CC Shadow Volumes

Brandon Lloyd Jeremy Wendt

Naga Govindaraju Dinesh Manocha

Department of Computer Science
University of North Carolina at Chapel Hill
http://gamma.cs.unc.edu/ccsv

Figure 1: These images demonstrate the benefits of CC shadow volumes on a scene with 96K polygons. Standard shadow
volumes are shown in the left image and CC shadow volumes in the middle. Shadow volumes are shown in transparent yellow.
The right image shows the shadows generated by CC shadow volumes at interactive rates. CC shadow volumes generate up to
7 times less fill than standard shadow volumes in this scene.

Abstract

We present a technique that uses culling and clamping (CC) for ac-
celerating the performance of stencil-based shadow volume compu-
tation. Our algorithm reduces the fill requirements and rasteriza-
tion cost of shadow volumes by reducing unnecessary rendering. A
culling step removes shadow volumes that are themselves in shadow
or do not contribute to the final image. Our novel clamping algo-
rithms restrict shadow volumes to those regions actually containing
shadow receivers. In this way, we avoid rasterizing shadow vol-
umes over large regions of empty space. We utilize temporal coher-
ence between successive frames to speed up culling and clamping
computations. We obtain substantial reduction in fill requirements
and shadow rendering time in dynamic environments composed of
up to a 100K triangles.

1 Introduction

Shadows are important in computer graphics because they add re-
alism to a scene and can aid in understanding spatial relationships
between objects. Shadows have been an active area of research in
computer graphics for more than two decades. Advances in graph-
ics hardware have made it possible to accurately render shadows
from point light sources in interactive applications including games
and walkthroughs.

One popular technique for shadow generation is shadow vol-
umes [Crow 1977]. A shadow volume is the region of space behind
a shadow caster containing points that lie in shadow. The shadow
volume technique computes shadow boundaries implicitly, which
makes them attractive for computing shadows on complex geome-

try. Moreover, the asymptotic complexity of shadow generation is
linear in the number of shadow caster polygons.

Shadow volumes can be implemented using the stencil buffer on
current graphics systems. The algorithm proceeds in three stages.
First, the scene is rendered with only ambient lighting. Second, the
shadow volumes are rendered to the stencil buffer which sets the
stencil in shadowed regions. Finally, the scene is rendered again
with full lighting using the stencil test to prevent overwriting the
shadows.

A major drawback of the algorithm is that the rasterization of
shadow volumes can be expensive. Since shadow volumes extend
away from shadow casters toward infinity, they sometimes cover
much of the screen, leading to high bandwidth and fill consump-
tion. Often large portions of the rendered shadow volumes make no
contribution to the final image. The three main sources of unnec-
essary shadow volume rendering are: large regions of empty space,
shadow casters completely enclosed in other shadow volumes, and
shadow generation on parts of the scene not visible to the viewer.

Main Results: We present methods for accelerating the perfor-
mance of stencil buffer-based shadow volume computation. Our al-
gorithms target scenarios where shadow volume rasterization is the
major bottleneck. We lower the rasterization overhead in shadow
volume computation by using two techniques:

Shadow Volume Culling: Using a variation of the shadow culling
algorithm presented in Govindaraju et al. [2003], we eliminate the
shadow casters that are themselves completely in shadow. We also
eliminate the shadow casters whose shadows are not visible to the
eye. Shadow volume culling is shown in Fig. 2(b).

Shadow Volume Clamping: By clamping each shadow volume to
the regions that contain potential shadow receivers we avoid the



cost of rasterizing shadow volumes over large regions of empty
space. To compute the occupied regions of a shadow volume we
use two techniques. The first technique employs bounding volumes
to identify intervals along the shadow volume that contain objects.
(Fig. 2(c)). We accelerate the computations by utilizing temporal
coherence and performing incremental computations between suc-
cessive frames. Our second technique divides a shadow volume
into discrete regions and utilizes the graphics hardware to test for
objects within these regions (Fig. 2(d)).

The culling and clamping (CC) algorithms often work well to-
gether. Culling eliminates completely shadowed objects, creating
empty space in the shadow volumes. The size of the shadow vol-
umes is reduced by the clamping algorithms, leading to lower ras-
terization costs.

