LQG-Obstacles: Feedback Control with Collision Avoidance
for Mobile Robots with Motion and Sensing Uncertainty

Jur van den Berg David Wilkie Stephen J. Guy Marc Niethammer ine§h Manocha

Abstract— This paper presentsL QG-Obstacles, a new concept
that combines linear-quadratic feedback control of mobile
robots with guaranteed avoidance of collisions with obstdes. o
Our approach generalizes the concept of Velocity Obstacld8] i
to any robotic system with a linear Gaussian dynamics model. o
We integrate a Kalman filter for state estimation and an LQR
feedback controller into a closed-loop dynamics model of wich
a higher-level control objective is the “control input”. We then
define the LQG-Obstacle as the set of control objectives that

res_ult na COI!|S|On with high probability. Selecting a cor_tr(_)I Fig. 1. The3-Windowscenario for our quadrotor simulation experiments.
ObJeCt'Ve_ outside the LQG-Obstacle the_n produces collisie The red line is the guiding path. Our approach smoothly césmthe quadro-
free motion. We demonstrate the potential of LQG-Obstacles o (shown at 4Hz) through the windows without colliding lwithe walls.
by safely and smoothly navigating a simulated quadrotor Videos are available dttt p: / / ganma. ¢s. unc. edu/ CA/ LQG0bs/ .
helicopter with complex non-linear dynamics and motion and
sensing uncertainty through three-dimensional environmats
with obstacles and narrow passages.

which a higher-level control objective (a target configimay
is the “control input”. LQG-Obstacles then identify all gt
I. INTRODUCTION configura_tions to which a mobile robot can §afely be con-
) ) ) ) trolled using the LQG controller. For deterministic dynami
Planning under uncertainty has received considerable gfjodels, the LQG-Obstackuaranteeshat the robot will not
tention in robotics in recent years. Motion uncertainty€du qjide with an obstacle. We consider this to be a specia cas
to external disturbances) and imperfect state informatiofq refer to the LQG-Obstacle as hR@R-Obstacldor this
(due to partial and noisy measurements) arise in most reass of models. For stochastic models, the general case, th
world robotic tasks. This is especially true for highly dy'LQG-ObstacIe bounds the a priori probability of colliding

namic mobile robots that must reach a target configuratiqpith obstacles to a user-specified limit, explicitly acctog
while avoiding collisions with obstacles, such as quadrotGy, motion and sensing uncertainty.

helicopters [11]. Traditional planning approaches [13] [  oyr concept can be used to safely and smoothly navigate
may not suffice in these cases, as they assume determinisiGopot with complex dynamics through an environment
motion and full knowledge of the state, and often producg;ith ghstacles, by continually selecting a target confitara
jerky paths due to the random nature of the algorithm.  5jo\ed by the computed LQG-Obstacle. The LQG controller

Feedback controllers, on the other hand, can compefyen determines the corresponding control input. While our
sate for motion and sensing uncertainty while smoothlgpproach is designed for robots with linear dynamics and
controlling a mobile robot towards a target configurationgpservation models, it can also be applied to robots with
either directly or by tracking a pre-planned path. The Imeangn-linear models, by continually linearizing them around
quadratic Gaussian (LQG) controller does so optimally fofhe nearest steady state. The LQG-Obstacle automatically
linear systems with Gaussian noise [2], and is widely usegyants to the local amount of motion and sensing uncertainty
for non-linear models as well [27]. LQG control does notj; forces the robot to choose safer control objectives i§ thi
howeve_r, account for the risk of colliding with obstacles inuncertainty is high, and allows for more aggressive motion
the environment. _ when there is less uncertainty. In contrast to existingsioh

To address this shortcommg, we present the novel conceglpidance and (re)planning approaches, our approachof) pr
of LQG-Obstaclesfor combining LQG feedback control gyces smooth motion, (i) works at real-time rates even for
with collision avoidance. LQG-Obstacles generalize VBYoC gpots with high-dimensional state spaces, (iii) is agile
Obstacles [3] to any linear Gaussian system. Our approagh ropots requiring high-frequency control feedback lqops
integrates a Kalman filter for state estimation and an LQRpg (iv) explicitly considers motion and sensing uncetgain
feedback controller into a closed-loop dynamics model of \while our approach naturally extends to moving obstacles,

