
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

ICCD: Interactive Continuous Collision Detection

between Deformable Models using

Connectivity-Based Culling
Min Tang, Sean Curtis, Sung-Eui Yoon, and Dinesh Manocha

Abstract—We present an interactive algorithm for continuous
collision detection between deformable models. We introduce
multiple techniques to improve the culling efficiency and the
overall performance of continuous collision detection. First, we
present a novel formulation for continuous normal cones and use
these normal cones to efficiently cull large regions of the mesh as
part of self-collision tests. Second, we introduce the concept of
“procedural representative triangles” to remove all redundant
elementary tests between non-adjacent triangles. Finally, we
exploit the mesh connectivity and introduce the concept of
“orphan sets” to eliminate redundant elementary tests between
adjacent triangle primitives. In practice, we can reduce the
number of elementary tests by two orders of magnitude. These
culling techniques have been combined with bounding volume
hierarchies and can result in one order of magnitude performance
improvement as compared to prior collision detection algorithms
for deformable models. We highlight the performance of our
algorithm on several benchmarks, including cloth simulations,
N-body simulations and breaking objects.

Index Terms—Continuous collision detection, deformable mod-
els, continuous normal cones, orphan set, self-collision, bounding
volume hierarchies

I. INTRODUCTION

Interactive simulations with deforming or non-rigid objects

are widely used in physically-based simulations, CAD/CAM,

computer graphics, and robotics. In order to generate phys-

ically realistic or plausible motions, these systems enforce

non-penetration constraints and need to detect all collisions

between the primitives. The collision queries on deformable

models can be classified into inter-object collisions between

disjoint objects and self-collisions on a single object.

Most of the prior work in deformable collision detection

has been limited to discrete collision detection. These al-

gorithms check for overlaps at given discrete time steps in

the simulation, and may miss collisions between the time

steps. In order to resolve these problems, many researchers

have proposed algorithms for continuous collision detection

(CCD) [1], [2]. CCD techniques model the motion between

the discrete time steps using continuous paths and check these

paths for overlaps. The continuous algorithms are also used to

perform time-of-contact computations for dynamic simulation,

Min Tang is with the College of Computer Science and Technology, Zhe-
jiang University, China. Email: tang m@zju.edu.cn. Sean Curtis and Dinesh
Manocha are with the Department of Computer Science, University of North
Carolina at Chapel Hill, USA. Email: {seanc, dm}@cs.unc.edu. Sung-Eui
Yoon is with the Department of Computer Science, Korea Advanced Institute
of Science and Technology, South Korea. Email: sungeui@cs.kaist.ac.kr.

(b) artifacts caused

by self-collision

(c) self-collision areas(a) deforming model

Fig. 1. Self-collision in simulation: (a) a deforming cloth model with
92k triangles and composed of multiple layers; (b) artifacts caused in the
simulation by self-collision; (c) zoomed view of self-colliding primitives (the
blue areas).

haptic rendering and local planning for sample-based motion

planning algorithms [3], [4].

In this paper, we address the problem of fast and accurate

CCD between deformable models. Accuracy is very important

feature for various applications including cloth simulation,

where a single missed collision can result in an invalid

simulation or noticeable artifacts [5], [6]. This is highlighted

in Figure 1.

In practice, performing CCD between complex deformable

models at interactive rates still remains a major challenge

[7]. The continuous formulation of the motion can result in

a very large number of false positives during self-collisions.

For example, all the adjacent triangle pairs that share a vertex

or an edge may collide as the model is deforming. As a result,

one of the challenges is to devise efficient algorithms with high

culling efficiency.

Prior algorithms for interactive CCD are mainly limited to

rigid and articulated models. In these cases, self-collision de-

tections can either be skipped or carefully avoided. Many fast

algorithms based on bounding volume hierarchies(BVHs) and

GPU-based accelerations have been proposed for deformable

models, but they may not be fast enough for interactive

applications.

Main Results:We present an interactive algorithm for CCD

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

computation between complex deformable models including

breaking objects. Our approach is applicable to all triangulated

models and exploits the connectivity information between

adjacent triangles in a mesh-based representation. We utilize

this connectivity information to perform high-level and low-

level culling to significantly reduce the number of elementary

tests between triangle primitives. Specifically, we introduce

three novel techniques:

1. Continuous Normal Cones (CNC): Normal cone tests

are used to cull mesh regions that cannot have self-collisions

during discrete self-collision tests [8], [9]. We extend this well-

known normal cone tests to CCD. Our formulation computes

a tight bound on the range of normals for triangles under a

wide variety of continuous motions. We represent continuous

normal cones using Bernstein basis functions. We use the

convexity properties to compute the normal cones efficiently.

Furthermore, we also present a fast continuous contour test

method along with the Continuous Normal Cone.

2. Procedural Representative Triangles (PRT): We de-

compose potentially colliding triangle pairs into two sets: non-

adjacent and adjacent pairs, to perform the elementary tests

between the primitives. For non-adjacent triangle pairs, there

are a lot of redundant elementary tests caused by topological

sharing. By extending the concept of Representative Triangles

in [10], we introduce “Procedural Representative Triangles”

(PRT) to remove the redundant elementary tests. Compared to

previous database based techniques [11], [12], our method has

faster running performance and lower memory requirements.

3. Orphan Set: We derive an optimal bound on the max-

imum number of elementary tests required to be performed

between adjacent triangle pairs. We introduce the notion of an

orphan set of a mesh based on the connectivity between the

triangles and show that only the primitives in the orphan sets

need to be checked for exact collision detection among all the

adjacent pairs. In our benchmarks, the “Orphan Set” formula-

tion reduces the number of elementary tests between adjacent

triangle primitives by almost three orders of magnitude.

We use a two-level bounding volume hierarchy (BVH)

and use it to handle multiple-object simulations (including

breaking objects) as well as self-collisions. We have applied

the algorithm to many complex deformable models composed

of tens or hundreds of thousands of triangles. Our algorithm

can compute either the first time-of-contact or the full set of

colliding triangles during the continuous time domain in tens

or hundreds of milliseconds. As compared to prior approaches,

our algorithm offers the following benefits:

• Generality: Our approach is applicable to various kinds

of models and deformable simulations. These include

self-collisions, inter-object collisions between multiple

objects (i.e. N-body collisions), and breaking objects.

• High culling efficiency: We are able to achieve high

culling efficiency on adjacent pairs by three orders of

magnitude and reduce the number of overall false posi-

tives caused by adjacent pairs and non-adjacent pairs by

two orders of magnitude in complex simulations.

• Interactive performance: Our hierarchy update and

traversal algorithms have small overhead. As compared

to prior CCD algorithms, we observe considerable per-

formance improvement in our benchmarks.

This paper extends our previous work [11] and present

more detailed exposition of our culling methods and results.

We also introduce a novel culling method, called “Procedural

Representative Triangles” (PRT). It provides an efficient way

to remove redundant elementary tests among non-adjacent

triangle pairs by testing the connectivity of meshes locally.

PRT overcomes one of the main limitations of our previous

work [11]. Also, it lowers the memory requirements and makes

our algorithm easier to parallelize on multi-core platforms.

Organization: The rest of the paper is organized as follows:

Section II gives a brief survey of prior work in collision

detection. We introduce our notation and give an overview

of our approach in Section III. The culling techniques are

described in Section IV and Section V. We present the two-

level hierarchy and overall algorithm in Section VI, and the

results in Section VII. We compare its performance with prior

approaches in Section VIII.

II. RELATED WORK

Collision detection has been widely studied in computer

graphics, robotics, and computational geometry literature [13],

[14]. In this section, we give a brief overview of prior work

on collision detection between deformable models.

A. Bounding Volume Hierarchies

Bounding volume hierarchies (BVHs) have been widely

used to accelerate the performance of collision detection

algorithms between rigid and deformable models. Examples of

BVHs include sphere trees [15], [16], axis-aligned bounding

box (AABB) trees [17], hierarchies based on tight fitting

bounding volumes (BVs) such as oriented bounding boxes

[18], discretely oriented polytopes (k-DOPs) [19], or hybrid

combination of BVs [20].

Most algorithms for deformable models typically use simple

BVs such as spheres or AABBs and recompute the BVHs

during each frame [14]. Approaches to compute dynamic

BVHs include refitting algorithms to update these hierarchies

[21], [22], [23], [24], and performing dynamic or selective

restructuring [25], [26].

B. Deformable Models

There is considerable literature on efficient collision check-

ing between deformable models. These include efficient al-

gorithms based on normal cone culling and GPU-based ap-

proaches. Bergen [17] presented an early approach using

refitting for deformable models.