We have tested our algorithms on a PC with an NVIDIA
GeForce 5950FX graphics card. In a dynamic environment com-
posed of 100K triangles, we have observed up to a 7 times reduc-
tion in fill and a 4 times speed-up in shadow volume rendering time
by using CC shadow volumes over standard shadow volumes.
Organization: This paper is organized as follows: Section 2 re-
views previous research in the area of interactive shadow gener-
ation. Section 3 provides the details of shadow volume culling
and clamping. We describe their implementation in Section 4 and
highlight their performance. We analyze our techniques in Section
5, discuss some of their limitations, and compare them with other
methods.

2 Related Work

In this section, we give a brief overview of previous work on fast
generation of hard shadows. We mainly focus on two popular tech-
niques: shadow volumes and shadow maps.

2.1 Shadow Volumes

Shadow volumes were introduced by Crow [1977]. Bergeron
[1985] generalized shadow volumes for non-manifold objects and
non-planar polygons. BSP trees have been used to accelerate
shadow volume computation [Chin and Feiner 1989; Chrysanthou
and Slater 1995; Batagelo and Junior 1999], but they do not work
well with dynamic lights or many moving objects.

One of the first hardware implementations of shadow volumes
was demonstrated in Pixel-Planes 4 [Fuchs et al. 1985]. Heidmann
[1991] implemented Crow’s algorithm on graphics hardware using
the stencil buffer. This approach, known as the z-pass method, can
produce incorrect results when the viewport cuts through a shadow
volume. Diefenbach [1996] presented capping methods, but these
were not completely robust. To overcome the robustness problems
many researchers have proposed z-fail testing for shadow volume
computation [Carmack 2000; Everitt and Kilgard 2002]. Lengyel
[2002] described a hybrid algorithm that uses faster z-pass render-
ing when the viewport is not shadowed and z-fail rendering when
the viewport is shadowed. McGuire et al. [2003] further improved
the performance of Lengyel’s algorithm by using culling and depth
bounds clipping to reduce the fill consumptions as well as num-
ber of triangles rendered. Brabec and Seidel [2003] described an
algorithm for fast shadow volume computation using the graphics
hardware for silhouette edge computation.

2.2 Shadow Maps

Shadow maps were introduced by Williams [1978]. They can be
implemented in standard hardware [Segal et al. 1992]. Shadow
maps are prone to aliasing due to their limited resolution. Several
techniques have been proposed to minimize the impact of aliasing.
These include image-precision techniques like percentage closer fil-
tering [Reeves et al. 1987], adaptive shadow maps [Fernando et al.

Technical Report, UNC Department of Computer Science

Figure 3: Standard shadow volumes (left) vs. CC shadow volumes
(right).

2001] and perspective shadow maps [Stamminger and Drettakis
2002]. Hybrid algorithms combine some benefits of object-space
techniques like shadow volumes or shadow polygons with shadow
maps [Brotman and Badler 1984; McCool 2000; Govindaraju et al.
2003; Sen et al. 2003]

3 Shadow Volume Acceleration

In this section, we present our algorithms used to accelerate shadow
volumes. We represent the scene as a hierarchical scene graph.
Each object in the scene is represented as a leaf node in the hi-
erarchy. We further decompose spatially large objects into smaller
sub-objects using a k-D tree to provide better localization. The sub-
objects can largely be treated as independent objects except when
rendering shadow volumes as explained later in Section 3.6.

3.1 Shadow Volume Culling

Each object in the scene can be a potential shadow caster as well as
a potential shadow receiver. The purpose of shadow volume culling
is to eliminate those shadow casters that are themselves in shadow
or that cast shadows not contributing to the final image [Govin-
daraju et al. 2003]. The computation proceeds in two steps:

1. Compute potential shadow receivers (PSR): PSR consists of
the set of objects potentially visible from the viewpoint of the eye.

2. Compute potential shadow casters (PSC): PSC consists of
objects visible from the viewpoint of the light (see Fig. 2(b)).

We use occlusion queries and stencil tests for computing PSC. From
the viewpoint of the light, we render all objects that could possibly
cast a shadow, creating a representation of the visible surface in the
depth buffer. Next, with depth buffer writes disabled, we render
the bounding box of each object using an occlusion query. The
occlusion query indicates whether any pixels make it through the
pipeline. If all pixels fail the depth test then the object is completely
occluded, i.e. completely in shadow. Objects with visible bounding
boxes are added to the PSC. A similar algorithm can be used to
compute PSR, except that the scene is rendered from the viewpoint
of the eye. If a scene has little occlusion, we use only view-frustum
culling to compute PSC and PSR.

