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Figure 1: Our novel GPU-based collision detection algorithm is used to simulate clothes with regular (a-c) or
irregular (d-f) shapes, which may correspond to a single layer (b, e) or multiple layers (a, c, d, f). We use a
parallel spatial hashing algorithm to perform inter-object and intra-object collision checking on a GPU along
with normal cone culling. The yellow line segments highlight all the areas that have no self-collisions and can
be culled away. As compared to prior GPU-based collision detection algorithms, we observe 6− 8𝑋 speedup.

ABSTRACT

We present a GPU-based self-collision culling method (P-
SCC) based on a combination of normal cone culling and
spatial hashing techniques. We first describe a normal cone
test front (NCTF) based parallel algorithm that maps well to
GPU architectures. We use sprouting and shrinking operators
to maintain compact NCTFs. Moreover, we use the NCTF
nodes to efficient build an enhanced spatial hashing for tri-
angles meshes and use that for inter-object and intra-object
collisions. Compared with conventional spatial hashing, our
approach provides higher culling efficiency and reduces the
cost of narrow phrase culling. As compared to prior GPU-
based parallel collision detection algorithm, our approach
demonstrates 6− 8X speedup. We also present an efficient
approach for GPU-based cloth simulation based on PSCC.
In practice, our GPU-based cloth simulation takes about one
second per frame on complex scenes with tens or hundreds
of thousands of triangles, and is about 4 − 6X faster than
prior GPU-based simulation algorithms.
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1 INTRODUCTION

Fast collision detection between deformable models is a key
problem in physically-based simulation. In particular, reliable
collision checking is important for many applications includ-
ing cloth and surgical simulation. In many cases, collision
detection is one of the major bottlenecks [Jiang et al. 2017;
Selle et al. 2009; Sutherland et al. 2006; Tang et al. 2016].

Most algorithms for collision detection between deformable
models are based on bounding volume hierarchies (BVH-
s) [Heo et al. 2010; Kim et al. 2009; Zhang and Kim 2014]
or spatial hashing [Fan et al. 2011; Pabst et al. 2010; Weller
et al. 2017]. As the models undergo deformation, these hi-
erarchies/hashing tables are updated or reconstructed and
used to cull away non-overlapping pairs. In order to acceler-
ate the computations, many parallel algorithms that utilize
multiple cores on a CPU or a GPU have been proposed [Fan
et al. 2011; Heo et al. 2010; Kim et al. 2009; Pabst et al.
2010; Tang et al. 2010a; Weller et al. 2017; Zhang and Kim
2014]. However, there are two main challenges in terms of
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using these algorithms on complex models related to memory
overhead and use of high-level culling methods.

Many BVH-based parallel algorithms maintain or update a
front of the underlying BVHs to accelerate the computation-
s [Klosowski et al. 1998; Li and Chen 1998; Tang et al. 2010b;
Zhang and Kim 2014]. However, the storage overhead of these
fronts can be high and can require several GBs of memory for
complex models composed of tens or hundreds of triangles.
Moreover, this storage overhead affects the performance on
commodity or mobile GPUs, which typically have a few GBs
of memory.

One of the key issues in terms is self-collision culling. Many
high-level culling methods based on normal cones have been
proposed to perform such culling [Provot 1997; Schvartzman
et al. 2010; Tang et al. 2009; Wang et al. 2017]. However, they
have been limited to sequential collision-detection methods.
In fact, most parallel GPU-based collision detection and cloth
simulation systems do not use self-collision culling based on
normal cones [Tang et al. 2011, 2016; Weller et al. 2017]. As
a result, the culling efficiency may not be high and results in
a large number false-positive elementary tests.

Main Results: In this paper, we present a novel GPU-based
collision detection algorithm (PSCC) to address these issues.
This includes a parallel normal culling algorithm that uses a
combination of shrinking and sprouting operators and has
lower memory overhead (Section 3). The resulting hierarchy
traversal performs more effective culling with lower runtime
overhead. Moreover, we present an enhanced spatial-hashing
method that is used for inter-object and intra-object collisions
(Section 4). A key aspect of our approach is a novel workload
scheme to distribute the computations evenly among different
GPU threads. Based on our collision detection algorithm,
we present an improved collision-handling scheme for cloth
simulation that can reuse broad-phrase test results (Section
5).

We have implemented these algorithms on different GPUs
and evaluated their performance on many complex bench-
marks. Our novel combination of parallel normal cone culling
with spatial hashing results in the following benefits:

∙ Lower memory overhead: For scenes with hundreds
of thousands of triangles, the storage overhead reduces
from several gigabytes [Tang et al. 2011] to about 500𝑀
bytes.

∙ Faster collision detection: As compared to prior
GPU-based parallel collision detection algorithm [Tang
et al. 2014; Weller et al. 2017], our approach demon-
strates 6− 8X speedup.

∙ Parallel cloth simulation: In practice, our GPU-
based cloth simulation takes about one second per
frame on complex benchmarks with tens or hundreds
of thousands of triangles, and is about 4 − 6X faster
than prior GPU-based algorithms [Tang et al. 2016].

