
The Visual Computer manuscript No.
(will be inserted by the editor)

Min Tang · Sung-Eui Yoon · Dinesh Manocha

Adjacency-based Culling for Continuous Collision
Detection

Abstract We present an efficient approach to reduce
the number of elementary tests for continuous collision
detection between rigid and deformable models. Our al-
gorithm exploits the connectivity information and uses
the adjacency relationships between the triangles to per-
form hierarchical culling. This can be combined with
table-based lookups to eliminate duplicate elementary
tests. In practice, our approach can reduce the number of
elementary tests by two orders of magnitude. We demon-
strate the performance of our algorithm on various chal-
lenging rigid body and deformable simulations.

Keywords Adjacency based culling · Continuous
collision detection · Elementary test · Duplication
elimination

1 Introduction

Continuous collision detection (CCD) is frequently used
for dynamic simulation of rigid and deformable mod-
els [20]. Given two discrete positions of an object or
a primitive, a CCD algorithm computes an interpolat-
ing continuous trajectory between those instances (e.g.
linear interpolation) and checks for collisions of the re-
sulting swept volumes with other primitives. The main
goal is to ensure that there are no collisions between the
two discrete instances. As compared to discrete collision
detection, CCD is much more expensive [2,13]. Specifi-
cally, the problem of performing CCD computation be-

M. Tang
Zhejiang University, China
University of North Carolina at Chapel Hill, USA
E-mail: tangm@cs.unc.edu

S. Yoon
Korea Advanced Institute of Science and Technology
(KAIST), South Korea
E-mail: sungeui@cs.kaist.ac.kr

D. Manocha
University of North Carolina at Chapel Hill, USA
E-mail: dm@cs.unc.edu

tween two triangles undergoing linearly interpolated mo-
tion reduces to performing 15 elementary tests between
edge/edge or vertex/face features of the two triangles.
Each of these elementary tests reduces to solving the
roots of a cubic equation.

Most collision detection algorithm use bounding vol-
ume hierarchies (BVHs) to reduce the number of CCD
tests between triangle pairs [2,5,9]. However, BVHs are
unable to cull away a high number of pairs and thereby
result in a high number of false positives. As a result,
current CCD algorithms spend a significant fraction of
the collision query time in performing exact elementary
tests between the features. There is considerable recent
work on reducing the number of pairwise feature tests
that either use bounding volumes for features or utilize
connectivity information or generate separate hierarchies
for these features [3,8,6].

Main contributions: In this paper, we address the
problem of reducing the number of pairwise feature tests
by exploiting the connectivity of the mesh. These include
elementary feature tests between adjacent triangles that
either share an edge or a vertex and are not culled by
the BVHs. The other issue is duplicate tests that arise
as these features are shared among multiple potentially
colliding triangle pairs (PCTPs).

We present a hierarchical triangle-based culling method
that exploits the adjacency information of PCTPs. More-
over, this formulation is combined with table based du-
plication elimination scheme to significantly reduce the
number of elementary tests. Our approach can be com-
bined with any BVH and is relatively simple to imple-
ment. We have tested its performance on different bench-
marks corresponding to deformable models and multi-
body simulations. In practice, we observe a reduction in
the number of elementary tests by two orders of magni-
tude and an improvement in the overall performance by
one order of magnitude.

Organization: The rest of the paper is organized as
follows: Sec. 2 gives a brief survey of prior work. We
introduce our notation and describe the overall pipeline
of our approach in Sec. 3. The adjacency based culling

2 Min Tang et al.

technique is described in Sec. 4. Sec. 5 presents the table
based duplication elimination scheme. We describe our
implementation and highlight its performance on various
benchmarks in Sec. 6. We compare our approach with
other algorithms in Sec. 7.

2 Related Work

In this section, we give a brief overview of prior work on
continuous collision detection and self-collision detection
for deformable objects.