Normal Cone Culling: Volino and Thalmann [8] proposed

a culling technique for efficient self-collision detection at

discrete time steps using bounds on the normals. This method

takes advantage of the topology and connectivity of the mesh

and checks for self-collision by using normal cones and

two dimensional contour tests. They can be combined with

hierarchical approaches to handle highly tessellated models

[27], [9], [28]. We extend this normal cone culling method to

continuous collision detection.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

GPU-based Algorithms: The rasterization capabilities of

commodity GPUs have been used for fast collision detection

between deformable models [29], [30], [31]. These include

many specialized algorithms for self-collision detection [32],

[33], [34], [35]. Some of these approaches are limited to

handling certain types of input models (e.g. closed objects

or fixed mesh connectivity). Furthermore, their performance

can vary based on the support of occlusion queries or read-

backs from GPUs. We perform a detailed comparison with

these approaches in Section VIII.

C. Continuous Collision Detection

CCD algorithms check for collisions in the continuous

time interval between two discrete time steps. These include

interactive algorithms for rigid models [1] and articulated

models [2], [36] that are based on tight-fitting pre-computed

hierarchies. CCD techniques for deformable models [7], [33],

[37] are mostly limited to models with fixed connectivity.

We compare the performance of our algorithm with these

approaches in Section VIII.

III. OVERVIEW

In this section, we introduce the notation used in the rest

of the paper and give an overview of our approach.

A. Notation and Definitions

We use the symbols V , E, F , and T to represent vertices,
edges, faces, and triangles, respectively. We use lower-case

symbols v, e, f , and g to denote a specific vertex, edge, face,
and triangle, respectively. The vector quantities are written in

bold face, e.g., n for the normal of a triangle. Also, we use

{vi, fj} to denote a pairwise relationship between two mesh
elements, in this case, vi and fj .

Our CCD algorithm is applicable to triangulated meshes. We

refer to each connected mesh as an object and the simulation

may consists of one or more objects. We do not make any

assumptions about the motion of any object or its deformation.

Furthermore, the number of objects can change due to topolog-

ical changes, such as breaking objects. We use the symbol Oi

to represent an object and letM i represent its mesh. EachM i

is represented as triangles with the connectivity and adjacency

information, i.e., its vertices, edges, and adjacent triangles.

We denote the time interval, in which we perform CCD, to

be [0, 1]. Let M i
t denote the configuration of a mesh at time

t ∈ [0, 1]. LetM i
0
andM i

1
represent the configuration of mesh

i at the two discrete time steps, 0 and 1. As a result, the
motion of each triangle during this time interval sweeps out a

triangular prism1.

B. Continuous Collision Detection

In order to compute the first time-of-contact or the set

of all collisions, we perform continuous collision detection,

including self-intersections, on the meshes. We assume that

1It is not strictly a prism. Here we just use the term for the volume formed
by a swept triangle.

we know the position of each vertex in the mesh at every time

step. We also assume the position of each vertex is defined by

a continuous interpolation function. Let a polynomial function

P (t), of time t, represent the interpolating function for vertex
position.

In the simplest case, P (t) is a linear function. Detecting
collisions between two such triangles in motion reduces to

performing pairwise vertex-face (VF) and edge-edge (EE)

elementary tests [5], [9]. These VF and EE elementary tests

require solving cubic algebraic equations, which are derived

from co-planarity conditions. For two arbitrary triangles, we

would need to perform 15 tests: 6 VF and 9 EE tests. For

a linear interpolating function, these tests involve finding the

roots of a cubic equation.

When P (t) is a polynomial function with degree d (d > 1),
the resulting test becomes more complex. We still need to

perform 15 VF and EE elementary tests, but the resulting

polynomial equations would have degree 3d. For example, if
we used cubic spline functions as P (t), we would need to find
the roots of an equation with degree 9. Solving these higher

order equations can be expensive and result in numerical

inaccuracies. As a result, most deformable applications use

a simple linear interpolating motion between the discrete time

steps.

C. BVHs for CCD

Most prior algorithms for CCD between complex models

use BVHs. At each frame, these algorithms update the BVHs

based on the new position of the swept triangles and traverse

the BVHs to check for overlaps. Eventually, they perform

elementary tests on the triangular prisms to check for exact

collisions during the [0, 1] time interval. However, the perfor-
mance of these algorithms is governed by the two following

factors:

1. Culling efficiency of BVHs: Intuitively speaking, as

a BVH fits the mesh tightly, the BVH can provide higher

culling efficiency and better CCD performance. In scenes with

extreme deformations, the BVH computed for one frame may

not provide good efficiency for the next frame and needs to be

updated or recomputed. Many prior algorithms for collision

detection between general deformable models use refitting

algorithms [17], [21], [24], [33], and they may not work well

on scenes with changing topologies.

2. High number of false positives: Self-collision detection

is performed by recursively checking the BVs for overlap

with other BVs. Given that the BVs of adjacent (or nearby)

triangle primitives overlap, the hierarchical traversal does not

cull many primitives at the lower levels of the tree. As a

result, these algorithms perform exact collision tests on a high

number of triangle pairs resulting in a very high number of

false positives.

D. Our Approach

We improve the performance of CCD algorithm by using

novel culling techniques and a hierarchical representation that

maximizes the effect of those culling techniques. Specifically,

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

k-DOPs based culling

Continuous contour

test

Continuous normal

cone test

High-level culling

Traversal of

BVH

Low-level culling

Orphan pair test

PR-Triangles

Inter-object testing

Intra-object testing

Fig. 2. Culling pipeline: By using k-DOPs based culling, high-level culling
and low-level culling, the number of elementary tests is significantly reduced.

we introduce a novel two-level dynamic BVH based on k-

DOPs that has a low update cost and can provide high culling

efficiency. The two-level hierarchy is computed based on the

connectivity of the primitives, and we use a combination of

refitting and selective restructuring algorithms to update them.

During the traversal of our two-level dynamic BVH, we

perform culling operations at two different levels. We first

perform high-level culling based on a novel continuous nor-

mal cone (CNC) formulation. The CNC test consists of the

construction of a cone which bounds the direction of all the

normals of a surface in a time interval and a continuous

contour test which detects collisions on the boundary of the

surface in the same interval. These two tests, taken together,

are sufficient to eliminate large regions of the mesh from

consideration for self-intersection. The CNCs are associated

with nodes in the hierarchy and are computed in a bottom-up

manner. We use a compact representation of CNCs based on

Bernstein basis functions, which have low storage and runtime

overhead. These CNC tests work particularly well in culling

the regions of the mesh with low curvature.

Our approach also performs low-level culling to further

reduce the number of elementary tests. We apply our tech-

niques to reduce the number of exact elementary tests between

the triangle features. The first technique, PRT, eliminates all

possible duplicate tests instantiated by pairs of non-adjacent

triangles. The second technique, Orphan set, provides a small,

exact bound on the elementary tests that need to be performed

between adjacent triangle pairs.

Overall CCD Pipeline: For each simulation time step, the

algorithm for CCD between deformable models is executed in

two stages. At the first stage, only collisions between non-

adjacent triangle pairs are considered. During the traversal

of the two-level BVH, k-DOPs based culling is used to

reduce inter-object testing. We also use high-level culling to

reduce intra-object testing. The high-level culling consists of

two methods: continuous normal cone testing and continuous

contour testing. During the second stage, low-level culling is

used to deal with non-adjacent and adjacent triangle pairs. For

non-adjacent triangle pairs, PRT are used to remove redundant

elementary tests. For adjacent triangle pairs, only a small set of

feature pairs, called an orphan set, need to be checked at this

stage. The overall running pipeline of above culling techniques

is shown in Figure 2.

0a

1
a

0b
0c

0
n

t
n

1n

(a) a deforming triangle
(b) continuous normal

cone of the triangle

1
b

1c

t
a

t
b

t
c

1n

0
n

2

)(nn
10

Fig. 3. Continuous normal range of a deforming triangle: For a deforming
triangle, we construct a CNC that contains n0, n1, and (n0 + n1 − δ)/2.

IV. HIGH-LEVEL CULLING

In this section, we present a novel high-level culling algo-

rithm that significantly reduces the number of false positives,

leading to more efficient execution of self-intersection queries.

One of the most expensive computations in deformable

models is self-collision detection. Prior self-collision meth-

ods based on normal cones are limited to discrete collision

detection. We extend them to CCD and present a compact

representation to compute a normal cone and quickly check

for collisions.

A. Discrete Normal Cone

Given a continuous surface, S, bounded by a contour, C,

Volino and Thalmann [8] presented a sufficient criterion for

no self-intersection based on the following two conditions:

1) Bounds on the normals: There is a vector, V, such that

(N · V) > 0 for every point of the surface, S, where N
is the normal vector for a point of the surface.

2) No self-intersections on the boundary: The projection

of the contour C along the vector V does not have any

self-intersections on the projected plane.

The second condition is also called the contour test.

Provot [9] presented an efficient method to implement the

first condition based on normal cones. The normal cone for a

region of triangles is computed by merging the normal vectors

of those triangles.

In order to extend these tests to CCD, we need to develop

continuous-versions of these tests over the range of normals

and contours in the interval t ∈ [0, 1].