2 RELATED WORK

There is considerable work on collision detection, cloth sim-
ulation, and parallel GPU-based algorithms to accelerate

collision detection. In this section, we give a brief overview
of prior work on collision culling and parallel algorithms.
Self-collision culling: Provot [1997] presented an efficient
method using normal cones for self-collision culling. It is used
to remove a large number of redundant tests at relatively
”flat” areas of the deformable models. Conventionally, the
normal cones associated with the internal nodes of a BVH are
computed in a bottom-up manner. Self-collision detection can
then be performed in a top-down manner. Schvartzman et
al. [2010] combined this method with self-collision test trees
(SCTT) to accelerate discrete self-collision queries for general
deformable models with 𝑂(𝑛) complexity. Tang et al. [2009]
extended normal cone culling to continuous collision detection.
However, its complexity is 𝑂(𝑛2), where 𝑛 is the number of
boundary edges. Wang et al. [2017] presented a conservative
normal cone-based culling algorithm with 𝑂(𝑛) complexity.
Other techniques include energy-based methods [Barbič and
James 2010; Zheng and James 2012] and radial-based culling
methods [Wong and Cheng 2014; Wong et al. 2013].
Spatial hashing on GPU: Spatial hashing is a classic
algorithm for collision detection, and can be easily parallelized
on GPUs [Lefebvre and Hoppe 2006]. A spatial hashing
algorithm has a constant time complexity on querying all
the triangles in proximity. Pabst et al. [2010] used a uniform
grid to perform the broad phase culling on GPUs for triangle
meshes. In order to handle the non-uniform distribution
of scene geometry primitives, Faure et al. [2012] extended
uniform grids to two-layer grids. Recently, hierarchical grids
have been used to further improve the efficiency of spatial
subdivision-based CD algorithms [Faure et al. 2012; Weller
et al. 2017; Wong et al. 2014]. Although hierarchical grids
can address the non-uniform distribution of scene primitives,
they cannot cull the triangles that belong to ”relatively flat”
areas of cloth or deformable models. The previous spatial
hashing algorithms [Faure et al. 2012; Weller et al. 2017;
Wong et al. 2014] tend to treat soft bodies and rigid bodies
uniformly. This can result in a high number of redundant
self-collision tests, i.e., false positives.
Parallel cloth simulation on multi-core/many-core
processors: Selle et al. [2009] designed a parallel cloth sim-
ulation algorithm for multi-core platforms. That algorithm
can take up to 30 minutes per frame for a cloth mesh with
500𝐾 triangles on a 16-core workstation. Tang et al. [2013]
proposed a streaming algorithm for regular-shaped high-
resolution cloth simulation on GPUs. The algorithm has
been extended for cloth simulation with arbitrary topology
structures [Tang et al. 2016], and can take up to 35 seconds
per frame for cloths with 1𝑀 triangles on a commodity G-
PU. These parallel algorithm maintain a bounding volume
traversal tree (BVTT) front for parallel collision checking,
which can have a large memory overhead. Recently, Jiang
et al. [2017] used a Lagrangian approach to simulate the
anisotropic elastoplasticity of cloth, and their implementa-
tion takes about 2 minutes per frame for a cloth mesh with
1.8𝑀 triangles.
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3 PARALLEL NORMAL CONE
CULLING

In this section, we present our parallel normal cone culling
algorithm. We first introduce the notation used in the rest of
the paper.

3.1 Notation

We mainly focus on accurate collision detection for general
deformable objects, including self-collisions. We mainly fo-
cus on continuous collision detection (CCD), while parallel
scheme can also be used for discrete collision detection (DCD).
Our CCD algorithm assumes linearly interpolating trajec-
tories [Bridson et al. 2002; Provot 1997; Tang et al. 2009]
between the mesh vertices corresponding to two successive
simulation instances. We use the following acronyms in the
rest of the paper: BV (bounding volume), BVH (bounding
volume hierarchy), NCTT (normal cone test tree), and NCTF
(normal cone test front).

3.2 Parallel Culling

Our parallel normal culling algorithm is based on BVH-
based culling with BVTT (Bounding volume testing tree)
fronts [Tang et al. 2011]. The BVH quality is critical for the
culling efficiency of normal cone tests. For cloth simulation,
we construct BVH in its material space [Wang et al. 2011]
(Figure 4(a)) instead of the geometry space (Figure 4(b)). As
a result, we observe much higher culling efficiency for normal
cone tests, especially for areas with multiple layers of cloth
(see the upper part of the body in Figure 4). Conceptually,
any normal cone testing algorithm [Provot 1995; Schvartzman
et al. 2010; Tang et al. 2009; Volino and Thalmann 1994;
Wang et al. 2017] can be used in Algorithm 1. During the
construction step, we also compute a normal cone and gather
its contour edges for each BVH node. This is useful for the
cases where all the underlying triangles are connected with
each other. The normal cone is computed by merging all the
normal vectors of these triangles.

In this work, we use a recent algorithm by Wang et
al. [Wang et al. 2017] based on unprojected contour test
with 𝑂(𝑛) complexity, due to its support for both CCD and
DCD, and its simplicity for implementation.