PSC may contain objects that cast shadows on areas that are
not visible to the eye. Step 2 can be modified slightly to remove
these shadow casters. After rendering the occlusion representation,
we render PSR, setting the stencil when the depth test fails. This
identifies the shadowed regions of PSR. When performing occlu-



Slicing
Planes

_—
ME
~

(c) (d)

Figure 2: Shadow Volume Acceleration: (a) Every object in the scene is a potential shadow caster as well as a shadow receiver. (b)
Shadow Volume Culling: The shadow casters visible to the light are PSC = {0, ...,05} and shadow receivers visible to the eye are
PSR = {0,,0,,05,04}. (c) Continuous Shadow Clamping: Shadow volumes SV; are clamped by using AABBs around the shadow
receivers to compute clamped volumes CV;. (d) Discrete Shadow Clamping: Testing for object containment in regions defined by slicing

planes refines CVs to a smaller WS. Culling and clamping reduce the original shadow volumes to only CV,...CV, and Ws’ reducing fill

requirements considerably.

sion queries, we also enable the stencil test so only shadow casters
covering shadowed regions are included in PSC.

3.2 Shadow Volume Clamping

Each shadow volume extends to infinity, thus its projection can
cover a large number of pixels in the stencil buffer. To reduce fill
consumption we compute clamped volumes that more tightly en-
close the objects in PSR (see Fig. 2(d)).

We use two different clamping techniques that are in some ways
complimentary. Each technique uses a different method for deter-
mining where interactions occur between shadow receivers and a
shadow volume. The continuous algorithm clamps precisely to the
bounds of the shadow receivers, but can overestimate the size of
a shadow volume when only a small part of the receiver lies in
shadow. The discrete algorithm clamps only to truly occupied re-
gions, but the bounds on the region are only as accurate as the re-
gion discretization. Both algorithms can be used together. Poorly
clamped volumes resulting from continuous clamping can be fur-
ther refined using discrete clamping (see Fig. 2).

3.3 Continuous Shadow Clamping

Continuous shadow clamping proceeds in two steps (Fig. 4). First,
we use overlap tests in the light view to identify the shadow re-
ceivers that lie in each shadow volume. Then we compute the occu-
pied intervals along a shadow volume by merging the extents of the
shadow receivers it contains. These computations are performed
entirely on the CPU.

Overlap Tests: We calculate overlaps using the axis-aligned
bounding boxes (AABBs) of the objects’ projection on the light’s
image plane. We also compute the depth interval (z,,;,,Zmax) of
each object in light-space. An object S is considered to lie within
the shadow volume of an object T when the AABBs of S and T
overlap and when the z,_.  of S is greater than the z, . of T.

Occupied Intervals Computation: Computation of occupied in-
tervals can be performed efficiently by processing all the shadow
casters simultaneously. Each shadow caster stores a list of the in-
tervals occupied by the receivers within its shadow volume. The
lists are initialized with the depth intervals of the shadow casters
themselves to account for self-shadowing. Then we process the

min min

Technical Report, UNC Department of Computer Science

shadow receivers according to their z,,;, value, from smallest to
largest, updating the occupied intervals of the shadow volumes in
which each receiver lies. Since the shadow receivers are processed
in order, only the last occupied interval in each list needs to be
updated. There are three possible ways to update the occupied in-
terval:

1. The occupied interval completely contains the receiver. Noth-
ing is done in this case.

2. The occupied interval partially contains the receiver. The inter-
val is extended to include the receiver.

3. The object lies completely outside the occupied interval. In
this case the depth interval of the receiver is added to the occupied
interval list.

Whenever a new occupied interval is created in case 3, two sets
of caps and an extra set of edges must be drawn. If the size in
screen-space of the gap between successive intervals is small, the
cost of rendering the new shadow volume interval may exceed any
savings in rasterization cost. A simple heuristic can be used for
determining whether or not to create a new interval. Let V be the
vertex processing cost of the new interval and R be the rasterization
cost of the gap. If V > R, then a new interval is not created. Instead,
the receiver depth interval is merged as in case 2.

Overlaps on light
image plane

Depth intervals

Figure 4: Continuous Clamping: Bounding box overlap tests
on the light’s image plane are used to determine potential shadow
receivers. Depth intervals of receivers are merged to determine
shadow volume intervals.



Light © Shad Light ©
adow

caster
\
N

h
Empty region ,‘ .........