o . _ we focus on environments with static obstacles in this paper
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two illustrative cases. The first is a linear mobile robot inwork is also related to model-predictive control approache
the plane whose acceleration can be controlled. The secof8], which do account for constraints on the state in an
is a quadrotor helicopter with a thirteen-dimensionalestatoptimal control formulation. However, they often require
space and non-linear dynamics flying in three-dimensionablving high-dimensional mixed-integer programs in every
workspaces. We validate our approach using simulatiotontrol cycle, even if the constraints are linear and convex
experiments with synthetic motion and sensor noise in en- . )
vironments with obstacles and narrow corridors. Our resulf- Collision Avoidance
suggest that LQG-Obstacles can work well for safe, reagtim Our approach generalizes concepts in reactive collision
LQG control of mobile robots towards a goal configuratioravoidance, in particulaielocity Obstacles[3]. Velocity
amidst obstacles (see Fig. 1). obstacles identify all velocities that lead to a collision a
The remainder of this paper is organized as follows. l@ny time in the future. Velocities can then be chosen outside
Section Il we discuss related work. In Section Il we intro-of the velocity obstacle to ensure that no collision will
duce LQR-Obstacles for robots with deterministic dynamic®ccur. Stochastic variants of the velocity obstacle de#h wi
In Section IV we extend this to LQG-Obstacles for robotgnotion uncertainty by enlarging the velocity obstacle [24]
with stochastic dynamics and observation models. We repdrt consider uncertainty in the motion of the obstacles [6].
simulation results in Section V and conclude in Section VIA limitation of approaches based on velocity obstacles is
that they only work for robots whose velocity can directly
be controlled. Extensions exist for robots of which the
A. Planning and Control under Uncertainty acceleration can be controlled [29] and for car-like robots
The problem of planning under motion and sensing uncef17], [32]. Our approach generalizes these methods to any
tainty is most generally described as a partially-obsdevablinear Gaussian system.
Markov decision process (POMDP) [10]. POMDPs provide An alternative to feedback control and reactive collision
a formulation of the objective to optimize the overall prob-avoidance is continual (partial) replanning [19], poteftyi
ability of arriving at a goal configuration without collisis.  in combination with dynamic windows [4] or ICS checking
Unfortunately, in their general form, POMDPs are knowr5]. The latter concept has recently been extended to a¢coun
to be of extreme complexity, which makes it challengindor motion uncertainty of the obstacles [1]. The achievable
to solve them for large or high-dimensional state spacgdanning frequency and path quality may not be high enough
[18]. Most approaches that approximate an optimal solutioi®r highly dynamic systems such as quadrotors, though.
to POMDPs rely on discretization or random sampling o& Notation
the belief space, or a combination of both [12], [20], [26].”"
However, discretization error and high computational gost We use the following notational conventions in this paper.
may prohibit their application to mobile robots with high-Vector setsA are denoted using calligraphics, vectarsre
frequency control feedback loops. denoted using boldface, matricdsare denoted using upper
Another class of algorithms assume linear(ized) Gaussi&®Se italics, and scalatsare denoted in lower-case italics.
dynamics and observation models. LQG-MP [28] calculates Scalar and matrix multiplication of sets are defined as:
the probability of s_ucpessful e.>_<ecu_tior? of a given path tase aX = {ax | x € X}, AX = {Ax | x € X). @
on computed a-priori probability distributions. Beliefase
planning approaches based on the LQG model [8], [21], [22[he Minkowski sum of two sets is defined as:
attempt to optimize the likelihood of arriving at the goal,
but do not take into account the probability of colliding XoY={xty[xeX,yec)} ©)
with obstacles. More recent work [30] does account fot follows that X @ {x} denotes a translation of a s&t by
obstacles, but its applicability is limited to robots withg vectorx.
low-dimensional state spaces. These approaches focus on
the ability to generate information gathering actions as to /!l. LQR-OBSTACLES FORDETERMINISTIC SYSTEMS
minimize uncertainty about the robot's state. In contrast, In this section we discuss how LQR feedback control
our approach does not look ahead to select actions thatd collision avoidance are combined for robots with deter-
provide most information, rather it bounds the probabilityninistic linear dynamics and perfect state information. We
of collision with obstacles based on the local sensing arfitst discuss LQR control and derive the closed-loop linear
acting capabilities of the robot. This goal is complementardynamics. We then define theQR-Obstaclefor collision-
to that of belief space planning approaches. free LQR control.
Our work shares similarities with the feedback motion
planning approach of LQR-trees [25], which cover the stat®- LQR Feedback Control
space with stabilizing LQR controllers around paths inatre Let X C R* be the state spaceof the robot, which
that guarantees the robot to reach the goal from any point is the space of vectors containing all information relevant
the state space. Our approach may complement LQR-treesfais the motion of the robot, and le€ c R¢ be the
they do not explicitly account for the presence of obstaclesonfiguration spaceof the robot ¢ < =z), which is the
in combination with motion and sensing uncertainty. Ouspace of vectors containing all information relevant fog th

Il. BACKGROUND AND RELATED WORK



geometric appearance of the robot in the workspace. Let a
given matrixC € R°** map the statex € X of the robot
to its corresponding configuratiabix in C. Let/ € R* be
the control input space of the robot.