We use a NCTF to record all the BVH nodes where nor-
mal cone tests are terminated during the tree traversal at
the last time step (as shown in Figure 2). By utilizing the
spatial-temporal coherence between simulation time steps,
we perform various normal cone tests in parallel starting from
all the nodes recorded in the front. As shown in Algorithm 1,
all the nodes of the NCTF can be tested and updated inde-
pendently. For those nodes that do not pass the normal cone
tests, sprouting operators are used to traverse down and add
their descendents into the NCTF. In this manner, high-level
self-collision culling is performed in parallel on a GPU.
Sprouting operator: In Algorithm 1, we first perform the
normal cone test on each node in the NCTF (lines 2-3). For
those nodes that fail the test, we use the sprouting operator
(Algorithm 2) to traverse to their descendents (line 4-5).
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Figure 2: Normal Cone Test Front (NCTF): For the
cloth model in (b), we store all the BVH nodes where
normal cone tests are terminated during the tree tra-
versal at the last time step (e.g. the red curve in (a))
as the normal cone test front. The green arrows high-
light the correspondences between culled areas and
BVH nodes. Here, 𝑎, 𝑏, ..., 𝑛 are the NCTF node IDs.
All its descendent triangles share the same NCTF
ID.

Algorithm 1 SelfCollideParallel(𝐹 ): Perform self-collision
in parallel with a NCTF 𝐹 .

1: for all 𝑛𝑖 ∈ 𝐹 do
2: if IsLeaf(𝑛𝑖) or NormalConeTest(𝑛𝑖) == true then
3: return // Skip nodes without self-collisions.

4: end if
5: Delete(𝐹 , 𝑛𝑖)
6: Sprouting(𝐹 , 𝑛𝑖 →left)
7: Sprouting(𝐹 , 𝑛𝑖 →right)
8: end for

Algorithm 2 Sprouting(𝐹 , 𝑛𝑖): Update the normal cone
test front 𝐹 by sprouting from a BVH node 𝑛𝑖.

1: if IsLeaf(𝑛𝑖) or NormalConeTest(𝑛𝑖) == true then
2: Insert(𝐹 , 𝑛𝑖)
3: else
4: Sprouting(𝐹 , 𝑓 𝑖 →left)
5: Sprouting(𝐹 , 𝑓 𝑖 →right)
6: end if

Ultimately the nodes that pass the normal cone tests are
added to the NCTF (line 2).
Shrinking operator: In Algorithm 1, we only use the
sprouting operator to update the front. In practice, the un-
derlying deformable mesh or the cloth may change from a
wrinkling status to a flat status. In order maintain a compact
NCTF, we use a shrinking operator to re-scan the front nodes
after several time steps. During the simulation, some tangled
areas may become flat again. So the front needs to shrink
upward If two sibling front nodes are in the front, we remove
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Figure 3: Front Updating: The NCTF remains com-
pact by updating with sprouting and shrinking oper-
ators. During different time steps, the regions that
can be culled with normal cone tests change. There-
fore, the front needs to be updated from Front A to
Front B. Both A and B are compact. Sprouting and
shrinking operators are used to maintain the com-
pact fronts (i.e. A, B).

(a) (b)

Figure 4: The tightness of the BVH is important for
NC culling. Here we highlight the culling efficiency
with different BVH construction algorithms. Com-
pared with the BVH constructed in geometry space
(b), the BVH constructed in material space (a) re-
sults in better normal cone culling efficiency, espe-
cially for multi-layer clothes (see the upper part of
the body).

all these sibling nodes and insert their parent into the front.
In this way, the front will shrink upward in various areas
which become flat again. As shown in Figure 3, the front
can be fully updated in parallel with sprouting (Algorithm 2)
and shrinking operators.

Memory overhead: The number of nodes in NCTF is
bounded by 2 * 𝑁 + 1, where 𝑁 is the number of trian-
gles. This 𝑂(𝑁) memory requirement is much less than the
memory overhead of the BVTT front [Tang et al. 2011], which
can be 𝑂(𝑁2). As a result, we observe reduced memory usage
and better caching behavior on complex benchmarks.

Cell A Cell  B Cell  ...

Node X

Cell A Cell  B

Node Y Node ...

Cell  ...

(a) Spatial hashing with CellID only

(b) Spatial hashing with CellID and ConeID

Tid
 … … … … …

… … … … …

Tid
 

Figure 5: Hash Key: Both spatial information and
NCTF node information are used as the hash keys.
We show the the conventional hashing key (a). Our
novel hashing key (b) splits the triangles in the same
cell into groups with the same NCTF node ID, to
enable self-collision culling.

Self-collision culling efficiency: NCTF is designed to
perform parallel normal cone culling, while BVTT front is
used for parallel collision detection between BVH nodes. For
self-collision detection, NCTF is more efficient than BVTT
due to its ability to remove large ”flat” areas. On the other
hand, the BVTT needs to be traversed to leaf level, and the
resulting algorithm needs to check all the triangle pairs with
overlapping bounding volumes for exact collisions. Most of
these overlap tests tend to be false positives, as the adjacent
triangle pairs cannot be cull out with bounding volume tests.
As highlighted in Figure 1, all these areas bounded by the
yellow line segments are skipped for self-collision checking
with NCTF. If we use BVTT, all these triangle pairs have
to be checked. Therefore, NCTF tends to be more efficient
than BVTT for self-collision detection.