Eye

Projected shadow
caster 1
! Depth comparison’

[ el
1 direction R3

Figure 5: Discrete Clamping: A single shadow caster is tested
against an empty region (left). In the next slice (right), the region is
occupied so a shadow volume is rendered for this region.

V and R can be computed with the following equation:

V. = (2C+2S)v,
R = Ar

where C and S are the number of vertices in the shadow volume
cap and silhouette respectively, v is cost per vertex, A is an estimate
of the area of the gap in pixels, and r is the rasterization cost per
pixel. The values of v and r can be determined empirically by ren-
dering a “typical” set of shadow volumes at different resolutions.
Rendering at a low resolution, e.g. 10 x 10, gives an estimate of
v. Rendering at high resolution and subtracting v gives an estimate
of r. Though this heuristic assumes an overly simplified model of
graphics processing, it gives acceptable results.

Temporal Coherence: We accelerate the overlap tests by perform-
ing incremental computations. We employ a variation of the sweep-
and-prune algorithm [Cohen et al. 1995] used to perform bounding
box overlap tests in large environments composed of multiple mov-
ing objects. We project the intervals of the AABBs along the X
and Y axis in the light’s image plane and sort the projected values
along each axis. When the objects or the light move we update the
AABBs and re-sort the list using an insertion sort with local inter-
changes. The list of depth intervals is maintained similarly. We
compute the overlapping AABBs from the sorted lists.

3.4 Discrete Shadow Clamping

The continuous shadow clamping algorithm computes clamped vol-
umes CV; for each shadow caster based on the AABBs of shadow
receivers. In many cases, AABBs can generate tight fitting clamped
volumes (e.g. CV;,CV, in Fig. 2(c)). Since the entire extents of the
shadow receivers are included in the shadow volume, the clamped
volumes may fit poorly (e.g. CVj in Fig. 2(c)). Discrete shadow
clamping divides a shadow volume into discrete regions and uses
the GPU for testing which regions contain shadow receivers. Dis-
crete clamping can be used by itself or to refine poorly clamped
volumes produced by continuous clamping.

We partition the scene into slices by using a set of similarly
oriented slicing planes (Fig. 5). The slices partition each shadow
volume into disjoint regions. We then use occlusion queries to de-
termine if shadow receivers lie within these regions. A convenient
choice for slicing planes are those which face towards the light
source and pass through the viewpoint, splitting the image plane
into strips of equal width. The discrete shadow volume regions
created by these slicing planes cover an approximately equal area
on the image plane, regardless of how far away the shadow vol-
ume is from the viewpoint. An additional benefit is that the caps
between regions need not be drawn. Since they lie on planes that
pass through the eye, the caps do not affect any pixels. Note that
this choice of planes is most useful if the light source lies outside
the view frustum. This corresponds to situations where the empty
space problem is most common.

Technical Report, UNC Department of Computer Science

Figure 6: CC shadow volumes in a 96K polygon scene composed
of multiple robots.

The discrete clamping computations are performed in the light’s
view. Each slice is rendered in back-to-front order using a pair of
clipping planes. We check each shadow caster against the slice to
determine if there are objects in this region of its shadow volume.
We project the shadow caster to the slicing plane below the slice.
With the depth test set to GREATER, we use an occlusion query to
determine if objects lie in front of the projected shadow caster.

Projecting the shadow caster into a plane does not change its
shape in the light view, only the depth of the pixels rasterized.
The projection is accomplished with a simple transformation ma-
trix. A plane p is represented in homogeneous 4D coordinates as
p = (a b ¢ d) with vector components corresponding to the coeffi-
cients of the plane equation:

ax+by+cz+d=0

The 4 x 4 matrix M that projects onto the plane p through a center
of projection ¢ = (¢, ¢y ¢ 1) is given by:

M=cop—(p-o)]l

where ® denotes outer product and I is the identity matrix. M
should be negated if the center of projection is behind the plane.
Though this has no effect on the final 3D coordinates of the pro-
jected points, it does ensure that the fourth coordinate is positive,
which is necessary to prevent the point from being clipped by the
graphics hardware. If a portion of an object is farther away from a
slicing plane than the light, then it will not be projected correctly.
To handle this problem, the edges of the object’s shadow volume
should be extruded to infinity from the last plane onto which the
object can be correctly projected.