Let the dynamics of the robot be given by the deterministic
linear model, which we assume is formatigntrollable

op

% = Ax + Bu, @)

wherex € X andu € U are the state vector and controlFig. 2. The LQR-ObstacleCcQR(x) shown as a union of transformed

input vector, respectively, of the robot, antde R*** and configuration-space obstacles for a planar robot of whiehabceleration
P P y € can be controlled (see Section V-B) with current state= (p,v). The

B e R*™" are given constant m_atrice_s- ) configuration-space obstacl® is a disc shown by the dashed circle. The
Let ¢ € C denote a target configuration the robot wishes t@QR-Obstacle consists of all target configuratienthat result in a collision

reach. For systems with linear dynamics, l2@R feedback when an LQR controller is used to control the robot to thatfigomation.
controller can optimally control the robot towards this target _

state if a quadratic cost function is specified that trades- e construct the LQR-Obstacle as follows. Integrating the
off reaching the target quickly, versus not applying exeemclosed-loop dynamics of Eq. (8) assuming a constant target
control inputs [2]: configurationc gives:

) x(t) = F(t)x(0) + G(t)c, (10)

/OO (Cx —e)"Q(Cx — ¢) + u” Ru) dt,
0 with

where@ € R*¢ and R € R“** are given constant weight _ ~ ~ ~
matrices, for whichQ = Q7 >0 andR = R > 0. F(t) = exp(td), G(t) = A (exp(tA) - )B. (11)
Th? f(?Edt.)aCk control policy that minimizes  this COStrhen the robot will collide with an obstacle at timef:
function is given by: '
Cx(t) € O, (12)
<~ CF(t)x(0) + CG(t)c € O

< ce (CGR) "0 {-CFt)x(0)}),

u=—-Lx+ Ec, (5)

where

_ p-1pT _ p—1pT _ N\-T AT
L=r"BS E=R-BI(BL-A)7CQ (6 where we assume th&G(t) € R°*¢ is invertible. Hence,
with S being the positive-definite solution to the continuousthe LQR-ObstacleCQR(x) is defined as a union of trans-

time algebraic Riccati equation: formed configuration-space obstacles (see Fig. 2):

ATS +SA—SBR'BTS+CTQC = 0. 7 LOR(x) = | J(CG®) (0@ {-CF(t)x}). (13)

. . . L . >0
This is the standard continuous-time infinite-horizon LOR ~

derivation [2]. Note thatL and E are constant and can be The definition of the LQR-Obstacle implies that if the

computed given the matrice$, B, Q, and R [16]. robot chooses its target configuratiooutsideL QR (x), the
We create thec'osed_|oop dynamics of the robot by robot will not collide with any of the obstacles while it is
substituting Eq. (5) into Eq. (3), which gives: controlled towardg. The above formulation generalizes ear-
- - lier collision avoidance concepts, such as velocity olletac
x = Ax + Be, (8)  [3] and acceleration obstacles [29], to systems with abjtr

with linear dynamics.

A=A-BIL, B — BE. 9) C. Properties and Complexity of LQR-Obstacles

If the configuration space obstadakis of O(1) geometric
0complexity, thenfOR(x) is of O(1) complexity as well. A
Hlosed-form expression can be derived for the boundary of
the LQR-Obstacle ifO is circular or a line-segment, and

B. Constructing LQR-Obstacles CG(t) is a scalar matrix [29].

Let O C C denote the forbidden region in the configuration Further, ifO = O U O, thenLOR (x) = LIRo, (x) U

: . Ro,(x). It follows that if O consists 0fO(n) geometric
i%als?océ)fsttzgletg??rt]ethracl)tblc?t ?chlé?i'r?s dbglsgbstacles. Then, trEc)%gmitives of O(1) complexity each, the LQR-Obstacle for

O is a union ofO(n) primitive LQR-Obstacles. This union
Definition 1 Given the current state, the LQR-Obstacle has a worst-case complexity 6f(n?), but we do not suspect
LOR(x) C C is the set of target configuratiorsthat let that this bound is tight: the LQR-Obstacles may observe a
the robot collide with an obstacle at some point in time whepseudo-disgroperty which would allow for a lower total
the LQR control policy is used to control the robotdo complexity. We leave this as an open question.

The target configuratioa is the higher-level “control input”
of the closed-loop linear dynamics. We use the closed-lo
dynamics to define LQR-Obstacles below.



LOR(x)

Fig. 3. Navigating a circular robot whose acceleration camdntrolled (see Section V-B) through a narrow corridong4iQR-Obstacles. The workspace
obstacles are shown using thick lines. The guiding paik shown by a dashed line. In each frame, the LQR-ObstA&R (x) for the particular state
x = (p, v) is shown. The valid configuration farthest along the guiding path is chosen as target configara

D. Collision-Free Feedback Control with LQR-Obstacles where Eq. (14) is similar to (3), except that the motion

LQR-Obstacles can be used to safely control a rob&f the robot is corrupted by noismn € R” drawn from
among obstacles in a continual cycle with a small timé&n mdepend_ent zero-mean Gaussian dlstrlbut|_0n with given
step At: in each time step, the LQR-ObstacleOR(x) constant variancell R***, In the observation model,
is computed, and a target configurationg LOR(x) is 2 € Rz_ is the vector of sensor measurements, Ahd R***
selected. The control input that is applied is then given IS @ given constant matrix. The sensor measurements are
by Eqg. (5). Note that the frequency of selecting a new targé@rrupted by noisen € R* drawn from an independent
configurationc may well be lower than the LQR control Z€ro-mean Gaussian distribution with given constant naga
frequency. N e R*>*%. _ _ _