4 SPATIAL HASHING WITH NORMAL
CONE FRONT

The high-level culling algorithm for self-collisions needs to be
combined with low-level collision culling methods to reduce
the number of false positive elementary tests. We combine
parallel normal culling with extended spatial hashing for im-
proved performance. A key aspect of this integrated scheme
is the use of paired hashing key. We split the bounding vol-
ume of the entire simulation scene into cells and assign each
cell a unique Cell ID. For each triangle, we keep track of
the corresponding Cell IDs for those cells that overlap with
its BV. Each triangle also has a unique NCTF node ID,
which is computed from the parallel normal cone tests (e.g.,
𝑎, 𝑏, 𝑐, ..., 𝑛 in the Fig. 2). We use both, spatial information
(Cell IDs) and NCTF node IDs, as the hashing keys. Logically,
the triangles of a mesh can be organized into a workload dis-
tribute table, as shown in Figure 7. All the triangles with the
same {𝐶𝑒𝑙𝑙𝐼𝐷,𝑁𝑜𝑑𝑒𝐼𝐷} are skipped in terms of performing
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Figure 6: Comparison between the number of out-
put triangle pairs from broad phase culling: The
red and blue areas represent the number of triangle
pairs output by the broad phase with and without
CNC culling, respectively. With fewer output trian-
gle pairs, the exact overlap tests performed during
the narrow using spatial hashing are reduced.

intersecting tests, because they are in same flat region and
do not need to be tested for intra-object collisions.

With conventional spatial hashing, only {𝐶𝑒𝑙𝑙𝐼𝐷} are used
as the hashing keys. The intersecting number in one spatial
cell, 𝑁𝑖𝑛𝑡𝑒𝑟, is:

𝑁𝑖𝑛𝑡𝑒𝑟 = 𝑛𝑡 * (𝑛𝑡 − 1)/2,

where 𝑛𝑡 is the number of triangles in that cell. With the new
hashing key {𝐶𝑒𝑙𝑙𝐼𝐷,𝑁𝑜𝑑𝑒𝐼𝐷}, the new number, 𝑁 ′

𝑖𝑛𝑡𝑒𝑟𝑠,
becomes:

𝑁 ′
𝑖𝑛𝑡𝑒𝑟 =

∑︁
𝑖̸=𝑗

𝑛𝑖 * 𝑛𝑗 ,

where 𝑛𝑖 and 𝑛𝑗 are the numbers of triangles with the same
Node IDs in the cell, and

∑︀
𝑛𝑖 = 𝑛𝑡. As long as 𝑛𝑖 >= 1, we

have:

𝑁𝑖𝑛𝑡𝑒𝑟 −𝑁 ′𝑖𝑛𝑡𝑒𝑟 = 𝑛𝑡 * (𝑛𝑡 − 1)/2−
∑︁
�̸�=𝑗

𝑛𝑖 * 𝑛𝑗

= [(
∑︁

𝑛𝑖)
2 −

∑︁
𝑛𝑖 − 2 *

∑︁
�̸�=𝑗

𝑛𝑖 * 𝑛𝑗 ]/2

= (
∑︁

𝑛2
𝑖 −

∑︁
𝑛𝑖)/2 >= 0

Based on the paired hashing key, we do not need to perform
self-collision detection between the small group of triangles
that have the same NodeID. Due to our formulation, the
number of candidate triangle pairs is reduced.

Self-culling with spatial hashing decreases the number of
threads, as each test is performed by a separate thread and
PSCC results in fewer triangle-triangle tests (see (Figure 6).
This is useful in the narrow phase testing of the collision
detection pipeline. We use two hash tables to build our work-
load distribute table, and modify the workload distribute
algorithm [Fan et al. 2011] for our approach to balance the
computational load of GPU threads. Finally, a token position
technique [Fan et al. 2011] is used to avoid an output of
duplicate triangle pairs after the broad phase.
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Figure 7: Build workLoadHashTable: Two hash
tables are computed for building the workLoad-
HashTable. As the figure show, prior spatial hashing
algorithms [Pabst et al. 2010] would need to per-
form higher number of tests, which is 43 tests (10
for CellId0, 21 for CellId3, and 12 for CellId2) for
this benchmark. Based on the integration of spatial
hashing with normal cone culling (PSCC), we only
perform 12 tests (for CellId2) in this scenario.

4.1 Workload Distribution

Corresponding to the paired hash keys, we use a novel work-
load distribution to distribute the computations evenly a-
mong GPU threads. Before workload distribution, we need
two pieces of information. For each spatial cell, we need to
collect all the triangles that overlap with that cell. We sepa-
rate all the triangles that lie into the same cell into different
sets by NodeID. As shown in Algorithm 3, two hash tables
are used to implement this approach. In our algorithm, for
all triangles that fall into the same cell and have the same
NodeID, no extra intersection testing is needed. Therefore,
triangleHashTable is used to separate the triangles with dif-
ferent CellIDs and NodeIDs into many different groups. Next,
workLoadHashTable collects all the groups indexed with the
same CellID. Finally, through these two hash tables, we can
copmute all the triangle pairs that are needed to perform
the BV overlap tests (Figure 7). In this way, we can perform
workload distribution among all the GPU threads.