3.5 Conservative Discrete Shadow Clamping

The use of image-precision occlusion queries in discrete clamping
may lead to sampling errors due to limited screen resolution and
z-buffer precision. The errors can cause occupied regions to be in-
correctly classified as empty leading to small areas of missing shad-
ows. A recent paper [Govindaraju 2004] describes a technique for
performing robust collision detection on graphics hardware. This
technique “fattens” the geometric primitives sufficiently to avoid
sampling errors. Discrete clamping is a collision detection prob-
lem between shadow casters and the objects within the slices. We
can adapt the conservative collision technique to perform reliable
clamping. First, the bounding representations of the shadow vol-
umes are constructed and fattened. Using these representations, we
can then perform collision detection with the fattened objects en-
closed in the slices. The method would be slower but would elimi-
nate the image-precision artifacts.



Fill - Scene 1

— CCsV
1601 — &y

— - CCSV-SW
140 gv-sw

Frame

Fill - Scene 2

= CCSV
- SV
— - CCSV-SW
— - SV-SW

0 50 100 150 200 250 300
Frame

Timings - Scene 1

= CCSV
60 e SV

— - CCSv-DB
| - - Sv-DB
— - Clamp

Time (ms)

Frame

— - CCSvV-DB
— - SV-DB
— Clamp

iy Cull

M
501

@40 Thee

£ T

i:sowm
201 - - . ~

\\/Nv\“ﬁ \’1/’\\~HJ “\/x“‘\" ey N s

10 | N
0 ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300

Figure 7: CC Shadow Volumes (CCSV) vs. Standard Shadow Volumes (SV): These graphs show the reduction in fill and shadow volume
rendering time obtained with CCSVs in two test scenes. Also shown is the fill that actually results in stencil writes (CCSV-SW and SV-SW),
clamping time, and the time to render shadow volumes with an empty depth bounds range (CCSV-DB and SV-DB).

3.6 Rendering Clamped Volumes

Both continuous and discrete clamped shadow volumes are ren-
dered in a similar manner. In the continuous case, silhouette edges
of a shadow caster are extruded to form quads that extend across
the covered intervals or regions. Caps are drawn at interval bound-
aries. In the discrete case, the quads are formed by projecting the
silhouette edges onto the slicing planes. No caps need to be drawn
because they lie in the slicing planes which pass through the eye
and have zero area in screen-space.

Two shadow casters may have edges in common if they are sub-
objects of the same parent object. To minimize the size of the
shadow volume sides arising from shared edges, the list of occu-
pied intervals or regions for the triangles on either side of a shared
edge are merged. Portions occupied on both sides are not drawn.

3.7 Omnidirectional Light Sources

The culling and clamping algorithms use planar projections, which
implies that they can only be used within a restricted frustum. For
omnidirectional light sources, CC shadow volumes can be used for
a portion of the space around the light and standard shadow volumes
can be used for the rest. This works especially well for lights that
are located near the edge of the viewport or close to a wall. In these
cases, the large shadow volumes which would benefit most from
culling and clamping lie predominantly in one direction.

Technical Report, UNC Department of Computer Science

4 Implementation and Performance

We have implemented our system on a PC with a NVIDIA GeForce
FX 5950 Ultra graphics card and dual 2.8 GHz Xeon processors, al-
though only one processor was utilized for our computations. The
system uses the OpenGL API. We use the vertex array range exten-
sion for accelerating shadow volume rendering by storing the vertex
information in video memory on the graphics card. To perform oc-
clusion queries, we use the GL_NV _occlusion_query extension.

Both the CPU and the GPU are used for computation. The com-
putations are organized so as to maximize parallelism. Occlusion
queries for culling and clamping require the CPU to wait for the
GPU, so they are performed first. Then using data precomputed in
the previous frame, the CPU rapidly issues the commands for the
ambient pass, shadow volume rendering, and the lit pass. While the
GPU to processes the commands, the CPU constructs the shadow
volumes for the next frame. The CPU computations usually finish
before the GPU, so they have no affect on the frame rate.

We tested the performance of our system on two different
scenes:

1. Corridor Scene: The corridor shown in Fig. 1 is part of a model
consisting of 96K triangles. Most of the primitives are contained
in the complex trusses overhead which cast shadows on the floor
and walls below. This scene demonstrates the savings achieved by
shadow volume clamping. Most of the shadow volumes traverse
empty space. Since there is very little occlusion in the scene, we
perform only view-frustum culling to compute PSC and PSR.