B. CNC: Continuous Normal Cone

In order to use the normal cone for CCD, we compute

a normal cone that bounds the normals of the deforming

triangles in the entire interval. Let a0,b0, c0 and a1,b1, c1 to

be positions of the vertices of the triangles at the time frame

t = 0 and t = 1, respectively, as shown in Figure 3(a). Also, let
us define ~va = a1 − a0, ~vb = b1 − b0, and ~vc = c1 − c0.

Assuming that the vertices of the triangles undergo linearly

interpolating motion, we use the following theorem to compute

normal cones:

CNC Theorem: Given the start and end positions of the

vertices of a triangle during the interval [0, 1], which are

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

linearly interpolated in the interval with respect to the time

variable, t, the normal, nt, of the triangle, at time t, is given
by the equation:

nt = n0·B
2

0
(t) + (n0 + n1 − δ)/2 · B2

1
(t) + n1·B

2

2
(t),

where n0 = (b0 − a0) × (c0 − a0),
n1 = (b1 − a1) × (c1 − a1), δ = (~vb − ~va) × (~vc − ~va),
and B2

i (t) is the ith basis function of the Bernstein
polynomials of degree 2.

Proof: Please refer to [11] for a detailed proof.

We take advantage of the convex hull property associated

with control points of Bernstein basis to compute a bound

on CNCs. For a given triangle, the range of nt is bounded

by the control vertices; in our case, those control vertices are

n0, n1, and (n0 + n1 − δ)/2. We use these three vectors to
construct a CNC for each triangle in the interval, as shown

in Figure 3(b). We also use the method proposed in [9] to

construct an axis and an apex angle of a normal cone from

three vectors. Then, the CNCs are merged as described in [9]

by traversing the hierarchy in a bottom-up manner.

C. CCT: Continuous Contour Test

Computing the continuous normal cone satisfies the first

condition for showing no self-collisions. We still need to sat-

isfy second condition: a collision-free boundary for a moving

surface. This typically involves computing a projection of the

contour of S and checking for self-intersections. Even for dis-
crete collision detection, the contour test can be an expensive

operation. Some prior algorithms either omit it under standard

geometrical contexts [8] or use some approximations [9], [27].

In this section, we present an exact and efficient contour tests

method for CCD. At a high level, we transform the contour

tests into intersection tests between two edges that lie on the

same plane. We refer to them as planar (E,E) tests, in order

to differentiate it from the EE elementary tests used in CCD

to check whether two swept edges overlap.

Planar (E,E) Tests: Given a node in the BVH with a CNC

C(α,ax), where α is the apex angle, and ax is the axis of the

cone. We project the boundary edges of the connected mesh

associated with the node to a plane defined by ax and check

for self-intersection among the projected edges.

We illustrate our approach with a simple example. Con-

sider the two edges ab and cd in Figure 4(a). The vertices

representing their positions are a0,b0, c0,d0 at t = 0, and
a1,b1, c1,d1, at t = 1. In order to check whether any
projection of these two edges intersect during t ∈ [0, 1], we
preform the following tests:

1) Discrete line segment intersection test: A discrete line

segment intersection between a0b0 and c0d0 at t = 0
is shown in Figure 4(b). If these discrete segments do

not intersect, we need to further test to ensure there is

no intersection during t ∈ (0, 1];
2) Vertex/edge(VE) elementary test: Suppose the two

deforming edge segments intersect during the interval.

Let t ∈ (0, 1] be the time of first contact between
them. For two moving edges, there is only one case

of elementary contact type: one vertex of an edge just

(a)

0
a

1
a

0
b

1
b

0
c

1
c

1
d

0
d

(b) (c)

0
a

1
a

0
c

1
c

0
d

0
a

0
b

0
c

0
d

1
d

(d)

0
b

1
b

0
c

1
c

1
d

0
d

(e)

0
a

1
a

0
b

1
b

0
c

1
c

(f)

0
a

1
a

0
b

1
b

1
d

0
d

Fig. 4. Planar (E,E) tests : Checking whether two co-planar edges ab

and cd (shown in (a)) intersect during the interval reduces to discrete line
segment intersection test (b) and VE tests (c)-(f).

touches another edge. Analogous to the elementary tests

between the triangles, i.e. VF or EE tests, we need

to perform a VE test in the plane. Take the case in

Figure 4, it boils down to 4 VE tests that are based

on the following combinations: vertex a with edge cd

(Figure 4(c)), vertex b with edge cd (Figure 4(d)),

vertex c with edge ab (Figure 4(e)), and vertex d

with edge ab (Figure 4(f)). If any of these four tests

returns a true value, that implies an intersection between

deforming edges ab and cd.

We use the following theorem to perform a VE test in a

plane.

VE Test Theorem: Suppose that a vertex a and an edge

cd undergo linear deformation in the time interval [0, 1].
Let a0,b0, c0,d0 be the positions of all the vertices at

t = 0, and a1,b1, c1,d1 be the positions at t = 1,
respectively, as shown in Figure 4(c). Also, let us define

~va = a1 − a0, ~vc = c1 − c0, and ~vd = d1 − d0. Then, the

intersection between the edge and the vertex can be computed

by the roots of the following equation:

(a0 − d0) × (c0 − d0) +

[(~va − ~vd) × (c0 − d0) +

(a0 − d0) × (~vc − ~vd)] · t +

(~va − ~vd) × (~vc − ~vd) · t2 = 0. (1)

Proof: Please refer to [11] for a detailed proof.

After computing the intersection, a trivial test is used to

check whether the intersection point lies between the two ends

of the edge. Based on the above theorem, the problem of planar

(E, E) tests can be solved by solving four quadratic equations.

A naive implementation would perform planar (E, E) tests

among all pairs in O(N2) complexity, where N is the number
of the edges in the contour. We use different acceleration

techniques to speed up the computation, including:

1) Bounding box culling: We compute a k-DOP for each

deforming edge swept over the time interval [0, 1]. If
the k-DOPs of two boundary edges do not overlap, the

edges cannot intersect.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

2) Fewer projections: The projected boundary edges used

for the parent nodes can be directly reused for the chil-

dren nodes. As a result, only a few additional boundary

edges need to be projected for successive child nodes.

We maintain a cache that contains the boundary edges

used for the parent nodes. We store boundary edges in

the cache only if the normal cone test is satisfied, but the

contour tests fails. This is performed as part of hierarchy

traversal.

3) Fewer intersections: If two contour edges for a partic-

ular node intersect, then any descendant nodes that have

those edges in its contour will also fail the contour test.

So, we do not perform this test on children nodes.

These optimizations are easy to implement and result in

considerable speedups in our benchmarks. For example, we

are able to improve the performance of continuous contour

test by 93% for the cloth-simulation benchmark (Figure 12)

based on these accelerations.

D. Discussion

Extension to other interpolating functions: In our deriva-

tion, the CNC is defined with the assumption that the position

of the deforming vertices are linearly interpolated (i.e., P (t) is
linear). But for higher-order functions, e.g. quadratic, cubic,

etc., the CNC equation for other motions, e.g., polynomial

interpolation, can be derived in a similar manner. A higher

order formulation will result in a larger set of control points

for the higher-order Bernstein functions. When the P (t) is
a polynomial function with degree d, a Bernstein basis with
degree 2d is needed to perform the CNC test.
Robustness: As pointed out by Andersson et al. [40],

there are several pitfalls to use the criterion of [8] when

some hypotheses such as exclusion of singularities, simple

connectedness of the parametric domain, interpretation of the

projection, non-selfintersection of the projected contour, etc.

are not satisfied. In our definition of CNC and CCT, the

simple connectedness is ensured by storing connected triangles

at BVH nodes, and non-selfintersection of projected contour

is checked at the CCT phase. These methods enhance the

robustness of our algorithm.

V. LOW-LEVEL CULLING

In the previous section, we presented a test to cull poten-

tially large regions of the mesh from consideration for self-

intersection. Ultimately, we need to test for collisions in the

remaining regions. To perform these tests, we logically par-

tition the candidate triangle pairs into two sets: non-adjacent

and adjacent pairs. The initial phase culls the non-adjacent

triangle pairs to find potentially colliding triangle pairs. We

perform exact collision tests on those pairs. The second phase

uses the novel concept of an orphan set to perform the optimal

number of tests between adjacent triangle pairs.

A. Non-adjacent Phase

The high-level culling produces non-adjacent triangle pairs

whose bounding volumes overlap. For each of these pairs we

Fig. 5. Two regions of a single mesh: The highlighted vertex on the right
intersects the red vertex on the left. The shaded triangle on the right is the
vertex’s representative triangle.

exhaustively perform all 15 elementary tests. By virtue of their

non-adjacency, all intersections detected are meaningful. The

same criteria may not hold for adjacent pairs.

If we were to evaluate every test arising from the non-

adjacent triangle pairs, we would perform redundant elemen-

tary tests. This is because a single vertex (or edge) is typically

shared by multiple triangles. Rather, we use an efficient

duplication removal technique, PRT, to guarantee all these

elementary tests will be evaluated once and only once.

