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Figure 1: These images demonstrate the benefits of CC shadow volumes on a scene with 96K polygons. Standard shadow
volumes are shown in the left image and CC shadow volumes in the middle. Shadow volumes are shown in transparent yellow.
The right image shows the shadows generated by CC shadow volumes at interactive rates. CC shadow volumes generate up to
7 times less fill than standard shadow volumes in this scene.

Abstract

We present a technique that uses culling and clamping (CC) for accelerating the performance of stencil-based
shadow volume computation. Our algorithm reduces the fill requirements and rasterization cost of shadow volumes
by reducing unnecessary rendering. A culling step removes shadow volumes that are themselves in shadow or
do not contribute to the final image. Our novel clamping algorithms restrict shadow volumes to those regions
actually containing shadow receivers. In this way, we avoid rasterizing shadow volumes over large regions of
empty space. We utilize temporal coherence between successive frames to speed up clamping computations. Even
with fairly coarse clamping we obtain substantial reduction in fill requirements and shadow rendering time in
dynamic environments composed of up to a 100K triangles.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism – Color, Shading, Shadowing and Texture

1. Introduction
Shadows are important in computer graphics because they
add realism to a scene and can aid in understanding spa-
tial relationships between objects. Shadows have been an ac-
tive area of research in computer graphics for more than two
decades. Advances in graphics hardware have made it possi-
ble to accurately render shadows from point light sources in
interactive applications including games and walkthroughs.

Shadow volumes [Cro77] are a popular technique for
shadow generation. A shadow volume is the region of space
behind a shadow caster containing points that lie in shadow.
Shadow volumes compute shadow boundaries implicitly,
which makes them attractive for computing shadows on
complex geometry. Moreover, the asymptotic complexity of
shadow generation is linear in the number of shadow caster
polygons.
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Shadow volumes can be implemented using the stencil
buffer on current graphics systems. The algorithm proceeds
in three stages. First, the scene is rendered with only ambi-
ent lighting. Second, the shadow volumes are rendered to the
stencil buffer, which sets the stencil for shadowed pixels. Fi-
nally, the scene is rendered again with full lighting using the
stencil test to prevent shadowed pixels from changing.

A major drawback of the algorithm is that the rasteriza-
tion of shadow volumes can be expensive. Since shadow vol-
umes extend away from shadow casters toward infinity, they
sometimes cover much of the screen, leading to high band-
width and fill consumption. Often large portions of the ren-
dered shadow volumes make no contribution to the final im-
age. The three main sources of unnecessary shadow volume
rendering are: large regions of empty space, shadow casters
completely enclosed in other shadow volumes, and shadow
generation on parts of the scene not visible to the viewer.

Main Results: We present methods for accelerating the
performance of shadow volume computations. Our algo-
rithms target scenarios where shadow volume rasterization
is the major bottleneck. We decrease the rasterization cost
by using two techniques:

Shadow Volume Culling: Using a simpler variation of the
shadow culling algorithm presented in Govindaraju et al.
[2003], we eliminate the shadow casters that are themselves
completely in shadow. We also eliminate the shadow casters
whose shadows are not visible to the eye. Shadow volume
culling is shown in Fig. 2(b).

Shadow Volume Clamping: By clamping the extents of
each shadow volume to the intervals containing shadow re-
ceivers we avoid unnecessary rendering in large regions of
empty space. To compute the occupied intervals of a shadow
volume we use two techniques. The first technique employs
bounding volumes to identify continuous intervals along
the shadow volume that contain objects. (Fig. 2(c)). Tem-
poral coherence is used to accelerate the computations by
performing incremental computations between successive
frames. Our second technique divides a shadow volume into
discrete intervals and utilizes the graphics hardware to test
for objects within each interval (Fig. 2(d)).

The culling and clamping (CC) algorithms often work
well together. Culling eliminates completely shadowed ob-
jects, creating empty space in the shadow volumes. The size
of the shadow volumes is reduced by the clamping algo-
rithms, leading to lower rasterization costs.