2. Robot Scene: This part of the scene is a large room with a
crowd of moving robots (Fig. 6) which creates a high degree of
occlusion. When the light is placed low in the scene, the shadow



culling algorithm removes many shadow casters.

Fig. 7 shows the fill and shadow volume rendering times for
the paths shown in the video. The test scenes were rendered at
1280 x 1024 resolution. Clamping and culling are performed at the
same resolution. The fill we measured is the total number of pix-
els touched when rendering the shadow volumes with the depth test
disabled. We also measured the number of stencil writes (CCSV-
SW and SV-SW). For z-pass shadow volumes, this is equivalent to
the number of fragments that pass the depth test. For both paths
there are portions where z-fail shadow volumes are faster than z-
pass shadow volumes, and vice versa. Z-pass was used for path 1
and z-fail for path 2. The average frame rates were similar with
either setting. Discrete and continuous clamping give comparable
results for these paths, though discrete clamping is takes twice as
long for path 2 because more occlusion queries are used. Continu-
ous clamping performs best when the light direction is aligned well
with the geometry in the scene. In general, discrete clamping tends
to result in greater fill savings and reduced shadow volume render-
ing time.

With CC shadow volumes we observed up to 7 times reductions
in fill and a 4 times speed-up in shadow volume rendering time. For
the paths shown in Fig. 7, we see an average of 2-3 times reduction
in fill and 2.5 times speed-up in shadow volume rendering time.
Table 1 shows the breakdown of the average timings.

5 Analysis

The cost of shadow volume rendering can be divided into two parts.
The vertex processing cost includes the time to compute the vertices
of the shadow volumes on the CPU and the time to transmit, trans-
form, and set up the geometric primitives on the graphics hardware.
This cost is independent of screen resolution. The rasterization
cost is higher when anti-aliasing is enabled and increases propor-
tionally with screen size. Our algorithm is targeted for scenes in
which rasterization cost is the major bottleneck. Shadow volume
culling reduces both the vertex processing and rasterization cost
by eliminating the redundant shadow volumes altogether. Shadow
clamping splits the shadow volumes to significantly reduce raster-
ization cost in empty space while increasing the vertex processing
cost. The graphs in Fig. 7 show the existence of a strong empir-
ical relationship between the area of the shadow volumes and the
shadow volume rendering time, though the exact relationship can
be hardware dependent.

In continuous clamping, the overlap tests are relatively inexpen-
sive. Although there are potentially n? interactions between shadow
casters and shadow receivers, by utilizing temporal coherence the
expected running time is reduced to O(n + k), where k is the ac-
tual number of overlapping bounding boxes. In typical scenes, k
is usually fairly small. The main cost is incurred in merging depth

Average Timings (ms)
Scene 1 Scene 2
N CCsV SV CCSV* | CCSV
Ambient + Lit 6.6 6.6 7.4 7.4 7.4
SV Rendering 49.4 20.0 59.7 32.8 24.7
Clamping - 2.9 - - 4.6
Culling - - - 6.9 6.9
Frames per sec. 18.6 38.1 154 233 273

Table 1: Timing for standard shadow volumes (SV), CC shadow
volumes (CCSV), and CC shadow volumes without clamping
(CCSV*). Note that most CPU computations are performed while
the GPU renders the scene and the shadow volumes, so they do not
affect the frame rate.

Technical Report, UNC Department of Computer Science

intervals.

For the discrete clamping, vertex processing and clamping costs
increase linearly with the number of slices. The overall savings
introduced by adding more slices are large at first, but then begin
to diminish. At some point the cost of additional slicing planes
dominates the savings. In our experiments 8 — 20 slices seemed to
work well.

The extra rendering used for performing culling and discrete
clamping is fairly inexpensive for several reasons.

1. Whenever possible, we use tight bounding volumes instead of
the objects themselves to reduce rendering overhead.

2. There are no pixel writes when performing occlusion queries,
so this rasterization is less expensive than that of shadow volumes.

3. There is less overdraw. The depth complexity in light view is
usually much lower than that of the shadow volumes when looking
at them through the side.

Thus the extra rendering to reduce the size and complexity of large
shadow volumes often leads to significant savings.

Occlusion queries are currently a bottleneck in our system. We
have observed a maximum of only 1.2M queries per second at any
resolution, though the graphics hardware can render the objects at
a much higher rate. We expect the overhead associated with oc-
clusion queries will be reduced considerably in the future. Since
the current performance of occlusion queries is slow we are forced
to use fewer of them. We have to use a coarser object subdivision
which leads to less fill savings.