B. Procedural Representative Triangles (PRT)

Curtis et al. [10] uses the concept of “Representative Trian-

gles” (R-Triangles) to cheaply eliminate duplicate elementary

tests. The approach provides a unique assignment of every

edge and vertex to an incident triangle and uses this mapping

to dispatch elementary tests only once. Figure 5 illustrates how

R-Triangles work. The two triangle mesh sections represent

portions of the same mesh. The vertex, v, in the sub-mesh
on the left intersects the red triangle, f , on the right. Normal
triangle culling will produce six triangle pairs: (f , fi) for i
= 1...6. Only one triangle, f2, represents the vertex v. So,
this test will be performed only once, when the pair (f , f2) is

considered. In order for this approach to work, all triangle pairs

must be considered. If, for whatever reason, the pair (f , f2)

were omitted from consideration, the relevant VF test would

not be performed. Figure 5 implies that the two portions of the

mesh are separated by some arbitrary topology. If the triangle

f2 were actually one of the blue triangles in the sub-mesh on

the left, our non-adjacent phase would dismiss the triangle pair

(f , f2). The VF test would not be performed and the collision

would be missed–an unacceptable outcome.

Previously, duplicate tests were prevented through the use of

a run-time database. For each feature pair to be tested, a look-

up would be performed in the database to see if it had already

been performed. If not, the test is performed and the pair is

included in the database. This has all of the costs normally

associated with maintaining such a data structure. Ideally, we’d

like to benefit from all of the advantages of R-Triangles.

To do so, we extend the idea of “Representative Triangles”

to PRT. Instead of static representation, we provide a dynamic,

procedural definition which accommodates our non-adjacent

pair constraint. In R-Triangles, the choice of triangle to act

as R-Triangle for a vertex is arbitrary. Our non-adjacent con-

straint can limit this choice. In Figure 5 if face f2 is one of the

blue triangles on the left, then f2 cannot serve as R-Triangle

for the feature pair (v, f). But for collision with a different
face, distant from those shown in the figure, it would satisfy

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

Algorithm 1 VFtest: Testing collision between given vertex v
from t1 and face f from t2 by using PRT

1: for all Triangle ti ∈ the incident triangle set of v do
2: if ti not adjacent t2 then
3: if ti == t1 then
4: DoVFTest(v, f)
5: else

6: return

7: end if

8: end if

9: end for

our non-adjacent constraint. This dynamic property means

that our procedural definition of PR-Triangles are actually

dependent on the actual feature pair being considered.

For PR-Triangles to work, we need to guarantee two prop-

erties: completeness and correctness. PR-Triangles must be

complete; they cannot miss a collision. They must also be

correct; no duplicate queries should be allowed. In other

words, every relevant feature test should be performed once

and only once. We will show these properties as we describe

the functions which determine representation.

Definition: For a given feature, there is a set of incident

triangles. For a pair of features, the cartesian product between

their two incident triangle sets represents all triangle pairs

which could request the particular feature test. Because PR-

Triangles is dependent, not on a single feature, but the feature

pair, we define one PR-Triangle for each feature, simultane-

ously. The PR-Triangle pair is simply going to be a non-

adjacent triangle pair in the cartesian product.

Completeness is guaranteed so long as a non-adjacent pair

of triangles appear in the cartesian product. In the non-adjacent

phase, we only consider non-adjacent triangle pairs. So, if no

other triangle pair in the cartesian product is non-adjacent,

there must always exist at least one. (If all triangle pairs in the

cartesian product are adjacent, then the feature pair is handled

in the following adjacent phase.) So, PR-Triangles is complete.

To be correct we simply need to ensure that no matter

how the feature pair is expressed, or the state of the collision

detection, the same PR-triangles are always selected. We

accomplish this by having some static, topologically-based

data structures. Each feature has a list of incident triangles.

The order of the list is arbitrary, but fixed for the life of the

mesh (barring topological changes.) For vertices, the size of

the list is arbitrary and dependent on the fan. For edges, it

is either one or two triangles (for well-defined meshes.) By

definition a triangle is always incident to itself.

VF PR-Triangles: Algorithm 1 shows the process by which

PR-Triangles are assigned to a VF feature pair. The face

represents itself and the vertex’s PR-Triangle is simply the first

triangle in its incident list which is non-adjacent. Because the

vertex’s incident list is in fixed order, it will always examine

them in the same order and, with respect to the given face,

always find the same PR-Triangles.

EE PR-Triangles: Algorithm 2 shows the process by which

PR-Triangles are assigned to a EE feature pair. EE feature

pairs are simultaneously simpler and more complex. They are

simpler because there are at most four triangle pairs in the

Algorithm 2 EEtest: Testing collision between two edges, an

edge e1 from t1 and an edge e2 from t2, by using PRT

1: e = min(e1, e2)

2: E = max(e1, e2)

3: for all i ∈ [0, 1] do
4: for all j ∈ [0, 1] do
5: te = ith incident face of e
6: tE = jth incident face of E
7: if te not exist ‖ tE not exist then
8: continue

9: end if

10: if te not adjacent tE then

11: if (te == t1 & tE == t2) ‖ (te == t2 & tE == t1)
then

12: DoEETest(e1, e2)

13: else

14: return

15: end if

16: end if

17: end for

18: end for

cartesian product. It’s more complex because the PR-Triangles

must be invariant to whether the edge pair (ei, ej) or (ej ,

ei) are examined (both cases can easily arise during typical

processes.) For the cartesian product of the EE pair, we need

to be able to enforce a fixed order of operation. We define

the order as follows: ((em, Em), (em, EM), (eM , Em), (eM ,

EM)), where e and E are the edges with the smaller and
larger mesh indices, respectively. And the subscripts m and
M refer to the incident triangle with the smaller and larger

index respectively. The list can be truncated if either edge is

incident only to a single triangle. Determining which edge is

e and which is E happens at runtime. But the incident lists
for each edge can be constructed such that the first incident

triangle has the lower index.

Advantages: As compared to prior methods [11], [12], PRT

have the following advantages:

1) Lower memory requirements: Traditional methods for

eliminating duplicates involve a run-time database which

caches the tests evaluated. With PR-Triangles, there is no

need to maintain such a table. The size of the database

is theoretically has an O(n2)-bounded size, so this
potentially massive memory footprint are eliminated. For

example, about 50M memory for the cloth-simulation

benchmark (Figure 12) and about 18M memory for the

N-body collision benchmark (Figure 11) are saved.

2) Faster running time:Because operations to maintain

and query the database consist of extensive memory

allocation/deallocation operations, the database can pro-

vide a significant cost. These system calls are replaced

by local query operations so the running speed of the

algorithm is improved. It is also worth noting that in

the vast majority of cases, the first triangle pair in

the cartesian product proves to be non-adjacent and

no further tests need be performed. This makes the

procedural definition very fast.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

Fig. 6. Elementary tests for adjacent triangles: Two adjacent triangles
(ta and tb) share a common edge. Only four elementary tests are necessary:
{e1

b
, e1

a}, {e
2

b
, e2

a}, {va, tb}, and {vb, ta}. Of those four tests, there is a
non-adjacent triangle pair which would perform the same tests. They are: {te,
tf}, {tc, td}, {tg , tb}, and {th, ta}, respectively.

3) Better suited to parallelization:Using PR-Triangles,

eliminating duplicate tests becomes a read-only oper-

ation. This makes it easier to parallelize as there is

no need for explicit synchronization or using locking

operations required in maintaining a database.

C. Adjacent Phase

Many researchers [33], [7], [41] have observed that for

a given pair of adjacent triangles, all 15 elementary tests

need not be performed for exact collision detection. If two

triangles are adjacent (i.e they share an edge or vertex), a

lesser subset of the 15 tests is sufficient. Beyond that, others

have recognized that the results of the non-adjacent phase

could be used to further reduce the number of tests between

adjacent pairs [33]. Figure 6 shows a typical example of two

edge adjacent triangles: ta and tb. Only four tests are actually

meaningful: {va, tb}, {vb, ta}, {e
1

b , e
1

a}, and {e
2

b , e
2

a}.
Now consider the non-adjacent triangle pair (tb, tg).

If,during the non-adjacent phase, tb and tg have been tested
and found not to intersect we can easily argue that the test

{va, tb} cannot produce a collision. So, the test is unnecessary.
Directly exploiting this relationship requires some form of

database to be maintained. The database would store the results

of the non-adjacent phase. The adjacent phase would use

the database to determine if a particular test on an adjacent

pair is necessary. For any particular element pair on an

adjacent pair of triangles, the non-adjacent triangle pair, whose

collision state could eliminate some of these elementary tests,

depends on both the type of element pair and the nature of

the adjacency between the adjacent triangles. Each adjacent

triangle pair could require multiple unique database queries

(as mentioned in [33].)

This idea can be taken much farther and made far more

efficient. The costs (in both memory and query time) of the

database is unnecessary because the adjacent tests that need

to be evaluated depend only on the topology of the mesh.

The concept of orphan set formalizes this relationship and

provides an optimal set of tests to perform without complex

run-time data structures, algorithms, and cache-antagonistic

random memory access.