We have tested our algorithms on a PC with an NVIDIA
GeForce FX 5950 Ultra graphics card. In a dynamic environ-
ment composed of 100K triangles, we have observed up to
a 7 times reduction in fill and a 4 times speed-up in shadow
volume rendering time by using CC shadow volumes over
standard shadow volumes.

Organization: This paper is organized as follows: Section 2
reviews previous research in the area of interactive shadow
generation. Section 3 provides the details of shadow volume

culling and clamping. We describe our implementation of
the algorithms in Section 4 and highlight their performance.
We analyze our techniques in Section 5, discuss some of
their limitations, and compare them with other methods.

2. Related Work

Shadow volumes were introduced by Crow [Cro77].
Bergeron [Ber85] generalized shadow volumes for non-
manifold objects and non-planar polygons. BSP trees
have been used to accelerate shadow volume computation
[CF89, CS95, BJ99], but they do not work well with dy-
namic lights or many moving objects.

One of the first hardware implementations of shadow vol-
umes was demonstrated in Pixel-Planes 4 [FGH∗85]. Hei-
dmann [Hei91] implemented Crow’s algorithm on graph-
ics hardware using the stencil buffer. This approach, known
as the z-pass method, can produce incorrect results when
the viewport cuts through a shadow volume. Diefenbach
[Die96] presented capping methods, but these were not
completely robust. To overcome these problems several re-
searchers have proposed z-fail testing for shadow volume
computation [Car00, EK02]. Brabec and Seidel [BS03] de-
scribed an algorithm for fast shadow volume computation
using the graphics hardware for silhouette edge computa-
tion.

To deal with the fill-consumption problem Lengyel
[Len02] proposed using the scissor test to restrict shadow
volume rendering to within the light bounds. McGuire et al.
[MHE∗03] improved upon Lengyel’s algorithm by adding
culling and using the depth bounds test to further restrict
shadow volume rendering. Chan and Durand [CD04] use a
hybrid of shadow maps and shadow volumes to reduce fill.
They render a shadow map to identify shadow boundaries
and render shadow volumes only in these areas. Aila and
Möller [AAM04] perform shadow volume calculations on
coarse tiles in screen space to determine which tiles con-
tain shadow boundaries, then render shadow volumes only
in these tiles. These approaches rely on existing or proposed
culling hardware to avoid unnecessary rendering. Our algo-
rithm is orthogonal in that it reduces the size and complexity
of the shadow volumes that are rendered in the first place.

3. Shadow Volume Acceleration

In this section, we present our algorithms for accelerating
shadow volumes. We represent a scene as a hierarchical
scene graph. Each object in the scene is represented as a leaf
node in the hierarchy. We decompose spatially large objects
into smaller sub-objects using a k-D tree to provide better
localization. The sub-objects can largely be treated as inde-
pendent objects except when rendering shadow volumes as
explained later in Section 3.3.

3.1. Shadow Volume Culling

Each object in the scene can be a potential shadow caster as
well as a potential shadow receiver. The purpose of shadow
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Figure 2: Shadow Volume Acceleration: (a) Every object in the scene is a potential shadow caster and receiver. (b) Shadow
Volume Culling: The shadow casters visible to the light are PSC = {O1, . . . ,O5} and shadow receivers visible to the eye
are PSR = {O1,O2,O3,O5}. (c) Continuous Shadow Clamping: Shadow volumes SVi are clamped by using AABBs around
the shadow receivers to compute clamped volumes CVi. (d) Discrete Shadow Clamping: SVi are clamped to intervals defined
by slicing planes. Testing for actual object containment results in a smaller DV5. Discrete clamping may be combined with
continuous clamping to refine the poorly clamped CV5, producing a optimal set of shadow volumes {CV1 . . .CV4, DV5} which
significantly reduces fill requirements.

volume culling is to eliminate those shadow casters that are
themselves in shadow or that cast shadows not contributing
to the final image [GLY∗03]. The computation proceeds in
two steps:

1. Compute potential shadow receivers (PSR): PSR con-
sists of the set of objects that may be visible from the view-
point of the eye.