2.1 Continuous Collision Detection (CCD)

CCD algorithms are used to compute the first time of
contact during the time interval defined by discrete time
steps. They are frequently used for dynamic simulation
[1,26] and robot motion planning [4,14,12]. But due to
their high computation complexity, most prior interac-
tive CCD algorithms are limited to rigid models [16]
or articulated models [17,26]. Moreover, most local mo-
tion planning algorithms only perform discrete collision
checking along a continuous path [25]. Many efficient
algorithms for CCD between deformable models have
also been proposed based on GPU-based computations
[6,18,7] or bounding volume hierarchies [20,3,8]. At a
high level, various CCD can be classified as the follow-
ing types:

– Triangle-based CCD: The deformable objects are
decomposed into triangles, and CCD is performed
by checking all the PCTPs. When PCTPs are com-
puted, elementary tests associated with all these tri-
angle pairs are performed to find out the first time of
contact between the features [6,8,22].

– Feature-based CCD: The deformable objects are
treated as sets of features (vertices, edges, and faces).
The collisions are computed by directly performing
elementary tests among all these features [23,3]. The
randomized marking scheme, [23] ensures that all the
elementary tests between features will be performed
only once. Therefore, duplications are avoided. [3]
extends this idea by using more compact encoding
scheme. It also uses “Representative Triangles” to
build BVHs based on features instead of on trian-
gles. With the help of bounding volumes of features,
more false positives are culled.

Our approach is compared with above techniques in Sec.
7.

2.2 Self-Collision Detection

Comparing to rigid models or articulated models, the
efficiency of CCD for deformable models is mainly gov-
erned by the cost of performing self-collisions. Due to

Fig. 1 Self-collision between two adjacent triangles that
share an edge. Ignoring such collisions can effect the accu-
racy of cloth simulation

the random nature of deformation, self-collisions need to
be checked during each time step of the simulation. The
self-collisions can be further classified as two types: self-
collision between adjacent triangles, and self-collision be-
tween non-adjacent triangles [6]. The detection of the
second type of collisions can be accelerated by using stan-
dard BVH techniques, In some cases, self-collisions be-
tween adjacent triangles are ignored. However, in many
cases such as cloth simulation, missing these collisions
can result in noticeable artifacts in the simulation. One
such example is shown in Fig. 1, where two triangles
share an edge and result in a collision along non-adjacent
features.

For discrete collision detection problem, [21] uses
curvature criteria to remove self-collision free areas, and
[15,22] makes further improvements to that formulation.
Recently, [19] extend these ideas to continuous collision
detection and presents a continuous normal cone (CNC)
technique. In this formulation, all the normal cones are
updated in a bottom-up manner during each simulation
time step, and continuous contour tests are applied at
the nodes of BVH to perform self-collision tests.

3 Overview

In this section, we introduce our notation and give an
overview of our approach.

3.1 Notations

We use the symbols V , E, F , and T to represent vertices,
edges, faces, and triangles, respectively. Lower-case sym-
bols, v, e, f , and t are used to denote a specific vertex,
edge, face, and triangle, respectively. Also, {ta, tb} stands
for a triangle pair of two triangles: ta and tb , and it is
order independent, e.g., {ta, tb} = {tb, ta}.

Table 1 shows some statistic data about the ratios of
adjacent triangle pairs and non-adjacent triangle pairs
with overlapping bounding volumes in the benchmarks

Adjacency-based Culling for Continuous Collision Detection 3

Table 1 Ratios of adjacent and non-adjacent triangle pairs
with overlapping bounding volumes (k-DOPs)

Benchmarks Adjacent Non-adjacent
triangle pairs triangle pairs

Cloth-ball (Fig. 7) 88% 12%
N-body (Fig. 8) 84% 16%
Letters (Fig. 10) 93% 7%
Dancer (Fig. 9) 93% 7%

t1 t2
tn

t0

v

t1
t0

v

t2

t0

v

tn
t0

v

...

Fig. 2 Duplications in elementary tests: the Vertex/Face test
{v, t0} is tested for n times when (t1, t0), (t2, t0), . . . , (tn, t0)
are processed respectively.

we used. As shown by the ratios, processing adjacent tri-
angle pairs takes a major portion during the computation
of CCD.

