-tree: spatial kd-tree:
Scene Tris nodes memory build nodes memory build nodes memory build update
Bunny/Cloth 16K 31923 997 KB 170 ms 64137 859 KB 1487ms 35097 548 KB 146ms 4ms
BART model 16K 32767 1024 KB 322 ms 11075 1426 KB 1902ms 58921 920 KB 331ms 11ms
Dress model 40K 80059 2501 KB 733 ms 218845 2778 KB 5s 148929 2327 KB 821ms 19ms
Bunny 69K 138901 4340 KB 1526 ms 442347 5072 KB 10s 259543 4055 KB 1521ms 37ms
Buddha 1M 2175431 67982 KB 32s 2989439 33225 KB 80s 3666989 57296 KB 31s 490ms

Table 2: BVH compared to kd-tree and skd-tree: Tree statistics for other acceleration structures as compared to BVHs. All hierarchies were built using the
surface area heuristic instead of the spatial median and BVH build times are therefore higher than in the previous table (using the same machine). The SAH
construction uses the simple O(nlog2n) algorithm as opposed to the faster O(n logn) version [30]. Note that the memory requirements for skd-trees are only
slightly smaller than for BVHs due to the higher number of nodes. Build times are about the same for both.

1 ray 2×2 8×8 16×16
Scene BVH skd-tree BVH skd-tree BVH skd-tree BVH skd-tree
Bunny/Cloth 1.8 3.1 3.5 7.1 7.7 9.0 7.9 8.6
BART model 0.9 0.9 2.9 4.7 7.5 8.5 8.1 8.2
Dress model 1.3 2.3 3.3 5.7 6.9 7.9 7.1 6.7
Bunny 1.1 1.7 2.6 4.3 5.6 6.2 5.6 5.6
Buddha 1.0 1.3 1.7 2.7 3.0 2.9 2.2 1.5

Table 3: Rendering performance of BVH and spatial kd-tree: Direct comparison of rendering times for BVH and our spatial kd-trees implementation.
Benchmark results are average frames per second over the animation for 10242 primary rays only on a dual-core P4 machine at 2.8 GHz. The results are
shown for different ray packet sizes and exclude all update times and rebuild times. In order to avoid excessive quality degradation when updating skd-trees,
we rebuild the hierarchy every 5 frames.

two planes as in [37]. Similar to BVHs, we use 2× 2 ray pack-
ets using SIMD instructions as well as packets of arbitrary size to
allow direct comparison of results. For 2× 2 packets, the traver-
sal algorithm is a direct adaptation of ray packet traversal in kd-
trees extended to test two planes. For larger packets, we designed a
traversal algorithm that uses the inverse frustum culling described
for kd-tree ray tracing in [22] for determining whether a packet in-
tersects a node, although we do not perform entry-point search or
split packets at the moment.

Results and discussion: Our results are summarized in Table 3.
In general, we observed an increase in overall rendering speed for
static scenes when using skd-trees, which is a consequence of the
less computationally expensive ray-node intersection. However,
for animations one important disadvantage is that after the update,
many of the empty leaf nodes introduced for empty space elimina-
tion may not be necessary any more or, even worse, would have to
be used at a different point. We have found that this quickly re-
sults in more severe quality degradation of the hierarchy and, sub-
sequently, rendering requires very frequent rebuilds. To avoid this,
we rebuilt the hierarchy every 5 frames for skd-trees, to allow a
better performance comparison.

We also found that traversal for larger ray packets does not seem
to scale up as well as for BVHs, so that skd-trees are about the
same speed or even slower for our tested packet sizes. Although
the individual nodes are only half as large as our AABB nodes (i.e.
16 bytes), memory use for skd-trees is only slightly lower than for
BVHs. The reason for this is that in order to achieve good perfor-
mance, extra splits to eliminate empty space at the outer bounds
are needed often and, even though the actual empty leaves do not
need to be stored, this increases the number of actual nodes in the
tree. This also means that unlike BVHs, the actual number of nodes
for a scene is not as predictable (although it can be bounded eas-
ily since only a limited number of empty space subdivisions can be
introduced at each node), which prevents some easy ways to opti-
mize construction. Having more nodes also means that the tree is
deeper and therefore on average more traversal steps may be needed
to reach the leaves. Most importantly, though, the hierarchy update
for animation is linear to the number of nodes. As the skd-tree usu-
ally has about twice as many nodes, this means that updating it will

also take twice as long, which may become the bottleneck in an
interactive application.

Finally, a subtle difference is that ray packet traversal for skd-
trees in general can be more complicated to implement and less
versatile: as for kd-trees, groups of rays for inverse frustum culling
are limited to having the same direction signs, which can make ob-
taining groups of coherent rays more challenging, in particular for
secondary rays. In contrast, BVH traversal is independent of ray
direction signs, which eliminates special cases for traversal, and
frustum culling can be introduced easily by the fast frustum-box
intersection described in [22].

This leads us to conclude that for animated scenes with updates
a BVH implementation is to be preferred and also lends itself better
to an optimized ray packet implementation. For scenes with varying
numbers of primitives, the hierarchy update will not work, so in that
case a fast rebuild such as described in [37] should be used instead.
For static scenes, standard kd-trees will very likely provide superior
performance with an MLRT implementation [22], albeit at higher
memory cost and more complex optimized hierarchy construction.

7 FUTURE WORK AND CONCLUSION

We have proposed an algorithm for interactive ray tracing of de-
formable, animated models. We used BVH hierarchies as an ac-
celeration data structure of the deformable models and showed op-
timizations that will result in performance competitive or even ex-
ceeding rendering using kd-trees. We were also able to integrate
efficient ray coherence techniques for kd-trees to our BVHs. We
do not make any assumptions about the possible deformation or
motion of objects and dynamically update or rebuild the hierarchy
depending on our simple heuristic.

There are many interesting directions for future work. Our cur-
rent algorithm is mainly designed for small to intermediate model
complexity. We would like to extend our algorithm to handle larger
deforming models, which would require more efficient or localized
update methods that only change the parts of the hierarchy that have
deformed since the last frame. Also, we would like to investigate
cache-coherent layout computation methods [42–44] of deforming
models in order to efficiently handle them. Another interesting



problem is the better use of multiprocessor architectures in the con-
text of hierarchy construction and updates. We plan to extend our
current methods to be more general and flexible for these applica-
tions. Finally, we think that it would be interesting to improve the
simple construction method we use to effiently approximate instead
of fully computing the surface area heuristic, thus allowing better
performance without adding too much overhead.
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