5.1 Limitations

CC shadow volumes are appropriate only for those situations where
rasterization is a bottleneck. In addition, there must be some degree
of unnecessary shadow volume rendering. Consider the complex
self-shadowing of branches in a tree. Shadow volumes in such
a scene may be fill-bound, but since there are few large occlud-
ers to create occlusion and there are few large regions of empty
space, CC shadow volumes would provide very little performance
gain. Clamping would probably work well, however, to eliminate
the empty space in the shadow volumes between the branches and
the ground. In general, culling and clamping work best on com-
plex models, which either have a high degree of occlusion or large
empty spaces.

Tight bounding volumes for the objects are important. If the
bounds are too loose much of the potential savings may be lost.
Long, thin objects with a large aspect ratio can be especially prob-
lematic for the continuous shadow clamping algorithm because
AABB:s often provide a poor fit.

Occlusion queries used in culling may lead to artifacts. The
visibility computations are performed at image-precision. The sam-
pling on the image plane may miss small holes or small occluders,
leading to incorrect shadows. Triangles that are nearly parallel to
the view can also be problematic because they are covered by few
samples. These sampling problems are reduced by using bounding
boxes around the objects and by ensuring that the light’s view is fit
tightly to the visible objects in the scene in order to maximize the
sampling resolution.

Another drawback of CC shadow volumes is that they require
more CPU time to construct. Methods that off-load shadow volume
construction to the GPU [Brabec and Seidel 2003] are difficult to
adapt for use with CC shadow volumes. Though shadow volume
construction on the CPU does not adversely affect frame-rate in our
current implementation, it less time remains for other computations.

5.2 Comparison with other Methods

BSP-tree based shadow volumes [Chin and Feiner 1989; Chrysan-
thou and Slater 1995; Batagelo and Junior 1999] can render shad-



ows efficiently in static scenes or scenes with few moving objects.
However, when the light source moves or many objects move, large
portions of the BSP-tree need to be re-built, which is usually an ex-
pensive process. Our algorithms can easily handle dynamic scenes
with a moving light source. The only limitation is that continuous
clamping algorithm requires coherent motion. The discrete clamp-
ing algorithm is completely insensitive to motion.

McGuire et al. [McGuire et al. 2003] recently demonstrated an
effective algorithm for accelerating shadow volumes. Their method
uses a combination of the OpenGL scissor test and depth bounds
tests to reduce shadow volume fill. The scissor region is set to the
intersection of the viewport with the screen projection of the light’s
region of influence. In the types of scenes for which our algorithm
was designed, the scissor region would usually contain the entire
viewport because the whole scene is within the light’s region of
influence. Thus the only fill savings come from the depth bounds
test. Fig. 7 shows the time to render the shadow volumes with a
depth bounds range set to (0,0). This range effectively rejects every
fragment early from the pipeline. The timings indicate that even
with the depth bounds test the rasterization cost is still significant.
In fact, even if no pixels were to pass the depth bounds test, these
results indicate that on the same hardware, CC shadow volumes
would be faster for these scenes. For scenes with little occlusion or
without large, mostly empty shadow volumes, our algorithm would
perform poorly because the overhead would dominate the potential
savings.

6 Conclusion and Future Work

In this paper, we have presented algorithms for shadow culling
and shadow clamping to accelerate the performance of shadow vol-
umes. These include visibility computations for shadow culling and
continuous and discrete shadow clamping. These algorithm can be
efficiently implemented by utilizing temporal coherence between
successive frames. We have demonstrated the performance of these
algorithms on two relatively complex environments, reducing fill
requirements by up to 7 times.

There are several avenues for future work. Our main focus in
this paper has been to reduce rasterization costs. We would like to
explore methods to reduce the vertex processing cost of shadow vol-
umes which remains fairly high. Adaptive approaches using slice
coverage information from one frame might be used to compute a
better set of slicing planes for the next, i.e. use temporal coherence
for discrete shadow clamping. We could also improve the continu-
ous clamping by computing better depth bounds with more sophis-
ticated overlap tests. Finally we would like to extend these ideas to
improve the performance of soft shadow generation algorithms.

References

BATAGELO, H. C., AND JUNIOR, I. C. 1999. Real-time shadow generation using bsp
trees and stencil buffers. Proc. SIBGRAPI 12, 93-102.