Table 1 shows some statistic data about the ratios of
adjacent triangle pairs and non-adjacent triangle pairs
with overlapping bounding volumes in the benchmarks
we used. As shown by the ratios, adjacent triangle pairs
play predominant roles in the computation of CCD.

Consider an example corresponding to the vertex/face
test {v, t0} as an example (Fig. 2). This vertex/face test
is tested repeatedly for n times when the PCTPs (t1, t0),
(t2, t0), . . . , (tn, t0) are processed respectively.

We classify all the PCTPs into three categories ac-
cording to the adjacency of its two triangles:

– Adjacent vertex triangle pair (AVTP): This pair
refers to two triangles that share one and only one
vertex.

– Adjacent edge triangle pair (AETP): This pair
refers to two triangles that share an edge.

– Non-adjacent triangle pair (NTP): This pair refers
to two triangles that not share any vertex or edge.

All the feature pairs need to be checked for collisions
during each simulation time step. We classify the collid-
ing feature pairs into the following two types.

– Static potential colliding feature pairs: These
feature pairs are generated as part of a preprocess
from all the adjacent triangle pairs (AVTPs & AETPs).
They are gathered once and remain unchanged dur-
ing the whole process of simulation. After gathering

Collecting all the

adjacent triangle

pairs

Culling of AVTPs

Culling of AETPs

Static potential colliding

feature pairs

Preprocessing: Runtime:

Collecting potential

colliding non-

adjacent triangle

pairs

Dynamic potential colliding

feature pairs

Skipping all the

adjacent triangle

pairs

Finding

collisions

Collision

responding

Redundancy

elimination

Fig. 3 Overall pipeline of our algorithm (solid arrows stands
for control flow, and dashed arrows for data flow).

all these feature pairs, the adjacent triangle pairs are
ignored during subsequent simulation time steps. The
gathering of static potential colliding feature pairs
from the adjacent triangle pairs is referred to as adja-
cency based culling, and it will be explained in detail
at Sect. 4.

– Dynamic potential colliding feature pairs: These
feature pairs are gathered from those NTPs whose
bounding volumes overlap, and are updated dynam-
ically during each simulation time step.

These feature pairs are gathered from those NTPs which
pass bounding volume tests, and are updated dynami-
cally at each simulation time step.

3.2 Overall Pipeline

As shown in Fig. 3, our algorithm consists of two stages:
a preprocessing stage and a runtime stage.

During the preprocessing stage, all the adjacent trian-
gles pairs are collected, and a hierarchical culling method
is used to select potential colliding feature pairs (those
passed boundary box tests) associated with adjacent tri-
angle pairs. The culling results are stored as a set of
static potential colliding feature pairs. In practice, these
feature pairs are a very small fraction of the number
of feature pairs associated with adjacent triangle pairs
(0.2% for the “Cloth-ball” benchmark in Fig. 7, and
0.15% for the “Dancer” benchmark in Fig. 9).

At the runtime stage, all the adjacent triangle pairs
are initially ignored in terms of pairwise feature tests.
Only non-adjacent triangle pairs need to be checked for
collisions. For non-adjacent triangle pairs whose bound-
ing volumes overlap, the corresponding feature pairs (VF
or EE) are collected and stored as a set of dynamic po-
tential colliding feature pairs.

During each simulation time step, static potential col-
liding feature pairs and dynamic potential colliding fea-
ture pairs are checked for collisions based on exact el-
ementary tests. We also use a table based duplication
elimination method to remove all the duplications in the
elementary tests (as explained in Sec. 5).

4 Min Tang et al.

a
t

d
t

c
t

b
t

2

a
v

3

a
v

11

ba
vv

3

b
v

2

b
v

1

b
e

2

b
e

3

b
e

1

a
e

2

a
e

3

a
e

Fig. 4 Features related to an AVTP {ta, tb}.

4 Adjacency-based Culling

As shown in Table 1, a significant fraction of overall
collision query is spent on adjacent triangle pairs. In this
section, we present a hierarchical triangle-based culling
method named adjacency-based culling, which is capable
of significantly reducing the number of elementary tests.