We represent our spatial-hashing table as a row-major
sparse matrix. We can insert a {key, value} pair by hashing
its key to find the corresponding row index, and put the value
to a value array on this row. The hash table construction
algorithm is a two stage process very similar to the sparse
matrix assembly method used in [Tang et al. 2016].
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Algorithm 3 SpatialHashingCD(𝑇 ,𝑁𝑜𝑑𝑒𝐼𝑑𝑠): Perform spa-
tial hashing collision detect on a triangle set 𝑇 with a NCTF
node ID 𝑁𝑜𝑑𝑒𝐼𝑑𝑠.

1: for all 𝑡𝑖 ∈ 𝑇 do
2: for all 𝑐𝑒𝑙𝑙𝑗 ∈ 𝑐𝑒𝑙𝑙𝑠𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑𝑖 do
3: // Make the unique id 𝑢𝑢𝑖𝑑 with nodeid and cellid for

every cell the triangle 𝑡𝑖 overlapped.

4: 𝑢𝑢𝑖𝑑 = MakeUuid(𝑛𝑜𝑑𝑒𝑖𝑑𝑖, 𝑐𝑒𝑙𝑙𝑖𝑑𝑗)
5: // Use 𝑢𝑢𝑖𝑑 as the key to insert triangle index 𝑡𝐼𝑛𝑑𝑒𝑥𝑖

into the 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐻𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒.

6: Insert(𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐻𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒, 𝑢𝑢𝑖𝑑, 𝑡𝐼𝑛𝑑𝑒𝑥𝑖)
7: end for
8: end for
9: // For every row 𝑟𝑜𝑤𝑖 in triangleHashTable, use the 𝑐𝑒𝑙𝑙𝑖𝑑𝑖

of this row as the key to insert the row index 𝑖 into workLoad-

HashTable.

10: for all 𝑟𝑜𝑤𝑖 ∈ 𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐻𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒 do
11: Insert(𝑤𝑜𝑟𝑘𝐿𝑜𝑎𝑑𝐻𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒, 𝑐𝑒𝑙𝑙𝑖𝑑𝑖, 𝑖)
12: end for
13: // Count the total amount of BV tests.

14: CountTotalThreadNum(𝑤𝑜𝑟𝑘𝐿𝑜𝑎𝑑𝐻𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒,
𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐻𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒)

15: // For every BV test, a thread is used to balance the compu-

tation load.

16: for all 𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑𝑥𝑖 ∈ 𝑡𝑜𝑡𝑎𝑙𝑇ℎ𝑟𝑒𝑎𝑑 do
17: DecodePairsAndTest(𝑡ℎ𝑟𝑒𝑎𝑑𝑖𝑑𝑥𝑖,𝑤𝑜𝑟𝑘𝐿𝑜𝑎𝑑𝐻𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒,

𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒𝐻𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒, 𝑇 )
18: end for

4.2 Hashing Function

We use NCTF node IDs and cell IDs to make a uuid as the
hash key. The {𝐾𝑒𝑦} is calculated by:

𝐾𝑒𝑦 = 𝑢𝑢𝑖𝑑 mod ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

= (𝐶𝑒𝑙𝑙𝐼𝑑+𝑁𝑜𝑑𝑒𝐼𝑑 * 𝐶𝑒𝑙𝑙𝐼𝑑𝑀𝑎𝑥) mod ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒𝑆𝑖𝑧𝑒

and
𝐶𝑒𝑙𝑙𝐼𝑑 = 𝐼𝑑𝑥 *𝑁𝑦 *𝑁𝑧 + 𝐼𝑑𝑦 *𝑁𝑧 + 𝐼𝑑𝑧,

where 𝑁𝑥,𝑦,𝑧 and 𝐼𝑑𝑥,𝑦,𝑧 are the number of cells and the ID of
a current cell in the x,y,z axis of the spatial grid, respectively.
The CellId can be any other hashing function such as Morton
codes [Morton 1966] or DJB2 [Eitz and Gu 2007].
Grid size: We currently use a uniform grid for space parti-
tion. Therefore, the grid size is an important factor in the
overall performance. For scenes with unevenly sized triangles,
a grid size that is too large may decrease the culling efficiency
of the spatial-hashing method, while a grid size that is too
small would lead to many redundant detections between big
triangle pairs. We therefore choose the gird size as:

𝑆𝑖𝑧𝑒𝑐𝑒𝑙𝑙 = 𝑘 *𝐵𝑜𝑥𝐴𝑥𝑖𝑠𝐿𝑒𝑛𝑎𝑣𝑒𝑟,

where k is a heuristic parameters and 𝐵𝑜𝑥𝐴𝑥𝑖𝑠𝐿𝑒𝑛𝑎𝑣𝑒𝑟 is
the average length of all triangles’ bounding boxes’ axes. In
practice, this grid size works well for most of our benchmarks.
The running time of the broad-phrase culling is about 6%−
10% of the overall running time of cloth simulation pipeline
described in Section 5.