D. Orphan Pairs and Tests

Overall, the orphan tests are the elementary tests between

adjacent triangles that don’t get performed during the non-

adjacent phase. More precisely, an orphan test is a test between

Fig. 7. OIS and OAS for a vertex and an edge: (a) shows the OIS
and OAS for the vertex v. Vertex v forms an orphan pair with face a5. (b)
shows the OIS and OAS for the edge e. Edge e, likewise, forms an orphan
pair with (but not limited to) edge eo.

Fig. 8. Internal orphans: The element pair in (a), (v, a1), is an internal
orphan pair. The pyramids in (b) and (c) consist of nothing but orphan pairs.

an elementary pair (edge-edge or vertex-face) for which no

pair of triangles exists such that each triangle is incident

to one of the elements and both triangles are non-adjacent.

By incident triangles, we mean the triangles that include the

element in its construction, e.g., the fan of triangles around a

vertex. An orphan pair is the pair of elements in the orphan

test. The collection of all orphan tests is the orphan set.

1) Orphan Classification: Conceptually, there are two types

of orphans: boundary and interior. Boundary orphans appear

in open manifold meshes. In fact every edge and vertex on

the boundary of a mesh are part of one or more orphan pairs.

Figure 7 shows two such orphan pairs. Figure 7(a) shows a

vertex, v, on the boundary of the mesh. The triangle a5 is

adjacent to every triangle incident to v. There is no non-
adjacent triangle pair (including a5) that would execute the

test (v, a5). So, (v, a5) is an orphan pair. Similarly, in Figure

7(b), we see one of the orphan pairs for e: (e, e0).

Orphans are also possible on the interior of the mesh. There

are some special cases, such as a tetrahedron (Figure 8(b)) or

four-sided pyramid (Figure 8(c)), in which every triangle is

adjacent to every other triangle. Additionally, any ring with

a circumference formed by three triangles will have interior

orphans. There is a more general condition that can lead to

interior orphans–if a triangle in the mesh has vertices on its

interior, orphans can also arise (Figure 8(a)).

E. Orphan Set Computation

The number and location of orphans are strictly a function of

the topology and connectivity of the mesh. Deformations that

don’t change the connectivity in the mesh will leave the set of

orphans unchanged. It is sufficient to identify all orphans in a

pre-processing step. The algorithms to identify the orphans use

two concepts: the Orphan Incident Set (OIS) and the Orphan
Adjacent Set (OAS). The OIS of an element contains all
triangles that are incident to that element (e.g. the fan around

a vertex.) The OAS of an element is the set of all triangles

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

adjacent to the triangles in OIS but not in OIS. These sets
are also known as the one-ring and two-ring, respectively.

These sets are illustrated in Figures 7(a) and (b). The detailed

algorithms for identifying these orphans can be found in [39].
1) Topological changes: In the event of topological

changes, such as fracturing or tearing, the orphan set can easily

be updated. Changes to the orphan set are limited to the region

of the fracture or tear. We form a set consisting of the triangles

adjacent to the fracture (i.e. any triangle on the fracture, and

the triangles adjacent to those.) We eliminate any orphan test in

the orphan set that had an element eliminated by the fracture.

Finally, we perform orphan finding algorithms on all of the

edges and vertices in the fracture adjacent set.

F. Processing Orphan Set

The adjacent phase simplifies to evaluating all of the tests

in the orphan set. It is possible to perform tests on only a

subset of the orphan set. We require some external condition

which indicates that a particular orphan pair can’t intersect.

BV-overlap tests are insufficient for this purpose. Because

orphans lie on adjacent triangles, BV-overlap tests won’t cull

the triangle pair and, therefore, can’t cull the orphan pair.

However, any test which is immune to this particular adjacency

artifact would be sufficient to cull orphan tests.

The CNC test is one such culling mechanism that we

exploit. If the CNC test shows that no self-intersection is

possible in a region, any orphan pair entirely contained in

that region can be summarily dismissed without testing.

Even without such a culling mechanism, the orphan set

tends to be quite small relative to the number of possible tests

between adjacent triangles.

G. Completeness and Optimality

It is important to recognize that a system using orphan sets

is both complete and optimal with respect to tests between

adjacent triangles.

Completeness: A collision detection algorithm is complete

if no collisions are missed. In CCD all intersection tests among

the primitives are reduced to intersections between VF or EE

pairs. If the specific VF or EE pair is incident to non-adjacent

triangles, it will be checked for overlap in the non-adjacent

phase. Otherwise that pair corresponds to an orphan pair and

will be evaluated during the adjacent phase. Any VF or EE

test that results in a collision will be evaluated. As a result,

the orphan set formulation will not miss any collision.

Optimality: The orphan set is optimal in the sense that it

contains only those tests between adjacent triangles that cannot

be evaluated in the non-adjacent phase. No other tests between

adjacent triangles are necessary. But every pair in the orphan

set must be accounted for, whether through direct evaluation

or elimination via some technique similar to CNC.

Although the size of the orphan set represents an upper

bound on the number of elementary tests between adjacent

triangles that need to be explicitly evaluated, the bound tends

to be quite small. In our benchmarks, the number of orphan

tests are three orders of magnitude smaller than the number

of tests which would otherwise be performed between the

adjacent triangles (see Table 1).

TABLE I
THIS TABLE SHOWS THE NUMBER OF ELEMENTARY TESTS PERFORMED
BETWEEN ADJACENT TRIANGLES. THE FOURTH COLUMN REPRESENTS
THE WORK PERFORMED BY [33], IN WHICH 9 ELEMENTARY TESTS ARE
PERFORMED FOR VERTEX-ADJACENT PAIRS AND 4 FOR EDGE-ADJACENT
PAIRS. THE ORPHAN SET IS SIGNIFICANTLY SMALLER–ROUGHLY 0.1% OF

THE TESTS PERFORMED IN [33].

Model Tri# Adjacent Elementary Orphan

pairs tests of [33] Set

Cloth (Figure 12) 92K 564K 4.4M 4.8K

Princess (Figure 9) 40K 269K 2.1M 2K

N-body (Figure 11) 34K 198K 1.5M 200

Letters (Figure 13) 5K 29K 224K 114

Flamenco (Figure 14) 49K 291K 2.3M 10.8K

VI. DT-BVH: DYNAMIC TWO-LEVEL BVH

In order to fully utilize our culling algorithms, we use a

two-level hierarchy, DT-BVH, and use it for interactive CCD.

The two-level hierarchy is built based on mesh connectivity

and bounds on the normals of the triangles. The two-levels

consist of the following two parts:

• The first-level of the hierarchy, HW , is a k-DOP hier-
archy and each of the leaf nodes represent one of the

objects Oi and its mesh M i.

• The second-level of DT-BVH represents a k-DOP hi-

erarchy of each mesh, M i. We denote each of these

hierarchies as Hi = BV H(M i). We also maintain a
CNC, contour information, and associated orphan pairs

for each node in this hierarchy.

In dynamic scenes with changing topologies, the number

of objects in the scene may change and we update these

hierarchies accordingly.

Please note that CNC is only associated with the nodes of

the second-level hierarchy, which contains a connected subset

of the mesh M i.

A. DT-BVH Construction

Based on the definition of DT-BVH, we use a two-level

construction algorithm. We consider the connectivity of each

mesh, M i, to compute its BVH, Hi. We compute an object

that is connected component and construct its BVH in a

bottom-up manner. Each node of Hi represents a subset of

the mesh M i. We compute the CNCs and the boundary edges

associated with each node of Hi in a bottom-up manner. Next,

we compute the first-level hierarchy, HW, based on the root

nodes of each Hi in a top down manner.

B. Updating DT-BVH

As the models undergo deformation, we update the nodes of

DT-BVH. Our goal is to perform the update operation quickly

and ensure that the resulting hierarchy provides tight culling

efficiency. Again, a two-level approach is used.

• Refitting Hi’s: We use a simple, linear time refitting

algorithm to update the k-DOPs and CNCs of each Hi in

a bottom-up manner. The refitting algorithm updates the

extents of each k-DOP associated with the nodes of Hi.

We also compute CNCs of each leaf node as described in

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

Algorithm 3 Updating Continuous Normal Cones

1: // Calculate the normal cone for deforming triangle.

2: if IsLeaf() then

3: cone = cone(n0, n1, n0 + n1 − δ)
4: return

5: end if

6: // Update the cone of parent node by merging children.

7: cone = left→cone + right→cone

Section IV-B. The CNCs of the intermediate nodes are

computed in a bottom-up manner (Algorithm 3), based

on the CNCs of their child nodes.

• Restructuring HW: Given each updated Hi, we use a

restructuring algorithm to update HW. Our goal is to

compute a tight-fitting BVH. Given scenes with moving

or breaking objects, a simple refitting approach may

result in a poor hierarchy in terms of culling efficiency.

Instead we use a restructuring approach, which regroups

some of the primitives in the tree. If the number of

objects in the scene is small, we use a simple, top-down

rebuilding algorithm of complexity O(n log n), where n
is the number of objects. If the number of objects is high,

we perform selective restructuring, as described below.