We process all the PCTPs hierarchically using the
following three phases: NTP testing phase, AVTP test-
ing phase, and AETP testing phase. At each processing
stage, the elementary tests that been performed by pre-
vious processing stage(s) are skipped, i.e., AVTP related
elementary tests are culled by processing of NTPs, and
AETP related elementary tests are culled by the pro-
cessing of NTPs and AVTPs. The culling of AVTP and
AETP feature pairs in explained in detail in the subse-
quent sections.

4.1 Culling AVTP-related Feature Pairs

For an AVTP, 9 elementary tests (5 Edge/Edge and 4
Vertex/Face) need to be performed [6]. Since all the
NTPs are always tested during each simulation time step,
all the elementary tests that were performed during the
NTP testing phase can be skipped. The culling rule is
formulated based on Theorem 1.

Theorem 1 Given four triangles, ta, tb, tc and td, as
shown in Fig. 4, ta and tb share one and only one vertex,
v1

a = v1

b , and form an AVTP {ta, tb}. Triangle td shares
an edge with ta, but does not share any vertex with tb.
Triangle tc is defined symmetrically. If tc and td exist,
tb does not share any vertex with td, and tc does not
share any vertex with ta, then all the 9 elementary tests
of AVTP {ta, tb} can be skipped.

Proof Let CCD(ta, tb) indicate all the 15 elementary
tests need to be performed for an AVTP {ta, tb}. It con-
sists of 6 EE() tests and 9 V F () tests. Let CCDsub

stand for a sub-set of all these 15 tests. Then CCD(ta,
tb) can be decomposed into two sub-sets, CCDsub(td, tb)
and CCDsub(ta, tc):

CCD(ta, tb) = CCDsub(td, tb) + CCDsub(ta, tc)

CCDsub(td, tb) = V F (v3

a, tb) + V F (v2

a, tb) +

EE(e2

a, e1

b) + EE(e2

a, e2

b)

a
t

b
t

d
t c

t
32

ba
vv

23

ba
vv

1

a
v

1

b
v

1

a
e

3

a
e

1

b
e

3

b
e

22

ba
ee

Fig. 5 Features related to an AETP {ta, tb}.

CCDsub(ta, tc) = V F (v3

b , ta) + V F (v2

b , ta) +

EE(e1

a, e3

b) + EE(e3

a, e3

b) + EE(e2

a, e3

b).

Since tc and td exist, tb does not share any vertex with
td, and tc does not share any vertex with ta, there must
exist two NTPs {ta, tc} and {td, tb}. Because all the ele-
mentary tests of CCDsub(td, tb) and CCDsub(ta, tc) are
already covered at NTP test phase, CCD(ta, tb) can be
skipped. ⊓⊔

If this theorem is satisfied, all the 9 elementary tests
can be culled away. Otherwise, depending on the case
where this theorem fails, the algorithm will record the
feature pairs corresponding to CCDsub(td, tb), CCDsub(ta, tc),
or both of them as static potential colliding feature pairs.

This theorem can be interpreted in a geometric man-
ner. It implies that for situations that the AVTP is on
the boundary (tc or td does not exist) or there are mul-
tiple adjacencies (tb shares at least a vertex with td,
or tc shares at least a vertex with ta), almost all the
AVTP related feature pairs are already covered by NTP
test phase. So in most cases, these feature pairs can be
skipped. For example, in the “Cloth-ball” benchmark
(Fig. 7), we are able to cut down 99.8% of AVTP related
feature pairs, and in the “N-body” benchmark (Fig. 8),
all the AVTP related feature pairs are culled based on
this theorem.

4.2 Culling of AETP-related Feature Pairs

For an AETP, 4 elementary tests (2 Edge/Edge and 2
Vertex/Face) need to be performed [6]. Similar to the
culling of AVTP related feature pairs, we can use the fol-
lowing theorem to cull away elementary tests that have
been already covered by NTP testing phase and AVTP
testing phase.

Theorem 2 Given four triangles, ta, tb, tc and td, as
shown in Fig. 5, ta and tb share an edge, e2

a = e2

b , and
form an AETP {ta, tb}. Triangle td shares an edge with
ta, and shares an vertex with tb. Triangle tc is defined
symmetrically. If tc and td exist, then all the 4 elemen-
tary tests of AETP {ta, tb} can be skipped.