Sparse Linear System 
Assembly

Sparse Linear System 
Solving

Implicit Time Integration

Broad Phrase 
(BVTT Front Tracking)

Narrow Phrase
(Pair-wise DCD)

Proximity Checking

Broad Phrase 
(BVTT Front Tracking)

Narrow Phrase
(Pair-wise CCD)

Penetration Handling

(a) Prior Pipeline

Sparse Linear System 
Assembly

Sparse Linear System 
Solving

Implicit Time Integration

Broad Phrase 
(Spatial Hashing)

Narrow Phrase
(Pair-wise CCD/DCD)

Penetration Handling &
Proximity Checking

(b) Current Pipeline

Figure 8: Collision Handling Pipeline: Compared to
the prior pipeline (a) in [Tang et al. 2016], the cur-
rent pipeline (b) reuses the testing results from the
broad phrase for both pair-wise DCD and CCD.

Extension to rigid bodies: Our spatial hashing algorith-
m can easily be extended for collision detection between
rigid bodies by simply assigning a unique NodeID for each
rigid body. In this manner, all self-collision tests among the
triangles belonging to the same rigid body can be avoided.

4.3 Overall PSCC Algorithm

Our collision detection algorithm is a combination of Algorith-
m 1 (high level culling) and Algorithm 3 (low level culling).
We first execute Algorithm 1 to compute the NCTF node IDs,
then execute Algorithm 3 for inter-object and intra-object
collision culling. The paired hash keys in Algorithm 3 are
based on the NCTF node IDs computed by Algorithm 1.

5 COLLISION HANDLING FOR
CLOTH SIMULATION

We use our novel parallel collision detection algorithm to
improve the performance of GPU-based cloth simulation.
The original pipeline for a fast GPU-based algorithms is
shown in Figure 8(a), which first performs proximity checking
with DCD, collects all the proximity constraints for implicit
time integration, performs penetration handling with CCD
to ensure there are no penetrations between triangle pairs.
In [Tang et al. 2016], BVTT front tracking is used as broad
phrase culling, and is performed twice for DCD and CCD.

We notice that the vertices used for CCD in the current
time step are the same as those for DCD at the next time
step. This is due to the fact that the penetration-free mesh
output from last time step is directly used as the input mesh
for the next simulation time step, i.e. they have the same
vertices. Therefore, the results of broad-phrase culling for
last time step can be reused for next time step (as shown
in Fig. 8(b)). We therefore perform spatial hashing culling



PSCC: Parallel Self-Collision Culling with Spatial Hashing on GPUs I3D, May 2018, Montreal, Quebec, Canada

Figure 9: Benefits of the new collision handling
pipeline: For this frame of Benchmark Sphere, with
the new collision handling pipeline, we are able to
reduce the number of BV tests and the running time
of broad phrase culling to 51.1% and 53.3%, respec-
tively.

Resolution

(triangles)

Bench-

marks

Time

Steps(s)

CAMA

(K40c)

Our

(K40c)

Our

 (1080)

Our

 (1080 TI)

200k Sphere 1/200 2.84 1.62 0.94 0.82

200k Twisting 1/200 2.92 1.72 0.97 0.87

80K Flag 1/100 3.39 0.81 0.35 0.20

127K Andy 1/25 2.42 1.48 0.84 0.57

172K Falling 1/30 2.49 0.98 0.51 0.39

124K Bishop 1/30 3.19 1.82 0.94 0.82

318K Flag 1/25 10.20 4.31 2.11 2.11
Figure 10: Performance: This figure shows the aver-
age running time for a single frame of our algorithm
on four different configurations (i.e., CAMA on Tel-
sa K40C, our system on Tesla K40C, our system on
GTX 1080, and our system on GTX 1080 Ti, respec-
tively). We observe significant speedups (up to 16𝑋)
over CAMA.

during the broad phrase culling, and execute it only once
per time step. The culling results are used for the narrow
phrase (both for DCD and CCD). During the narrow phrase
with CCD, we detect all the penetrations between Vertex-
Face/Edge-Edge pairs. The CCD computation is performed
until all penetrations are handled. After CCD computation,
another pass of narrow phrase testing with DCD is performed
to collect proximity constraints for the next time step. In this
way, we save the running time in terms of performing another
pass during broad phrase culling by reusing its output.

In the Benchmark Sphere (Figure 9), we are able to reduce
the number of BV tests and the running time of broad phrase
culling by 51.1% and 53.3%, respectively.

6 IMPLEMENTATION AND RESULTS

Implementation: We have implemented our PSCC algo-
rithm on three commodity GPUs, an NVIDIA Tesla K40c
(with 2880 cores at 745MHz and 12G memory), an NVIDIA
GeForce GTX 1080 (with 2560 cores at 1.6 GHz and 8G
memory), and an NVIDIA GeForce GTX 1080 Ti (with 3584
cores at 1.58 GHz and 11G memory), respectively. We use
these GPUs with varying number of cores to test the parallel

performance of our approach. Our implementation is based on
CUDA toolkit 8.0 and Visual Studio 2013 as the underyling
development environment. We used a standard PC (Windows
7 Ultimate 64 bits/Intel I7 CPU@3.5G Hz/8G RAM) as the
testing environment and perform single-precision floating-
point arithmetic for all the computations performed on a
GPU. Moreover, we used Thrust for the prefix-sum operator
and cuBLAS/cuSPARSE for linear system solving.
Benchmarks:We used three different benchmarks for regular-
shaped cloth simulation:

∙ Twisting: Three pieces of cloth with a total of 200𝐾
triangles twist severely as the underlying ball rotates
(Fig. 1(a)).