Selective Restructuring for Collision Detection: In order

to reduce the restructuring time, we use a selective restruc-

turing algorithm, which restructures localized regions of the

hierarchy. Particularly, we identify regions with poor culling

efficiency. We use a volumetric metric [26] that measures the

culling efficiency of any sub-BVH within the hierarchy. We

perform restructuring operations on regions where the restruc-

turing benefit in terms of improved culling efficiency is greater

than the cost of restructuring. Each restructuring operation

only affects a portion of the tree [26]. This formulation quickly

computes a tree with good culling efficiency and can also

handle breaking objects.

C. Continuous Collision Detection using DT-BVH

Our collision algorithm starts with updating DT-BVH, as

described above. The collision checking process is started

by performing self-collisions on the root node of HW . As
the recursive algorithm reaches the leaf nodes Hi, then self-

collision algorithm is invoked on the corresponding Hi. For a

node of Hi with CNC, we check whether the apex angle of

the normal cone is less than π and also perform the continuous
contour test. If these two tests are satisfied, then, we do not

need to traverse deeper to check for self-collisions. And all

the orphan pairs associated with the node are marked and will

be skipped in orphan tests. The pseudo code description of

the algorithm is given in Algorithm 4. Then, elementary tests

are used to check for collisions between the leaf nodes of Hi

(Please refer to [11] for a detailed algorithm). Finally, we

perform orphan tests for all the orphan pairs which not been

marked in high-level culling phase.

VII. IMPLEMENTATION AND PERFORMANCE

In this section, we describe our implementation and high-

light the performance of our algorithm on many different

Algorithm 4 SelfCollide(Node N i): Perform self-collision on

a node of Hi

1: if IsLeaf(N i) then

2: return // Skip leaf nodes.

3: end if

4: // Continuous normal cone test.

5: if TestCNC() == true then

6: // Continuous contour test.

7: if CCT() == NoIntersection then

8: // Associated orphan pais skipped in low-level culling.

9: SkipOrphanPairs()

10: return // This region is skipped by high-level culling.

11: end if

12: end if

13: // Check the descendants.

14: SelfCollide(N i →left) AND SelfCollide(N i →right)
15: Collide(N i →left, N i →right)

benchmarks. We have implemented our algorithm on a stan-

dard Intel Pentium 4 with 2.66 GHz and 2GB RAM by using

Microsoft Visual Studio 2005. All the timings are generated

using a single thread.

A. Benchmarks

In order to test the performance of our algorithm, we used

six different benchmarks, arising from different simulations

with different characteristics.

• Folding cloth simulation: We drop a cloth on top of a

ball and, then, rotate the ball. It results in a high number

of self-collisions in the benchmark consisting of 92K
triangles (Figure 12).

• Princess: A dancer with flowing skirt (40K triangles)

sits on the ground. This model has many inter- and intra-

object collisions (Figure 9).

• N-body collision: A scene with hundreds of balls (34K
triangles) that are colliding with each other (Figure 11).

This sequence is generated using a rigid-body simulator.

• Breaking and deforming letters: Multiple deforming

characters (5K triangles) fall into a bowl and break into
pieces (Figure 13).

• Bunny-Dragon breaking simulation: We drop a bunny

model on top of a dragon model (total 253K triangles)
and the dragon model breaks into a high number of

smaller pieces (Figure 10).

• Flamenco: A fiery flamenco dancer wearing colorful skirt

with ruffles(49K triangles). This benchmark has many

inter- and intra-object collisions (Figure 14).

All the benchmarks have multiple simulation steps. We

perform continuous collision detection between each discrete

steps and compute the first time-of-contact.

B. Performance

In this section, we analyze the performance of our algo-

rithm. The running time of our algorithm is governed by three

steps: updating DT-BVH (performing selective restructuring

for breaking models and refitting for simple models, e.g., no

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

TABLE II
Performance and Speedup: THIS TABLE SHOWS THE AVERAGE QUERY
TIME OF OUR METHOD AND PERFORMANCE IMPROVEMENT OVER THE

BASE IMPLEMENTATION AND GPU-BASED TECHNIQUE OF [35].
PERFORMANCE IMPROVEMENT OVER THE BASE IMPLEMENTATION IS
MAINLY DUE TO OUR DT-BVH HIERARCHY REPRESENTATION AND

IMPROVED CULLING METHODS.

Model Query Speedup over: Speedup over

(time ms) the base impl. GPU-based method

Cloth 290 9X 2.4X

Princess 45 8.8X 12X

Flamenco 185 9.4X N/A

N-body 89 14.6X N/A

Letters 9.4 12.6X 10X

Dragon 878 21.4X N/A

Fig. 9. Princess benchmark: A dancer with a flowing skirt. This model
has 60K vertices and 40K triangles. Our novel CCD algorithm takes 45ms
per frame to compute all the collisions, and is about one order of magnitude
faster than prior approaches.

drastic deformations), traversing the DT-BVH, and performing

elementary tests.

We assume that the triangles are deforming under linear

continuous motion and implement the EE and VF elementary

tests used to check triangular prisms for overlap by solving

cubic equations. In practice, each such elementary tests takes

about 0.2 microseconds on average. Moreover, we perform
a planar (E,E) test by performing multiple VE elementary

tests. Each VE elementary test reduces to solving a quadratic

equation and takes about 0.1 microseconds on average.

In order to demonstrate the benefit of our hierarchical

representation and culling techniques, we implemented a

“base” version without any of these culling methods. The

“base” version also uses an k-DOPs hierarchy computed using

refitting algorithms (for models with fixed connectivity) and

rebuilding algorithms (for models with changing topologies

or breaking objects). We used the same implementation of the

elementary tests, using the cubic equation solver from [9], in

both of these implementations.

Table II shows the average CCD time of our algorithm and

performance improvement over the base method and GPU-

based technique [35]. We observe almost one order of magni-

tude improvement due to the improved culling efficiency.

The main benefits of our algorithm come from the high

culling efficiency of the DT-BVH, along with the benefits

of the high-level and low-level culling methods. We observe

significant reduction in the number of elementary tests (in

terms of false positives). Moreover, the time to update the

DT-BVH hierarchy is relatively small (at most 5−10% of the
total query time). This results in almost one order of magnitude

improvement in our benchmarks.

Fig. 10. Dragon benchmark: In this simulation, a bunny model is dropped
on top of the dragon model and the dragon model breaks into many pieces.
This model has 193K vertices and 253K triangles. In this scene with changing
topologies, our algorithm obtains high culling efficiency and reduces the
number of false positives by 20 times, as compared to prior CCD algorithms.
The average CCD query time is about 878ms, about an order of magnitude
faster than prior algorithms.

Fig. 11. N-body benchmark: In this simulation, multiple balls are colliding
with each other. This scene has 18K vertices and 34K triangles. Our culling
algorithms reduce the number of elementary test by 18 times and can find all
collisions in about 89ms per frame.

VIII. ANALYSIS AND COMPARISON

In this section we provide in-depth analysis on our results

and compare its performance with those of prior methods.

A. Analysis

High-level culling & low-level culling: Figure 15 shows the

relative ratio of the number of elementary tests that we perform

after each culling step. As shown in the figure, the high-level

culling achieves high culling efficiency for deforming models

with large relatively flat areas. It can remove the elementary

tests among both adjacent triangle pairs and non-adjacent

triangle pairs. On the other hand, the low-level culling shows

similar culling ratio across different benchmarks. This result

is mainly because it relies on the local topological structure

of deforming models.

Bounding volume: We selected k-DOPs (specifically 18-

DOPs) as bounding volumes over AABBs for their superior

culling efficiency. Based on our experiments, k-DOPs offer

better overall performance for CCD than AABBs. The cost to

update the hierarchy is a small fraction of the overall collision

query. But the improved culling efficiency yields an overall

gain. Please note that this is not the case in discrete collisions

or ray tracing. The benefits in terms of fewer false positives

with k-DOPs offer a slight net speedup (5%-18%).

Memory overhead: The storage overhead of DT-BVH is

about 500 bytes per triangle. The memory requirements of

our two-level BVH are not optimized in our current imple-

mentation and higher as compared to maintaining a single

BVH per object. Moreover, we store more information with

the intermediate nodes of the second-level BVHs including

CNCs, contour, etc.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

Fig. 12. Cloth benchmark: We drop a cloth on top of a rotating ball. This
model has 46K vertices and 92K triangles and the simulation results in a
high number of self-collision. Our algorithm takes about 290ms on average
to perform continuous collision detection. Our culling techniques reduce the
number of false positives by 38 times.

Fig. 13. Letters benchmark: Multiple characters interact with a bowl. This
model has 3K vertices and 5K triangles.It takes 9.4ms on average for CCD,
which is almost 10 times faster than the running time presented in [35].

Culling efficiency: Table III shows the improvement in the

number of elementary tests performed per frame. The two

orders of magnitude improvement is due to our hierarchical

representation and culling algorithms.