Proof Let CCD(ta, tb) denotes the elementary tests needed
to be performed for an AETP {ta, tb}. Then, CCD(ta, tb)

Adjacency-based Culling for Continuous Collision Detection 5

can be represented as follows:

CCD(ta, tb) = CCDsub(ta, tc) + CCDsub(td, tb)

CCDsub(ta, tc) = V F (v1

b , ta) + EE(e3

a, e3

b)

CCDsub(td, tb) = V F (v1

a, tb) + EE(e1

a, e1

b).

According to the definition of tc and td, if tc and td exist,
they form two AVTPs: {ta, tc} and {td, tb}. Because all
the elementary tests of CCDsub(ta, tc) and CCDsub(td, tb)
are already covered at AVTP test phase, CCD(ta, tb) can
be skipped. ⊓⊔

If this theorem is satisfied, all the 4 elementary tests
in AETP can be skipped. Otherwise, depending on the
reason of the failure of this theorem, we will record the
feature pairs corresponding to CCDsub(ta, tc), CCDsub(td, tb),
or both of them as static potential colliding feature pairs.

The geometric meaning implied by above theorem is
that, except for the situations where the AETP is on
the boundary (tc or td does not exist), almost all the
AETP related feature pairs are already covered by AVTP
test phase. So for most cases, these feature pairs can be
skipped. For example, in the“Dancer” benchmark (Fig.
9), we can cull away more than 99.82% of AETP related
feature pairs, and in the “N-body” benchmark (Fig. 8),
almost all the AETP related feature pairs are culled away
due to the theorem.

4.3 Handling Topological Changes

The formulation described above assumes that the topol-
ogy of the mesh is fixed. In these cases, the gathering of
static potential colliding feature pairs is performed only
once during the preprocessing stage. Also, the static po-
tential colliding feature pairs remains unchanged during
all the runtime steps.

For deformable objects with dynamic topology, e.g.,
breaking or merging triangle meshes, we need to update
the static potential colliding feature pairs during those
time steps. In some cases, this update can be performed
in an incremental manner.

5 Table-based Duplication Elimination

By using adjacency-based culling, the number of static
potential colliding feature pairs is greatly reduced. How-
ever, the overall algorithm still lands up performing a
high number of duplicate elementary tests among fea-
ture pairs, including static as well as dynamic potential
colliding feature pair sets.

In order to eliminate duplicate tests, we use a table-
based duplication elimination method. A feature test ta-
ble is maintained by storing feature pairs as [{ei, ej}, rij]
or [{vk, tl}, rkl], where rij and rkl are the elementary
test results of the feature pairs {ei, ej} and {vk, tl} re-
spectively.

For a feature pair that needs to be tested for ex-
act collision test, we first search the pair in the feature
test table. If the feature pair has been tested, the stored
result is returned. Otherwise the cubic equation solver
is invoked to compute the time of contact between the
feature pair. Then the time of contact is saved into the
feature test table and returned as a result.

The table-search strategy is quite simple yet effective.
By assigning each feature (i.e., edge, vertex, and triangle)
a unique id, the feature test table can be implemented as
a hash table. In our current benchmarks, the hash table
implementation is quite efficient in terms of removing
all the duplicates. Since a large portion of false positives
has been cut down by using adjacency-based culling, the
table-based duplication elimination reduces many other
feature pairs. For the “Cloth-ball” benchmark simulation
in Fig. 7, 73.6% of the elementary tests are duplicated,
and for the “Letters” benchmark in Fig. 10, 78.1% of
the elementary tests are removed as duplications.

6 Implementation and Results

We have implemented our algorithm on a Windows/Vista
platform using C++. All the timings are collected on a
2.66 GHz Intel Pentium machine with 2GB RAM, using
a single thread. The elementary tests are evaluated by
solving cubic equations numerically. In practice, it takes
about 0.2 microseconds on average for each elementary
test.