If a goal configurationc* is given, one may continually L€t the control cost function be as in Eq. (4), given a
select the target configuratieng LOR(x) that is closest to target configuratiore € C the robot wishes to reach. For
c*. For circular configuration space obstacege.g. Fig. 2), linear Gaussian systems, &QG controlleris optlm_al. An
this will let the robot eventually reach the goal. For mora-ge LQG controller uses an LQR feedback controller in parallel
erally shaped obstacles, however, this approach may eaéWh a Kalman fllter for_state estimation. The.KaIman filter
lead the robot into a local minimum. A possible alternative i Provides an optimal estimateof the statex, which evolves
this case is to defineguiding pathr : [0,1] — C\O inthe given sensor measurementss [7]:
free configuration space, with(1) = c¢*, that indicates the X = AX + Bu+ K(z — HX), (16)
global direction of motion of the robot. The robot may then ) i L
continually select the target configuration farthest along WhereX is the Kaiman gain, which is given by:
that is outside the LQR-Obstacle, i€e= w(max{s |7 (s) & K =PHTN!, (17)
LOR(x)}). Note that the guiding path need not satisfy any
differential constraints; a series of waypoints sufficégain
therefore easily be planned or constructed, e.g. by extact

whereP is the variance of the stategiven the state estimate

%x. Since our dynamics and observation model are stationary
. . . ; rq.e. the matrices, H, M, andN are constant), this variance

it from a roadmap or tree covering the free configuratio

space [15], [9]. The LQR controller ensures that controfCnverges over time to the positive-definite solution of the

inputs are chosen that result in smooth motion of the robgpntmuous-tlme algebraic Riccati equation:

(see Fig. 3). AP+ PAT + M — PH'N"'HP =0. (18)
IV. LQG-OBSTACLES FORSTOCHASTIC SYSTEMS Hence, the Kalman gaiA is constant, and can be computed

Above, we have assumed that the motion of the rob&Ven the matricesl, H, M, and N [16].
is deterministic, and that the robot has perfect infornmtio 1'rough the separation principle [2], the LQR control
about its state. Here, we extend the method to deal wifelicy can be derived independently from the state estimato
uncertainty in both the robot’s dynamics and sensing. W@nd is therefore the s:ame as in_Eq. (5), with the difference
will first discuss LQG control and derive the closed-loopthat the state estimate is used instead of the (unknown)
linear Gaussian dynamics, and then defif@G-Obstacles [U€ statex: A
for LQG control with bounded probability of collisions with u=-Lx+ Ec, (19)
obstacles. We discuss its application to non-linear systerwith L and E as defined in Eq. (5).
as well. To create the closed-loop dynamics that incorporates both
A. LQG Control with State Estimation the state estimation and the feedback controller, we define
) ] an augmented stagethat contains botk andx, for the true
_Let the dynamics and observation models of the robot h§atex and the state estimate evolve as functions of each
given by the following linear Gaussian system: other [28]. Substituting Eq. (19) into (14) and Egs. (15) and

%X = Ax + Bu 4+ m, m ~ N (0, M), (14) (19) into (16) gives:
z=Hx+n, n ~ N(0,N), (15) y = Ay + Bc +m, m ~ N (0, M), (20)



LQG"(X)W

Fig. 5. Controlling the robot (see Section V-B) using LQGsitles in the
same environment as Fig. 3. (a) Traces of maximum likelihexecutions

. _ ) ) ) .. for p = {0.01,0.02,0.03,0.05,1}. (b) Traces of five actual executions
Fig. 4. The LQG-Obstacl€ QGP (x) in the same configuration as in Fig. with synthetic motion and observation noise foe= 0.01.

2 accounting for motion and sensing uncertainty of the r¢be¢ Section V-

B). The conservative approximation of Eq. (25) is shown fariaus values
of the probability boungs. Forp = 1, it is equivalent to the LQR-Obstacle. zero-mean Gaussian distribution with variariéehat con-

tains a fractionl — p of its instances. Then, the probability

with that the robot will collide with an obstacle at tinieis less
X . A —-BL thanp if ¢ ¢ (CG(t) " (0 & {-CF(t)y(0)}) & EP(3(t)).
Y=kl A= KH A—BL-KH!|’ Hence, a conservative approximation of the LQG-Obstacle
~ BE ~ M 0 can be constructed as (see Fig. 4):
B = BE| M= 0 KNKT|- (21) ) } } i
£0G"(x) | J(CG(1) (0a{-CF (1) [£]Heer (S(1)).
Also in this case the target configuratienis the “control >0
input” of the closed-loop linear Gaussian dynamics. (25)
_ It follows that if the robot chooses its target configuration
B. Constructing LQG-Obstacles c outside £QGP(x), the probability of colliding with an
We now follow a similar approach as in Section 1I-B toobstacle at any given time> 0 is less tham, if LQG control
define LQG-Obstacles. is used to control the robot towards LQG-Obstacles can
— . . be used for navigation in a similar way as LQR-Obstacles
Definition 2 Given the current state estimate the LQG- (Se; Fig. 5) vigation imiar way Q