B. Comparison

GPU-based accelerations: The GPU-based algorithms use

the rasterization hardware to perform occlusion queries [33]

or compute 3D distance fields [35], and readback these fields.

Their performance can vary based on the specific GPU and

driver implementation. They have been combined with AABB

culling to improve the performance of CCD. We compare

the performance with the implementation of [35] and observe

considerable speedups on some of the benchmarks (up to

10X). As compared to occlusion queries or readbacks, our

hierarchy traversal with CNC and contour tests appears to

have a lower overhead. For example, Sud et al. [35] reported

that their method spends about 50 ms for readbacks. How-

ever, our method spends about 45 ms on the whole CCD

computation with the Princess benchmark. Furthermore, the

low-level culling algorithms significantly reduce the number

of elementary tests.

Kinetic BVHs and updates: [24], [42] used kinetic BVH

and separation lists to reduce the number of updates and tests

on the BVH. This is an event-based approach and complemen-

tary to our work. We use a single two-level hierarchy for all the

objects in the scene as well as new culling algorithms, which

appear faster in practice. On the other hand, it becomes harder

to maintain the kinetic separation lists efficiently, especially in

complex scenes with hundreds of thousands of triangles. As a

result, our approach could be faster on such complex scenes,

especially with breaking objects.

Lower-level culling: Many other authors have also pro-

posed methods to reduce the number of elementary tests

Fig. 14. Flamenco: A fiery flamenco dancer wearing colorful skirt with
ruffles. This model has 25.7K vertices and 49K triangles. Our novel CCD
algorithm takes 185ms per frame to compute all the collisions.

100%

80%

60%

40%

20%

Cloth Princess N-body Letters Dragon

No

culling

High-level

culling

Low-level

culling

Flamenco

Fig. 15. High-level culling & low-level culling: This figure shows the
culling efficiency of high-level culling & low-level culling respectively by
measuring the ratio of elementary tests performed.

between adjacent primitives [33], [7], [41], [10], [12]. Our

formulation is more general and achieves higher culling and

fewer elementary tests as compared to the prior approaches.

We also compared the culling efficiency of our algorithm with

that presented in [7]. We observe that our method performs

8.9 times and 7 times fewer elementary tests in the cloth and
N-body collision benchmarks, respectively.

Algorithms [41], [10] can be classified as feature based

culling methods. By making some sort of assignment at

preprocessing stage, all the replication of elementary test can

be naturally solved. In practice, these methods are limited

to scenes with fixed connectivity. For breaking scenes with

changing topology, it can be inefficient to adjust the assign-

ment dynamically. Our culling method is more general and

robust to deal with various kinds for deforming scene.

Representative Triangles: [10] proposes “Representative

Triangles” to reduce the redundant elementary tests. It can

drastically reduce the number of elementary tests. As a

downside of this method, due to the randomness of feature

distribution, all branches of the BVH need to be traversed to

ensure the completeness of elementary tests. This make it hard

to integrated with other triangle-based culling method. Our

PRT extends above method by distributing elementary tests

only among non-adjacent triangle pairs. So it can be used as

a further culling method to the high-level culling.

Adjacency-based culling: [12] extends the idea of [33]

to reduce the number of elementary tests between adjacent

triangle pairs. By utilizing a hierarchical method, the collision

detection results for non-adjacent triangle pairs are used to cut

down the elementary tests among triangle pairs sharing one

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

TABLE III
Improved culling efficiency: THIS TABLE SHOWS THE NUMBER OF

ELEMENTARY TESTS PERFORMED PER FRAME BY THE BASE METHOD AND

OUR IMPROVED ALGORITHM. THE COMBINATION OF DT-BVH AND
IMPROVED CULLING ALGORITHMS REDUCES THE NUMBER OF FALSE

POSITIVES BY ALMOST TWO ORDERS OF MAGNITUDE.

Model Base implementation Our algorithm

Letters 340K 8K

Princess 932K 14K

Flamenco 1, 125K 16K

N-body 3, 359K 188K

Cloth 7, 522K 216K

Dragon 16, 199K 981K

and only one vertex. Then, these results are further exploited

to cut down the elementary tests among triangle pairs sharing

an edge. The algorithm is similar to our low-level culling.

However, the number of elementary tests in our orphan set is

much less than that of [12] and, thus, our algorithm can show

better performance.

Improved normal cone tests: Most prior work using

normal cones has been limited to discrete collision detection.

Recently, [37] presented a technique to bound the normals

of a mesh for continuous motion, using a ”canonical cone”.

However, their formulation can be rather conservative and

inefficient as compared to our fast culling test based on

Bernstein basis representation.

C. Limitations

Our approach has some limitations. First of all, the benefit

of our approach is limited by the extent of connectivity in

the model. As the objects break into pieces and loses mesh

connectivity, the benefit of high-level and low-level culling

techniques decreases. Secondly, our normal bounds of CNCs

can be quite conservative, especially on models with high

curvatures. We observe this in cloth simulation benchmarks,

after the cloth folds multiple times.

IX. CONCLUSION AND FUTURE WORK

We have presented a novel algorithm for CCD between

complex deformable models. Our approach is based on a two-

level hierarchy and applicable to models arising in different

applications, including cloth simulation, breaking objects and

N-body simulations. We introduce high-level and low-level

culling techniques that significantly reduce the number of false

positives. We have tested the performance on different bench-

marks and observed considerable improvement in performance

over prior CCD algorithms.

There are many avenues for future work. Firstly, we

would like to address some of the limitations pointed out

in Section VIII-C. Secondly, we want to further improve

the performance, especially on scenes with breaking objects

that reduce the mesh connectivity. One option would be to

develop novel algorithms that can easily utilize the multiple

cores on current processors and ensure good cache efficiency.

Finally, we would like to integrate our collision detection

algorithm into different simulators and use application-specific

optimizations to improve the performance.

ACKNOWLEDGMENTS

We would like to thank Rasmus Tamstorf for the Flamenco

benchmark and useful discussions. We thank Stephane Redon

for useful discussions and his initial code for elementary tests.

We also thank Naga Govindaraju, Avneesh Sud, Russ Gayle

and Ming Lin for useful discussions and the benchmarks. Min

Tang would thank his wife, Jing Huang, and his child, Tommy,

for their support.

This research is supported in part by National Natural

Science Foundation of China (No. 60803054), ARO Contracts

DAAD19-02-1-0390 and W911NF-04-1-0088, NSF awards

0400134, 0429583 and 0404088, DARPA/RDECOM Contract

N61339-04-C-0043, Disney and Intel. Sung-eui Yoon was sup-

ported in part by KAIST & LG seed grants, MKE/IITA [2008-

F-033-01], MKE/IITA u-Learning, MKE digital mask con-

trol, KRF-2008-313-D00922, MSRA E-heritage, and DAPA

& ADD contract(UD080042AD). Min Tang is supported in

part by National Key Technology R&D Program, China

(No. 2006BAF01A45-05), Doctoral subject special scien-

tific research fund of Education Ministry of China (No.

20070335074), and Natural Science Foundation of Zhejiang,

China (No. Y107403).

REFERENCES

[1] S. Redon, A. Kheddar, and S. Coquillart, “Fast continuous collision
detection between rigid bodies,” Proc. of Eurographics (Computer
Graphics Forum), vol. 21, no. 3, pp. 279–288, 2002.

[2] S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha, “Fast continuous
collision detection for articulated models,” in Proceedings of ACM
Symposium on Solid Modeling and Applications, 2004, pp. 145–156.

[3] M. Foskey, M. Garber, M. Lin, and D. Manocha, “A voronoi-based
hybrid planner,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 2001.

[4] L. Zhang and D. Manocha, “Motion interpolation with distance con-
straints,” Department of Computer Science, UNC Chapel Hill, Tech.
Rep. TR 08-001, 2008.

[5] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treament for collisions,
contact and friction for cloth animation,” Proc. of ACM SIGGRAPH, pp.
594–603, 2002.

[6] D. Baraff, A. Witkin, and M. Kass, “Untangling cloth,” Proc. of ACM
SIGGRAPH, pp. 862–870, 2003.

[7] M. Hutter and A. Fuhrmann, “Optimized continuous collision detection
for deformable triangle meshes,” in Proc. WSCG ’07, 2007, pp. 25–32.

[8] P. Volino and N. M. Thalmann, “Efficient self-collision detection on
smoothly discretized surface animations using geometrical shape regu-
larity,” Computer Graphics Forum (EuroGraphics Proc.), vol. 13, no. 3,
pp. 155–166, 1994.

[9] X. Provot, “Collision and self-collision handling in cloth model dedi-
cated to design garment,” Graphics Interface, pp. 177–189, 1997.

[10] S. Curtis, R. Tamstorf, and D. Manocha, “Fast collision detection
for deformable models using representative-triangles,” in SI3D ’08:
Proceedings of the 2008 Symposium on Interactive 3D graphics and

games, 2008, pp. 61–69.
[11] M. Tang, S. Curtis, S. Yoon, and D. Manocha, “Interactive continuous

collision detection between deformable models using connectivity-based
culling,” Proc. of SPM08 (ACM Solid and Physical Modeling Sympo-
sium), pp. 25–36, 2008.