6.1 Dynamic BVH for Deformable Objects

A 2-level BVH is used as the acceleration structure for a
scene consisting of deformable objects. The 2-level BVH
is made up of an upper BVH and a set of lower BVHs.
Specifically, all the deformable objects are decomposed
into triangle meshes, each with a constant topological
structure. We first compute a BVH for these triangle
meshes, and then construct the upper BVH based on
the bounding volumes. For each triangle mesh, which
retains constant topological structure, a lower BVH is
built with triangles at leaf nodes. More details about the
2-level BVH is described in [19]. In practice, the 2-level
BVH gets similar or even better performance comparing
to other BVH representations for deformable objects [2,
10,11,24].

6.2 Benchmarks

We used different benchmarks to test the performance
of our algorithm, including two cloth simulation related
scenes: “Cloth-ball” (Fig. 7) and “Dancer” (Fig. 9), and
two N-body simulation related scenes: “N-body” (Fig. 8)
and “Letters” (Fig. 10). At each simulation time step,

6 Min Tang et al.

Table 2 Model complexity and average CCD time per frame

Benchmarks #Tris #Vertices Average CCD
Time per frame

Cloth-ball 92K 47K 246ms
Dancer 40K 20K 37ms
N-body 34K 18K 82ms
Letters 5K 2K 9ms

Table 3 Number of elementary tests

Benchmarks W/O adjacency- With adjacency-
based culling based culling

AVTP AETP AVTP AETP

Cloth-ball 3.83M 551K 7790 986
Dancer 1.88M 239K 2705 442
N-body 1.31M 205K 0 10
Letters 196K 28K 171 49

Table 4 Efficiency of duplication elimination method

Benchmarks Without With Ratio
duplication duplication
elimination elimination

Cloth-ball 173M 43M 26.4%
Dancer 15M 4.1M 26.4%
N-body 65M 22.6M 34.6%
Letters 20M 4.4M 21.9%

we use our CCD algorithm to find out the first time
of contact among the features. The model complexity
and average CCD time per frame of each benchmark are
shown in Table 2.

6.3 Culling Efficiency

Table 3 compares the number of elementary tests related
to AVTPs and AETPs with and without the adjacency-
based culling method. As shown in the table, the ele-
mentary tests relevant to adjacent triangles are dramati-
cally cut down. Table 4 shows the number of elementary
tests before and after duplication elimination. For all
the benchmarks, approximately 3/4 of elementary tests
are duplicated, and their computation can be avoided by
querying from the feature test table.

7 Comparison and Analysis

7.1 Comparison

In [8], k-DOPs are also used as bounding volumes of
features. By using bounding volume tests prior to ele-
mentary tests, parts of false positives can be removed.
Wong and Baciu [23] present a feature-based CCD algo-
rithm. By using a randomized marking scheme, features

64.46%
58.18% 60.96%

53.53%

83.42%

67.72%

77.65% 77.23%

1 1 1 1

Dancer N-body Cloth-ball Letters

A

B

C

Fig. 6 Efficiency comparison: running time of our method
(A), a combination of [8] and [23] (B), and [8] only (C).

are distributed among the triangles whose those feature
belongs to. This method can achieve good culling effi-
ciency; the elementary tests are checked for once and
only once. Although these methods have their own ben-
efits, both methods may suffer from a high number of
false positive elementary pairs that arise from adjacent
triangles.

Adjacency-based culling method can directly skip all
the adjacent triangle pairs, and the table-based duplica-
tion elimination can achieve the same culling efficiency
of [23]: all the elementary tests are performed only once,
at the price of maintaining the feature test table and
searching in the table.

To highlight the benefit of our algorithm, we imple-
mented a combination of the methods of [8] and [23],
and compare its running time with our algorithm. Fig. 6
shows the result of the comparison: “A” is an implemen-
tation of our method, “B” is an implementation based
on the combination of [8] and [23], and “C” is an im-
plementation of the method of [8] only. As shown in the
figure, the running time of “A” is about 53% − 64% of
“C”, and is about 70% − 86% of “B”.