Obstacle£QG” (%) c C for probability boundp is defined
as the set of target configuratioagor which there is a time
t > 0 at which the probability that the robot collides wit
an obstacle is greater thanwhen LQG control is used to  The above derivations only work for linear systems. Let
control the robot tcc. us consider a non-linear Gaussian system of the form:

h C. LQG-Obstacles for Non-Linear Systems

We construct the LQG-Obstacle as follows. Integrating the .
closed-loop stochastic dynamics of Eqg. (20) given a target * = f(x,u,m), m ~ N (0, M), (26)
configurationc givesy(t) ~ N (y(t), Y (t)), with: z = h(x,n), n ~ N(0,N). (27)

y(t) = F(t)y(0) + G(t)c, (22) In this case, we can approximate the LQG-Obstacle by
t . linearizing the system. It is convenient to linearize ambun
Y(t) = F(t)Y (0)F" (t) +/ F(r)MFT(r)dr, (23) a steady stat& for which f(x,0,0) = 0. Typically, one
0 _ choosex closest to the current state estimate.inearizing
where F'(t) and G(t) are as in Eq. (10) for the matrices then gives:
and B of Eq. (21). Since the true state is unknown, the _
initial conditions arey (0) = [X] andY (0) = [§ §], where X =A%+ Bu+m, m~N0OVMVT), (28)
x is the current state estimate. Recall tifats the variance %= H% + 1, i~ NO,WNWT),  (29)
of the true statex given its estimatex (see Eq. (18)).
To map the augmented stageto the configuration of the wherex = x — x is the redefined state, = z — h(x,0)
robot, we define the augmented matéix= [C' 0]. Now, s the redefined measurement vector, aheé= 2L (x,0,0),

following a similar derivation as in Eq. (12), the robot will g — Bf (%,0,0), V = (x 0,0), H = 8h (x 0), and
collide with an obstacle at a specific tinef: W = 9%(x,0) are the Jacob|an matrices )Eﬁf and h. If
Cy(t) CO e (CG(t))_ O {_CF(LL)S,(O)}) the linearized system isontrollable we can construct the

(é4) LQG-Obstacle as above. As the linearized system is only

valid in a small region around the linearization point, the

whereé ~ N(c, %(t)), with ©(t) = (CG(t))"'CY (t)CT-  models should be continually relinearized to get meaningfu
(CG(t))~T. Let £2(X) denote the contour ellipsoid of a control.



V. IMPLEMENTATION AND EXPERIMENTATION Percentage of Trials with Collisions for p = 0.01

A. Implementation Details > 00012 Percent of trials colliding by time t
. ) o 2 0.001 - Percent of trials colliding during timestep t

We implemented our approach using a collision-checke 2
capable of performing linear transformations on the gegmet § 0.0008 r
[31]. In each time-step of a continuous cycle, we select E“ 0.0006 |
target configuratiorc ¢ L£QG?(x), and apply the control 5 o oood |
inputu according to Eq. (19). In our current implementation §
we select the configuratioa using a brute-force approach @  0.0002 r
as follows. 0 .

Given an explicit representation @ in the collision- 0 2 4 6 8 10

checker, and a finite s&f of candidate target configurations Time (s)

c, we iterate over time) < ¢ < oo in small stepsAt,

and transform the obstacl® in the collision-checker to
Qt) = (CG(1)) (0 & {~CF(t)[£]}) (see Eq. (25)).
Then, we iterate over all candidate configuratiens 7, 2) Quadrotor Helicopter:Our quadrotor model is based

and use the collision-checker to check whether the ellipsgh Ascending Technologies’ ResearchPilot. Its 13-D state
EP(X(t)) centered at intersects the transformed obstacleand 4-D control input are defined by:
Q(t). If so, c is inside the LQG-Obstacle, and is removed r
from the set7. Obviously, we cannot iterate timeover an x=[p" vl " w' ¢]", u=|w
infinite domain, but the transformed obstadlét) converges
exponentiallyfast to O for ¢ — oo (this follows from the
fact that the LQG controller reaches the target eXpondi’}"t“a.“anguIar velocity, ang the combined force of the rotors. The
fast [2]). So, we can safely bound the time domain; in . . . )
. . : control input consists of the desired angular veloeity and
our experiments, we use@l < ¢ < 4 in our experiments. .
In general one would choose a time-bound based on trf\orce ©*. A low-level on-board controller transforms these
ifto voltages for the motors of each of the rotors. The rabot’

eigenvalues of matrixd, as they determine the precise rate . :
of convergence to the target, geometry is modeled by an encapsulating sphere, such that