BERGERON, P. 1985. Shadow volumes for non-planar polygons. In Graphics Interface
’85 Proceedings, 417-418.

BRABEC, S., AND SEIDEL, H. 2003. Shadow volumes on programmable graphics
hardware. Proc. of Eurographics.

BROTMAN, L. S., AND BADLER, N. I. 1984. Generating soft shadows with a depth
buffer algorithm. IEEE Computer Graphics and Applications 4, 10, 71-81.

CARMACK, J. 2000. Email to private list, may 23.
http://developer.nvidia.com/object/robust_shadow_volumes.html.

CHIN, N., AND FEINER, S. 1989. Near real-time shadow generation using BSP trees.
In Computer Graphics (SIGGRAPH ’89 Proceedings), vol. 23, 99-106.

CHRYSANTHOU, Y., AND SLATER, M. 1995. Shadow volume BSP trees for com-

putation of shadows in dynamic scenes. In 7995 Symposium on Interactive 3D
Graphics, 45-50.

Technical Report, UNC Department of Computer Science

COHEN, J., LIN, M., MANOCHA, D., AND PONAMGI, M. 1995. I-collide: An
interactive and exact collision detection system for large-scale environments. In
Proc. of ACM Interactive 3D Graphics Conference, 189—-196.

Crow, F. C. 1977. Shadow algorithms for computer graphics. ACM Computer
Graphics 11, 3, 242-248.

DIEFENBACH, P. 1996. Multi-pass pipeline rendering: Interaction and realism
through hardware provisions. PhD thesis, University of Pennsylvania.

EVERITT, C., AND KILGARD, M. 2002. Practical and robust stenciled shadow
volumes for hardware-accelerated rendering. In SIGGRAPH 2002 Course Notes,
vol. 31.

FERNANDO, R., FERNANDEZ, S., BALA, K., AND GREENBERG, D. 2001. Adaptive
shadow maps. In Proceedings of ACM SIGGRAPH 2001, 387-390.

FucHs, H., GOLDFEATHER, J., HULTQUIST, J. P., SPACH, S., AUSTIN, J. D.,
BROOKS, JR., F. P., EYLES, J. G., AND POULTON, J. 1985. Fast spheres,
shadows, textures, transparencies, and image enhancements in Pixel-Planes. In
Computer Graphics (SIGGRAPH ’85 Proceedings), vol. 19, 111-120.

GOVINDARAJU, N., LLOYD, B., YOON, S., SUD, A., AND MANOCHA, D. 2003.
Interactive shadow generation in complex environments. Proc. of ACM SIG-
GRAPH/ACM Trans. on Graphics 22, 3, 501-510.

GOVINDARAJU, N. 2004. Reliable occlusion queries using graphics hardware. In
Technical Report, UNC Department of Computer Science.

HEIDMANN, T. 1991. Real shadows real time. [RIS Universal, 18.

LENGYEL, E. 2002. The mechanics of robust stencil shadows. Gamasutra (October
11). http://www.gamasutra.com/features/20021011/lengyel_01.htm.

McCooL, M. 2000. Shadow volume reconstruction from depth maps. ACM Trans.
on Graphics 19, 1, 1-26.

MCGUIRE, M., HUGHES, J., EGAN, K., KILGARD, M., AND EVERITT, C.
2003.  Fast, practical and robust shadows.  Technical report, NVIDIA.
http://developer.nvidia.com/object/fast_shadow_volumes.html.

REEVES, W., SALESIN, D., AND COOK, R. 1987. Rendering antialiased shadows
with depth maps. In Computer Graphics (ACM SIGGRAPH ’87 Proceedings),
vol. 21, 283-291.

SEGAL, M., KOROBKIN, C., VAN WIDENFELT, R., FORAN, J., AND HAEBERLI,
P. 1992. Fast shadows and lighting effects using texture mapping. In Computer
Graphics (SIGGRAPH 92 Proceedings), vol. 26, 249-252.

SEN, P., CAMMARANO, M., AND HANRAHAN, P. 2003. Shadow silhouette maps.
ACM Trans. on Graphics (Proc. of ACM SIGGRAPH) 22.

STAMMINGER, M., AND DRETTAKIS, G. 2002. Perspective shadow maps. In Pro-
ceedings of ACM SIGGRAPH 2002, 557-562.

WILLIAMS, L. 1978. Casting curved shadows on curved surfaces. In Computer
Graphics (SIGGRAPH ’78 Proceedings), vol. 12, 270-274.