Our algorithm is independent of the choice of under-
lying BVH and is complementary to other triangle-based
culling methods. As a triangle-based method, it can in-
tegrate with the continuous normal cone culling method
[19] seamlessly, whereas [23] is hard to integrate with
other triangle-based culling methods due to the random
distribution of features among triangles. As an extension
of [23], [3] has the same characteristic.

In [19], a low-level culling method, called “Orphan
test”, is used as triangle-level culling. It is equivalent in
concept to our adjacency based culling, and its culling
efficiency is of the same magnitude (or slightly better)
as our method. Both these approaches have comparable
performance.

7.2 Limitations

There are some limitations in our methods: The high
culling efficiency of our approach heavily relies on the
adjacency between triangles. So when the objects break

Adjacency-based Culling for Continuous Collision Detection 7

into pieces, the benefit of adjacency-based culling de-
creases. Moreover, the use of hash table increases the
memory overhead of our approach.

8 Conclusion and Future Work

By utilizing the adjacency between triangles, we present
an efficient algorithm for CCD between complex deformable
models, including self-collisions. Our algorithm is based
on a triangle-based hierarchical culling method named
adjacent-based culling and a table-based duplication elim-
ination technique. The algorithm is applicable to rigid
and deformable models

As part of future work, we will like to extend this
approach to efficiently handle scenarios with breaking or
changing topologies. Moreover, we would like to paral-
lelize the algorithms on processors with multiple cores.

Acknowledgements We would like to thank Sean Curtis
for many useful discussions and his initial code for collision
detection. We thank Stephane Redon for his elementary test
codes. We also thank Rasmus Tamstorf, Naga Govindaraju,
Avneesh Sud, Russ Gayle and Ming Lin for useful discussions
and the benchmarks. This research is supported in part by
ARO Contracts DAAD19-02-1-0390 and W911NF-04-1-0088,
NSF awards 0400134, 0429583 and 0404088, DARPA/RDECOM
Contract N61339-04-C-0043, Disney and Intel, KAIST seed
grant, and the IT R&D program of MKE/IITA [2008-F-033-
01, Development of Real-time Physics Simulation Engine for
e-Entertainment]. Tang is supported in part by National Ba-
sic Research Program of China (No. 2006CB303106), Nat-
ural Science Foundation of Zhejiang, China (No. Y107403),
Doctoral subject special scientific research fund of Education
Ministry of China (No. 20070335074), and Future Academic
Star fellowship from Zhejiang University.

References

1. Baraff, D., Witkin, A., Kass, M.: Untangling cloth. Proc.
of ACM SIGGRAPH pp. 862–870 (2003)

2. van den Bergen, G.: Efficient collision detection of com-
plex deformable models using AABB trees. Journal of
Graphics Tools 2(4), 1–14 (1997)

3. Curtis, S., Tamstorf, R., Manocha, D.: Fast collision
detection for deformable models using representative-
triangles. In: SI3D ’08: Proceedings of the 2008 Sym-
posium on Interactive 3D graphics and games, pp. 61–69
(2008)

4. Foskey, M., Garber, M., Lin, M., Manocha, D.: A voronoi-
based hybrid planner. Proc. of IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (2001)

5. Gottschalk, S., Lin, M., Manocha, D.: OBB-Tree: A hier-
archical structure for rapid interference detection. Proc.
of ACM Siggraph’96 pp. 171–180 (1996)

6. Govindaraju, N., Knott, D., Jain, N., Kabul, I., Tam-
storf, R., Gayle, R., Lin, M., Manocha, D.: Collision de-
tection between deformable models using chromatic de-
composition. ACM Trans. on Graphics (Proc. of ACM
SIGGRAPH) 24(3), 991–999 (2005)

7. Hoff, K., Culver, T., Keyser, J., Lin, M., Manocha, D.:
Interactive motion planning using hardware accelerated
computation of generalized voronoi diagrams. Proceed-
ings of IEEE Conference of Robotics and Automation
(2000)

8. Hutter, M., Fuhrmann, A.: Optimized continuous colli-
sion detection for deformable triangle meshes. In: Proc.
WSCG ’07, pp. 25–32 (2007)