) . . o 3
After this, we are left with a reduced s&t of candidate the conﬂggra‘uon space consists of only the positiprsR”.
! ) : ; 5o Its non-linear dynamics are modeled after [14], augmented
target configurationg which are outsideCQG”(x). From . . .
: . with effects of rotor drag and induced inflow that cause a
this set, we select the most preferable one. In our impleme

tation, the sef initially consists of the configurations along Porce in the opposite direction of the velocity [13]:
a guiding pathr € C, and the one furthest along the path p=v, v= { 9 } 4 (exp([r])[g} — kyv)/m,
that remains is chosen. -9 ®

B. Robot Models

We implemented our approach for two robot models; &/hereg = 9.8m/s’ is the gravity,m the mass of the robot,

linear planar robot whose acceleration can be controllea,n:kv’ kwr; ar&dkw scaling (.:tanta?ts' th N
and a quadrotor helicopter with non-linear dynamics and n overhead camera positionedg@ammeasures the apparen

" 5 : . .
observations flying in 3-D. The former was used to genera osmon b E.R and Tad'.“SP in the camera image of a
Figs. 2, 3, 4, and 5 for illustration purposes. The latter i all with radiusr that is fixed on top of the quadrotor. In
used to’ re’po’rt simulation results addition, the quadrotor is equipped with an accelerometer,

1) Planar Robot with Acceleration ControlThe robot a magnetometer, a rate-gyro, and an altimeter that produce

3 3 3 H
is a disc in the plane that is capable of accelerating Omnripeasu_rementa € R, d,e R g € R, andy, re_spectlvely,
directionally. Its (linear) dynamics are defined by: according to the following non-linear observation model:

X_m, N A_{o I], B_H coir o, P lBE))/B =P, o= avcsing/Ip— b,

00 ! a=([3] - exp() kov)/m,  d = exp(i]) ka,

wherep € R? is the position,v € R? the velocity, and v
a € R? the acceleration of the robot. The configuration space g=W, N1=Ps
consist of all positions of the robot (the velocity does notvhereky € R? is the direction of Earth’s magnetic field.
change its geometry in the workspace), so the maifias ) ]
given above projects the state to the robot's configuration.C- Simulation Results

We used the following settings for the controller and for 1) Collision Probability Experimentin the first experi-
the stochastic case with noisy motion and partial obsemmati ment, we explore the relation between the probability bound

parameterp of LQG-Obstacles and actual probabilities of

Q=1 R=I H=[I 0], M=001, N=001I collision. Since our LQG-Obstacle formulation is conserva
That is, the robot receives measurements of only its pasitiotive, we expect that the collision probability at a specific

Fig. 6. Probability of collision over time for the LQG-Obsta with p =

*T @*}T ’

wherep € R? is the robot’s positiony € R? its velocity,
r € R? its orientation (axisr and angle||r||), w € R3 its

f:W+[r]W/2v V.V:kw(W*_W)a ¢:kw(‘p*_‘p)v



@ (b)

Fig. 8. (a) Thez, y, and z position over time of the quadrotor in the
3-Windowscenario (see Fig. 1). (b) They-projections of the maximum
likelihood traces of the quadrotor in ttf®Mazescenario (see Fig. 7) for O,
1, 2, and 5 the realistic amount of uncertainty.

Fig. 7. TheS-Mazescenario for our quadrotor simulation experiments. The
thin red line is the guiding path. The quadrotor is shown at.6¥ideos . .
are available aht t p: // ganma. cs. unc. edu/ CA/ LQGbs/ . S-shaped corridor the quadrotor must navigate through. A

simple guiding path is given consisting of four straighebn
time ¢ will be far lower than our bound, and that thethrough the center of the corridor.

cumulative probability of collision will slowly grow ovehe In both scenarios, the quadrotor is able to smoothly
duration of the experiment. Given a long enough experimeghq consistently navigate to its goal position with-
duration, we suspect this probability will approach one, agyt colliding into the walls. The graphs in Fig. 8(a)
even after the robot reaches its goal configuration noistsin ishow the 3-D motion of the quadrotor in thé-
motion model will cause it to move unpredictably, evenyiall \njndowscenario. Videos of both scenarios are available at
bringing the robot into contact with the obstacle. htt p: // ganma. cs. unc. edu/ CA/ LQGObs/ .

To test this, we use the robot as described in Section V-B
in the scenario of Fig. 4. We select a target configuration
once on the boundary of the initial LQG-Obstacle of Fig.
for p = 0.01, and control the robot using the LQG-controller
towardsc for the duration of the experiment with synthetic
tmh;tlgzp?a?;:n?ai?z\r;grgg;ﬁg Olc;lgbgl’o\gg tsrr]a?llv Epﬁe;e:;gt:u e quadrotor failed to reach its goal, and instead hovered

confirm that our bound is (very) conservative: the maximal €&’ the entrance qf the maze. Fig. 8(b) showszgn
probability of colliding at a specific time seems to be a projection of the maximum likelihood path for each of these

factor 100 lower than our bound. runs of increasin'g noise. By comparing the no-noise run t.0
2) Quadrotor Simulation Experimentdo analyze the ef- the standard noise run the effect of the LQG-Obstacle is

fectiveness of the LQG-Obstacle technique for navigatirg t apparent. The quadrqtor takg s a clearly wider turn around
. . . the first bend to avoid coming too close to the wall. At
simulated quadrotor we created two experimental scenariqs