∙ Flag: A waving flag with 80𝐾 triangles is blowing in
the wind (Fig. 1(b)).

∙ Sphere: Three pieces of hanging cloth with a total of
200𝐾 triangles are hit by a forward/backward moving
sphere (Fig. 1(c)).

These benchmarks contain many inter- and intra-object colli-
sions. We used three other benchmarks for garment simula-
tion:

∙ Andy: A boy wearing three pieces of clothing (with
127𝐾 triangles) is practicing Kung-Fu (Fig. 1(d)).

∙ Falling: A man wearing a robe (with 172𝐾 triangles)
falls down rapidly under strikes (Fig. 1(e)).

∙ Bishop: A swing dancer wears three pieces of clothing
(with 124𝐾 triangles) (Fig. 1(f)).

These are complex benchmarks with multiple pieces, layers,
and wrinkles, which result in a high number of collisions.
Our algorithm can handle inter- and intra-object collisions
reliably (see video).
Performance: Figure 10 shows the resolutions and time
steps for different benchmarks, and highlights the perfor-
mance of our algorithm on these benchmarks. This includes
the average frame time of our GPU-based algorithm on three
commodity GPUs with different numbers of cores. These re-
sults demonstrate that our cloth simulation algorithm works
well on different GPU architectures and that the performance
is proportional to the number of cores. Compared with the
CAMA performance [Tang et al. 2016] on an NVIDIA Telsa
K40C, we observe significant speedups (up to 16𝑋) on an
NVIDIA GeForce GTX 1080 Ti.
Running time ratios: Figure 11 shows the running time
ratios of different computing stages: time integration, broad
phrase testing, narrow phrase testing, and penetration han-
dling. These data are collected by running our system for
Benchmark Sphere on the NVIDIA GeForce GTX 1080. As
shown in the figure, time integration takes almost constant
running time for all the time steps. Collision detection (broad
phrase and narrow phrase) and penetration handling appear
to be the most computationally expensive parts, especially
when the cloths are tangled.
Memory overhead: Figure 12 compares the memory over-
head of our algorithm (spatial hashing-based) and CAMA
(BVH-based). We list all the memory breakdown for the
Benchmark Sphere running using two different algorithms.
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Figure 11: Ratios of different stages of our system: This figure shows the running time ratios of different
computing stages: time integration, broad phrase testing, narrow phrase testing, and penetration handling,
respectively. These data are collected by running our system for the Benchmark Andy on the NVIDIA GeForce
GTX 1080.

Compared with our approach, CAMA [Tang et al. 2016] us-
es much more memory as the storage for BVTT front and
triangle pairs (passed broad phrase culling). Our approach
requires much less memory for spatial hashing and normal
cone front. Due to the culling effects of normal cones, our
approach also needs much less memory for the triangles pairs.
CAMA [Tang et al. 2011, 2016] needs more than 2𝐺 GPU
memory for this benchmark, while our system needs approxi-
mately 500𝑀 GPU memory. We also observe similar memory
reduction in other benchmarks using PSCC.

7 COMPARISON AND ANALYSIS

In this section, we compare the features and performance of
our approach with prior methods.
GPU-based collision detection algorithm and cloth
simulation system: As compared with priort GPU-based
cloth simulation systems [Tang et al. 2013, 2016], the main
benefits of our algorithm include much less memory overhead
(Figure 12) and improved runtime performance on the same
GPU (Figure 10). With the enhanced spatial hashing data
structure, our approach is capable of performing large-area
self-collision culling. Figure 16 shows the running time ratios
of different computing stages of the CAMA system [Tang et al.
2016]. This performance data is collected by running CAMA
for Benchmark Sphere on the NVIDIA GeForce GTX 1080.
As shown in the figure, CAMA needs much more running
time than our system for collision detection and handling.
All the speedup are due to the improvements in the collision
detection algorithm (broad phrase testing, narrow phrase
testing, and revised pipeline), reduced memory overhead
and the improved cloth simulation pipeline. On the same
GPU platform (NVIDIA GeForce GTX 1080), our collision

M (bytes)

Figure 12: Memory Overhead: This figure compares
the memory occupation ratios of our system (spa-
tial hashing based) and CAMA (BVH-based). We
list all the memory occupation details for the Bench-
mark Sphere running on the two different system-
s. Compared with our system, CAMA used much
more memory as the storage for BVTT front and tri-
angle pairs (that passed broad phrase culling). CA-
MA [Tang et al. 2011, 2016] needs more than 2𝐺
GPU memory for this benchmark, while our system
needs approximately 500𝑀 GPU memory.

detection algorithm provides 6−8X speedup over prior GPU-
based algorithms [Tang et al. 2011] , and results in 4− 6X
speedup over prior cloth simulation algorithm [Tang et al.
2016].
CPU-based collision culling algorithms: The recent
work of Wang et al. [2017] combines normal cone culling