9. Klosowski, J., Held, M., Mitchell, J., Sowizral, H., Zikan,
K.: Efficient collision detection using bounding volume
hierarchies of k-dops. IEEE Trans. on Visualization and
Computer Graphics 4(1), 21–37 (1998)

10. Larsson, T., Akenine-Möller, T.: A dynamic bound-
ing volume hierarchy for generalized collision detection.
Computers and Graphics 30(3), 451–460 (2006)

11. Lauterbach, C., Yoon, S., Tuft, D., Manocha, D.: RT-
DEFORM: Interactive Ray Tracing of Dynamic Scenes
using BVHs. IEEE Symposium on Interactive Ray Trac-
ing pp. 39–46 (2006)

12. LaValle, S.M.: Planning Algorithms. Cam-
bridge University Press (also available at
http://msl.cs.uiuc.edu/planning/) (2006)

13. Lin, M., Manocha, D.: Collision and proximity queries.
In: Handbook of Discrete and Computational Geometry
(2003)

14. Pisula, C., Hoff, K., Lin, M., Manocha, D.: Randomized
path planning for a rigid body based on hardware ac-
celerated voronoi sampling. In: Proc. of 4th Interna-
tional Workshop on Algorithmic Foundations of Robotics
(2000)

15. Provot, X.: Collision and self-collision handling in cloth
model dedicated to design garment. Graphics Interface
pp. 177–189 (1997)

16. Redon, S., Kheddar, A., Coquillart, S.: Fast continuous
collision detection between rigid bodies. Proc. of Eu-
rographics (Computer Graphics Forum) 21(3), 279–288
(2002)

17. Redon, S., Kim, Y.J., Lin, M.C., Manocha, D.: Fast con-
tinuous collision detection for articulated models. In:
Proceedings of ACM Symposium on Solid Modeling and
Applications, pp. 145–156 (2004)

18. Sud, A., Otaduy, M.A., Manocha, D.: DiFi: Fast 3D dis-
tance field computation using graphics hardware. Com-
puter Graphics Forum (Proc. Eurographics) 23(3), 557–
566 (2004)

19. Tang, M., Curtis, S., Yoon, S., Manocha, D.: Interac-
tive continuous collision detection between deformable
models using connectivity-based culling. Proc. of SPM08
(ACM Solid and Physical Modeling Symposium) (2008)

20. Teschner, M., Kimmerle, S., Heidelberger, B., Zachmann,
G., Raghupathi, L., Fuhrmann, A., Cani, M.P., Faure, F.,
Magnenat-Thalmann, N., Strasser, W., Volino, P.: Colli-
sion detection for deformable objects. Computer Graph-
ics Forum 19(1), 61–81 (2005)

21. Volino, P., Thalmann, N.M.: Efficient self-collision de-
tection on smoothly discretized surface animations using
geometrical shape regularity. Computer Graphics Forum
(EuroGraphics Proc.) 13(3), 155–166 (1994)

22. Wong, W.S.K., Baciu, G.: Dynamic interaction between
deformable surfaces and nonsmooth objects. IEEE Tran.
on Visualization and Computer Graphics 11(3), 329–340
(2005)

23. Wong, W.S.K., Baciu, G.: A randomized marking scheme
for continuous collision detection in simulation of de-
formable surfaces. Proc. of ACM VRCIA pp. 181–188
(2006)

24. Yoon, S., Curtis, S., Manocha, D.: Ray tracing dynamic
scenes using selective restructuring. Proc. of Eurograph-
ics Symposium on Rendering (2007)

25. Zhang, L., Manocha, D.: Motion interpolation with dis-
tance constraints. Tech. Rep. TR 08-001, Department of
Computer Science, UNC Chapel Hill (2008)

26. Zhang, X., Redon, S., Lee, M., Kim, Y.J.: Continuous col-
lision detection for articulated models using taylor mod-
els and temporal culling. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2007) 26(3), 15 (2007)

8 Min Tang et al.

Fig. 7 Cloth simulation benchmark: “Cloth-ball”.

Fig. 8 N-body simulation benchmark: “N-body”.

Fig. 9 Cloth simulation benchmark: “Dancer”.

Fig. 10 N-body simulation benchmark: “Letters”.