S . .
For both scenarios we used a simulated version of a lab spac;gtgersigvﬁis %‘]gso;sfh’;rligfe?dgfiﬁ;tzlgﬁ? d?);/?g r%%r;iegﬁae
of approximately 10m5m. A simulated overhead cameraP2™ Staying

which refreshes at 30Hz is used to augment the quadrotopén' While the constraints of the flight dynamics reduce the

on-board sensing to allow localization in the environmént. varlatlo_n in paths during the second curve, the higher noise
) . runs still stay further away from walls. In general, plargin
is assumed that the location of all obstacles are known

advance. For both scenarios we get 0.03 and used as !f%r more noise allowed smoother, gentler paths.
realistic model parameters and levels of motion and sensor3) Timing Results:A benefit of LQG-Obstacles is the
uncertainty as possible. ability to run fast enough for feedback control. For the
In the 3-Windowscenario (see Fig. 1), the quadrotor mustjuadrotor scenarios, the computation can not take more than
navigate from the east side of the room to the west sid83.3ms without frames from the camera being lost. Here we
In between there is a series of three small windows thesport the execution time for planning on an 3.2GHz Intel
guadrotor must pass through at various heights and paositiofCore i7. Table | shows the time taken by the LQG-Obstacle
A simple guiding path is given consisting of several shorieedback planner for the three scenarios discussed in this
straight segments through the center of each window. lmaper. In all cases the computation is time faster than the
the S-Mazescenario (see Fig. 7), the quadrotor starts onontrol frequency of 30Hz. The number of considered target
the floor in the southeast corner of a room and is giveconfigurations — which in our case is proportional to the
a goal configuration in the air in the northwest cornetdength of the guiding path — is the main factor determining
Between these two positions are several walls creating éime computation time.

To demonstrate the effect of motion and sensing noise
e ran theS-Mazescenario with various levels of noise.
irst with no simulated noise, second with realistic levels
of noise, and then with 2 and 5< more noise than the
?alistic amount used in other experiments. Beyond 5



TABLE |
COMPUTATION TIME FOR THREE DIFFERENT SCENARIOS

(7]
(8]

Robot Scenario | Computation Time

Planar L-Corridor 9.8ms (102Hz)

Quadrotor S-Maze 21.4ms (47Hz) [9]
Quadrotor | 3-Window 24.8ms (40Hz)

[10]
VI. CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this paper, we have introduced the new concept cﬁl]
LQG-Obstacles for combining LQG feedback control with12]
collision avoidance. We have shown using simulations that
our approach can be used to smoothly and safely fly [gs
guadrotor helicopter with motion and sensing uncertainty
through an environment with obstacles and narrow corridorg4!
We are currently working to implement our approach on a
real quadrotor.

Our approach has a number of limitations. First, it require@E’]
the geometry of the obstacles in the configuration space of
the robot to be given explicitly. While in theory our apprbac [16]
works for any robot, in practice its applicability is limite¢o
robots with simple geometry, such as mobile robots that caiy,
be modeled as a disc or a sphere. Also, our approach works
for non-linear systems only if the linearized dynamics arﬁS]
controllable. For the quadrotor, we linearized about itarne
est steady state, but for car-like robots or differentiakas
one has to choose the linearization point more carefully, 1250]
in these cases linearizing about a steady state resultsnin n
controllable dynamics. Further, our current implementati
lets the robot select its target configuration along a gtgjidin[21
path. This is neither the optimal way, nor the only way to
use LQG-Obstacles. Investigating alternative stratefpes [22]
selecting control objectives is subject of ongoing work.

There are a few relatively straightforward extensions to oyy3
method we did not discuss in this paper. Firstly, our apgroac
can handle constraints on the control input. These tramsldt™
to constraints on the target configuration through the obntr
policy, and can be included in the LQG-Obstacle. Also, oul25]
approach can be extended to work for moving obstacles,
by replacingO by O(t) in the derivation. Extensions that 2]
require further study include accounting for uncertainty i
the geometry and motion of obstacles, and on-board (IocaW]
sensing of obstacles. Our approach may also extend to
reciprocal collision avoidance [29] for multiple robots. [28]

[19]

REFERENCES [29]
[1] D. Althoff, M. Althoff, D. Wollherr, M. Buss. Probabilisc collision
state checker for crowded environmentEE Int. Conf. on Robotics
and Automation2010.
M. Athans, P. FalbOptimal Control: An Introduction to the Theory
and Its ApplicationsDover Publications, 2006. 131
P. Fiorini, Z. Shiller. Motion planning in dynamic eneinments using
velocity obstaclesInt. Journal of Robotics Researd¥(7):760, 1998.
D. Fox, W. Burgard, S. Thrun. The dynamic window approdoh
collision avoidancelEEE Robotics and Automation Magazide23—
33, 1997.
[5] T. Fraichard, H. Asama. Inevitable collision states -tepstowards
safer robotsAdvanced Robotic$8(10):10011024, 2004.
[6] C. Fulgenzi, A. Spalanzani, C. Laugier. Dynamic obstaaloidance
in uncertain environment combining PVOs and occupancy. ¢fiEE
Int. Conf. on Robotics and AutomatioR007.