PSCC: Parallel Self-Collision Culling with Spatial Hashing on GPUs I3D, May 2018, Montreal, Quebec, Canada

0

2

4

6

8

10

12

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 311 321

Misc

Penetration Handling

Narrow Phrase

Broad Phrase

Time Integration

0

0.5

1

1.5

2

2.5

3

3.5

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221 231 241 251 261 271 281 291 301 311 321

Misc

Penetration Handling

Narrow Phrase

Broad Phrase

Time Integration

Seconds

1 301 601 901 1201 1501 1801 2101 2401 2701 3001 3201

1 301 601 901 1201 1501 1801 2101 2401 2701 3001 3201

Seconds

Frames

Frames

Figure 16: Ratios of different stages of the CAMA system: This figure shows the ratios of different computing
stages: time integration, broad phrase testing, narrow phrase testing, etc. These data are collected by running
the CAMA system for the Benchmark Andy on the NVIDIA GeForce GTX 1080.

Figure 13: High-resolution cloth simulation: A rect-
angular cloth ( with 1𝑀 triangles) falls on the top of
a moving sphere.

Resolution

(triangles)

Bench-

marks

Time

Steps(s)

CAMA

(K40c)

Our

(K40c)

Our

 (1080)

Our

 (1080 Ti)

1M Sphere 1/200 35.75 7.60 4.20 3.28

Figure 14: Performance for high-resolution cloth sim-
ulation: This figure shows the average running time
for a single frame of our algorithm on a benchmark
with 1𝑀 triangles. We observe 8.5X speedup over
CAMA on the GeForce GTX 1080.

Resolution
(triangles)

Bench-
marks

Hierarchical Grid(KDet) Ours

BV-test Inter-pairs Self-pairs BV-test Inter-pairs Self-pairs

127K Andy 38584 k 389 k 3831 k 21681 k 389 k 1931 k

124K Bishop 30552 k 553 k 2648 k 18774 k 553 k 1514 k

Figure 15: Comparison between KDet and our
method: This figure shows the average amount of
BV-tests and output triangle pairs of the broad
phase in different methods and benchmarks.

with BVTT front tracking. However, it is a serial algorith-
m designed for single thread implementation, it is hard to
parallelize and compare the performance with a GPU-based

parallel approach. Another drawback of this algorithm is that
it needs a lot of CPU memory to store the BVTT front.
Spatial Hashing Only: As a comparison, we also imple-
mented the hierarchical spatial hashing algorithm KDet [Weller
et al. 2017]. Figure 15 shows the total amount of BV-tests
and output triangle pairs of the broad phase. The BV-tests’
numbers indicate the spatial hashing method’s efficiency and
the triangle pairs’ output indicates the workload of the nar-
row phase. Our approach achieves better performance at both
the broad phase and narrow phase.
Performance on high-resolution cloth simulation: Fig-
ure 14 shows the average running time for a single frame of
our algorithm on a benchmark with 1𝑀 triangles (Figure 13).
We observe 8.5X speedups (on a GTX 1080) over CAMA (on
Tesla K40c). The recent work of Jiang et al. [Jiang et al. 2017]
takes about 2 minutes per frame for a similar benchmark
with 1.8M triangles, while our system takes about 13s per
frame on an NVIDIA GeForce GTX 1080.

8 CONCLUSION AND LIMITATIONS

We present a GPU-based self-collision culling method, PSCC,
based on a combination of normal cone culling (Algorith-
m 1) and spatial hashing techniques (Algorithm 3). We use
a NCTF-based parallel algorithm, along with sprouting and
shrinking operators to maintain compact NCTFs on GPU.
This algorithm perform high-level self-collision culling and
compute the NCTF node IDs. We use the NCTF node IDs
and spatial location information to build an enhanced s-
patial hashing for low-level culling between triangles. This
enhanced spatial hashing technique can perform inter-object
collisions and also used for self-collision checking based on
normal cone tests. We also redesign the collision handling
pipeline of a GPU-based cloth simulation system by reusing
the computation of broad phrase culling. We have demon-
strated its performance on many complexly layered cloth
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benchmarks containing 80 − 300K triangles. We observe sig-
nificant speedups (4 − 6𝑋) and much l ess memory overhead, 
as compared to prior GPU-based systems.

Our approach has several limitations. For tangled, collision 
detection and penetration handling still remain a major bot-
tleneck in terms of the overall running time (Figure 11). We 
need better techniques to exploit frame-to-frame coherence 
since only a few of the vertices involved in the penetrations 
tend to move between the frame. Also, our approach uses 
normal cone culling for self-collision culling. For meshes un-
dergoing topological changes, the normal cones and their 
associated contour edges need to be updated on-the-fly.

There are many avenues for future research. In addition 
to overcoming the limitations, we feel that it is possible to 
further improve the performance by exploiting the memory 
hierarchy and cache of modern GPUs (e.g. combined with 
[Wang et al. 2018]). Also, it will be interesting to explore 
the computation potential of multiple GPUs by performing 
data/task partitioning wisely and perform interactive cloth 
and deformable simulations.
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