[12] M. Tang, S. Yoon, and D. Manocha, “Adjacency-based culling for
continuous collision detection,” The Visual Computer, Proc. of CGI08
(Computer Graphics International 2008), vol. 24, no. 7-9, pp. 545–553,
2008.

[13] C. Ericson, Real-Time Collision Detection. Morgan Kaufmann, 2004.
[14] M. Teschner, S. Kimmerle, B. Heidelberger, G. Zachmann, L. Raghu-

pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnenat-Thalmann,
W. Strasser, and P. Volino, “Collision detection for deformable objects,”
Computer Graphics Forum, vol. 19, no. 1, pp. 61–81, 2005.

[15] P. M. Hubbard, “Interactive collision detection,” in Proceedings of IEEE
Symposium on Research Frontiers in Virtual Reality, October 1993.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

[16] G. Bradshaw and C. O’Sullivan, “Adaptive medial-axis approximation
for sphere-tree construction,” ACM Trans. on Graphics, vol. 23, no. 1,
pp. 1–26, 2004.

[17] G. van den Bergen, “Efficient collision detection of complex deformable
models using AABB trees,” Journal of Graphics Tools, vol. 2, no. 4,
pp. 1–14, 1997.

[18] S. Gottschalk, M. Lin, and D. Manocha, “OBB-Tree: A hierarchical
structure for rapid interference detection,” Proc. of ACM Siggraph’96,
pp. 171–180, 1996.

[19] J. Klosowski, M. Held, J. Mitchell, H. Sowizral, and K. Zikan, “Efficient
collision detection using bounding volume hierarchies of k-dops,” IEEE
Trans. on Visualization and Computer Graphics, vol. 4, no. 1, pp. 21–37,
1998.

[20] A. Sanna and M. Milani, “CDFast: an algorithm combining different
bounding volume strategies for real time collision detection,” SCI
Proceedings, vol. 2, pp. 144–149, 2004.

[21] T. Larsson and T. Akenine-Möller, “A dynamic bounding volume
hierarchy for generalized collision detection,” Computers and Graphics,
vol. 30, no. 3, pp. 451–460, 2006.

[22] C. Lauterbach, S. Yoon, D. Tuft, and D. Manocha, “RT-DEFORM: Inter-
active Ray Tracing of Dynamic Scenes using BVHs,” IEEE Symposium
on Interactive Ray Tracing, pp. 39–46, 2006.

[23] D. L. James and D. K. Pai, “BD-Tree: Output-sensitive collision detec-
tion for reduced deformable models,” Proc. of ACM SIGGRAPH, pp.
393–398, 2004.

[24] G. Zachmann and R. Weller, “Kinetic bounding volume hierarchies for
deforming objects,” in ACM Int’l Conf. on Virtual Reality Continuum
and its Applications, 2006.

[25] M. Otaduy, O. Chassot, D. Steinemann, and M. Gross, “Balanced
hierarchies for collision detection between fracturing objects,” in IEEE
Virtual Reality, 2007, pp. 83–90.

[26] S. Yoon, S. Curtis, and D. Manocha, “Ray tracing dynamic scenes using
selective restructuring,” Proc. of Eurographics Symposium on Rendering,
2007.

[27] J. Mezger, S. Kimmerle, and O. Etzmuβ, “Hierarchical techniques in
cloth detection for cloth animation,” Journal of WSCG, vol. 11, no. 1,
pp. 322–329, 2003.

[28] P. Volino and N. M. Thalmann, “Accurate collision response on polygon
meshes,” in Proc. of Computer Animation, 2000, pp. 154–163.

[29] B. Heidelberger, M. Teschner, and M. Gross, “Real-time volumetric
intersections of deforming objects,” Proc. of Vision, Modeling and
Visualization, pp. 461–468, 2003.

[30] D. Knott and D. K. Pai, “CInDeR: Collision and interference detection
in real-time using graphics hardware,” Proc. of Graphics Interface, pp.
73–80, 2003.

[31] N. Govindaraju, M. Lin, and D. Manocha, “Fast and reliable collision
detection using graphics hardware,” Proc. of ACM VRST, 2004.

[32] B. Heidelberger, M. Teschner, and M. Gross, “Detection of collisions
and self-collisions using image-space techniques,” Journal of WSCG,
vol. 12, no. 3, pp. 145–152, 2004.

[33] N. Govindaraju, D. Knott, N. Jain, I. Kabul, R. Tamstorf, R. Gayle,
M. Lin, and D. Manocha, “Collision detection between deformable
models using chromatic decomposition,” ACM Trans. on Graphics (Proc.
of ACM SIGGRAPH), vol. 24, no. 3, pp. 991–999, 2005.

[34] A. Sud, M. A. Otaduy, and D. Manocha, “DiFi: Fast 3D distance
field computation using graphics hardware,” Computer Graphics Forum
(Proc. Eurographics), vol. 23, no. 3, pp. 557–566, 2004.

[35] A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha, “Fast
proximity computation among deformable models using discrete voronoi
diagrams,” Proc. of ACM SIGGRAPH, pp. 1144–1153, 2006.

[36] X. Zhang, S. Redon, M. Lee, and Y. J. Kim, “Continuous collision
detection for articulated models using taylor models and temporal
culling,” ACM Transactions on Graphics (Proceedings of SIGGRAPH
2007), vol. 26, no. 3, p. 15, 2007.

[37] W. S.-K. Wong and G. Baciu, “Dynamic interaction between deformable
surfaces and nonsmooth objects,” IEEE Tran. on Visualization and
Computer Graphics, vol. 11, no. 3, pp. 329–340, 2005.

[38] M. Lin and D. Manocha, “Collision and proximity queries,” in Handbook
of Discrete and Computational Geometry, 2003.

[39] Y. Kim, G. Varadhan, M. Lin, and D. Manocha, “Efficient swept
volume approximation of complex polyhedral models,” Proc. of ACM
Symposium on Solid Modeling and Applications, pp. 11–22, 2003.

[40] L.-E. Andersson, N. F. Stewart, and M. Zidani, “Conditions for use of
a non-selfintersection conjecture,” Comput. Aided Geom. Des., vol. 23,
no. 7, pp. 599–611, 2006.

[41] W. S.-K. Wong and G. Baciu, “A randomized marking scheme for
continuous collision detection in simulation of deformable surfaces,”
Proc. of ACM VRCIA, pp. 181–188, 2006.

[42] R. Weller and G. Zachmann, “Kinetic separation lists for continuous
collision detection of deformable objects,” in Virtual Reality Interactions
and Physical Simulation, 2006, pp. 189–196.

Min Tang is an associate professor in the college
of computer science at Zhejiang University, China
since 2000. He received his B.S., M.S., and Ph.D.
from Zhejiang University in 1994, 1996 and 1999
respectively. From June 2003 to May 2004, he was
a visiting scholar at Wichita State University. From
April 2007 to April 2008, he was a visiting scholar
at the University of North Carolina at Chapel Hill.
His research interests include geometry modeling,
collision detection and GPU-based algorithm accel-
eration.

Sean Curtis received a BA in German from
Brigham Young University, a BS in Computer Sci-
ence from the University of Utah, and a MS in
Computer Science from the University of North
Carolina, Chapel Hill, where he pursued research in
graphics and simulation. He is currently an engineer
at Walt Disney Animation Studios.

Sung-Eui Yoon is currently an assistant professor at
Korea Advanced Institute of Science and Technology
(KAIST). He received the B.S. and M.S. degrees in
computer science from Seoul National University in
1999 and 2001 respectively. He received his Ph.D.
degree in computer science from the University of
North Carolina at Chapel Hill in 2005. He was
a postdoctoral scholar at Lawrence Livermore Na-
tional Laboratory. His research interests include scal-
able graphics and geometric algorithms, interactive
rendering, geometric problems, and cache-coherent

algorithms and layouts.

Dinesh Manocha is currently a Phi Delta
Theta/Mason Distinguished Professor of Computer
Science at the University of North Carolina at
Chapel Hill. He received his Ph.D. in Computer
Science at the University of California at Berkeley
1992. He received Junior Faculty Award in 1992,
Alfred P. Sloan Fellowship and NSF Career Award in
1995, Office of Naval Research Young Investigator
Award in 1996, Honda Research Initiation Award in
1997, and Hettleman Prize for Scholarly Achieve-
ments at UNC Chapel Hill in 1998. He has also

received more than ten best paper & panel awards at top conferences in
graphics, modeling, simulation and visualization. Many of the technologies
developed by his group on collision detection, GPU-based algorithms and
large model rendering have been widely used. He has published more than 250
papers in leading conferences and journals on computer graphics, geometric
modeling, robotics, virtual environments and computational geometry. He
has also served as a program committee member for more than 50 leading
conferences in these areas and also served in the editorial board of many
journals.