(30]
(2]

(3]

[4] [32]

A. Gelb. Applied optimal estimatianThe Analytic Science Corpora-
tion, 1974.

V. Huynh, N. Roy. icLQG: combining local and global opiiation
for control in information spacelEEE Int. Conf. on Robotics and
Automation 2009.

S. LaValle, J. Kuffner. Randomized kinodynamic plargitnt. Jour-
nal on Robotics Resear@D(5):378-400, 2001.

L. Kaelbling, M. Littman, A. Cassandra. Planning andtirag in
partially observable stochastic domaiwmstificial Intelligence 101(1-
2):99-134, 1998.

V. Kumar, N. Michael. Opportunities and challengeshndiitonomous
micro aerial vehiclesInt. Symp. on Robotics Resear@911.

H. Kurniawati, D. Hsu, W. Lee. SARSOP: Efficient poiraded
POMDP planning by approximating optimally reachable Helfgaces.
Robotics: Science and Syster@808.

P. Martin, E. Salaiin. The true role of accelerometezdBack in
quadrotor controllEEE Int. Conf. on Robotics and Automatjdz010.
N. Michael, D. Mellinger, Q. Lindsey, V. Kumar. The GRRSnultiple
mirco-UAV test bed: experimental evaluation of multirolzarial con-
trol algorithms.|EEE Robotics and Automation Magazih@é(3):56-65,
2010.

L. Kavraki, P. Svestka, J.-C. Latombe, M. Overmars. batmlistic
roadmaps for path planning in high dimensional configuratipaces.
IEEE Trans. on Robotics and Automati@g:4(566—-580), 1996.

L. Lu, C. Pearce. On the square-root method for contisttime
algebraic Riccati equationgournal of the Australian Mathematical
Society Series B, 40:459-468, 1999.

E. Owen, L. Montano. Motion planning in dynamic enviments
using the velocity spacdEEE/RSJ Int. Conf. on Intelligent Robots
and Systems2005.

C. Papadimitriou, J. Tsisiklis. The complexity of Mark decision
processesMathematics of Operations Researdl2(3):441-450, 1987.
S. Petti, T. Fraichard. Safe motion planning in dynaemeironments.
IEEE/RSJ Int. Conf. on Intelligent Robots and Syste2065.

J. Porta, N. Vlassis, M. Spaan, P. Poupart. Point-basée iteration
for continuous POMDPsJournal of Machine Learning Research
7:2329-2367, 2006.

] R. Platt, R. Tedrake, L. Kaelbling, T. Lozano-Perezli&epace plan-

ning assuming maximum likelihood observatiof®botics: Science
and Systems2010.

S. Prentice, N. Roy. The belief roadmap: Efficient piagnin be-
lief space by factoring the covarianct. J. of Robotics Research
28(1112):1448-1465, 2009.

J. Rawlings. Tutorial overview of Model Predictive Guul. IEEE
Control Systems Magazir#0(3):38-52, 2000.

J. Snape, J. van den Berg, S. Guy, D. Manocha. Independeii-
gation of multiple robots with Hybrid Reciprocal VelocitybStacles.
IEEE/RSJ Int. Conf. on Intelligent Robots and Syste2069.

R. Tedrake. I. Manchester, M. Tobenkin, J. Roberts. Hi@HRs:
Feedback motion planning via sums-of-squares verificatian J. on
Robotics Research9(8):1038-1052, 2010.

S. Thrun, W. Burgard, D. FoxProbabilistic Robotics MIT Press,
2005.

E. Todorov, W. Li. A generalized iterative LQG method focally-
optimal feedback control of constrained nonlinear stothaystems.
American Control Conferen¢&005.

J. van den Berg, P. Abbeel, K. Goldberg. LQG-MP: Optimciz
path planning for robots with motion uncertainty and impetfstate
information. Int. J. of Robotics Researc30(7):895-913, 2011.

J. van den Berg, J. Snape, S. Guy, D. Manocha. Recipaatbéion
avoidance with acceleration-velocity obstacléSEE Int. Conf. on
Robotics and Automatior2011.

J. van den Berg, S. Patil, R. Alterovitz. Motion plangirunder
uncertainty using differential dynamic programming inigkkpace.
Int. Symp. on Robotics Resear@®d11.

G. van den BergerCollision detection in interactive 3D environments
Morgan Kaufmann Publishers, 2004.

D. Wilkie, J. van den Berg, and D. Manocha. Generalizetbeity
obstacles.IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
2009.