2. Compute potential shadow casters (PSC): PSC consists
of objects that may be visible from the viewpoint of the light
(see Fig. 2(b)).

We use occlusion queries and stencil tests for computing
PSC. From the viewpoint of the light, we render the scene,
creating a representation of the visible surface in the depth
buffer. Next, with depth buffer writes disabled, we render
the bounding box of each object using an occlusion query.

Figure 3: Standard shadow volumes (left) vs. CC shadow
volumes (right).

The occlusion query indicates whether any pixels pass com-
pletely through the pipeline. If all pixels fail the depth test
then the object is completely occluded, i.e. completely in
shadow. Objects with visible bounding boxes are added to
the PSC. A similar algorithm can be used to compute PSR,
except that the scene is rendered from the viewpoint of the
eye. If a scene has little occlusion, we use only view-frustum
culling to compute PSC and PSR.

PSC may contain objects that cast shadows on areas that
are not visible to the eye. Step 2 can be modified slightly
to remove these shadow casters. After rendering the occlu-
sion representation, we render PSR, setting the stencil when
the depth test fails. This identifies the shadowed regions of
PSR. When performing occlusion queries, we also enable the
stencil test so that only shadow casters covering shadowed
regions are included in PSC.

3.2. Shadow Volume Clamping

Each shadow volume extends to infinity, thus its projection
can cover a large number of pixels in the stencil buffer. To
reduce fill consumption we compute clamped volumes that
more tightly enclose the objects in PSR (see Fig. 2(c)).

We use two different clamping techniques that are in
some ways complimentary. Each technique uses a differ-
ent method for determining where interactions occur be-
tween shadow receivers and a particular shadow volume.
The continuous algorithm clamps precisely to the bounds
of the shadow receivers, but can overestimate the size of a
shadow volume when only a small part of the receiver lies in
shadow. The discrete algorithm clamps only to truly occu-
pied regions, but the bounds on the region are only as accu-
rate as the region discretization. Both algorithms can be used
independently or together. Poorly clamped volumes result-
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ing from continuous clamping can be further refined using
discrete clamping.

3.2.1. Continuous Shadow Clamping

Continuous shadow clamping proceeds in two steps (Fig.
4). First, we use overlap tests in the light view to identify
the shadow receivers that lie in each shadow volume. Then
we compute the occupied intervals along a shadow volume
by merging the extents of the shadow receivers it contains.
These computations are performed entirely on the CPU.

Overlap Tests: We calculate overlaps using the axis-aligned
bounding boxes (AABBs) of the objects’ projection on the
light’s image plane. We also compute the depth interval
(zmin,zmax) of each object in light-space. An object S pos-
sibly lies within the shadow volume of an object T when the
AABBs of S and T overlap and when the zmax of S is greater
than the zmin of T. Note that S and T may be mutually con-
tained within the others’ shadow volume.

Occupied Intervals Computation: Computation of occu-
pied intervals can be performed efficiently by processing
all the shadow casters simultaneously. Each shadow caster
stores a list of the intervals occupied by the receivers within
its shadow volume. The lists are initialized with the depth
intervals of the shadow casters themselves to account for
self-shadowing. Then we process the shadow receivers ac-
cording to their zmin value, from smallest to largest, updat-
ing the occupied intervals of the shadow volumes in which
each receiver lies. Since the shadow receivers are processed
in order, only the last occupied interval in each list needs
to be updated. There are three possible ways to update the
occupied interval:

1. The occupied interval completely contains the receiver.
Nothing is done in this case.

2. The occupied interval partially contains the receiver. The
interval is extended to include the receiver.

3. The object lies completely outside the occupied interval.
In this case the depth interval of the receiver is added to the
occupied interval list.

Whenever a new occupied interval is created in case 3,
two sets of caps and an extra set of edges must be drawn. If
the size in screen-space of the gap between successive inter-
vals is small, the cost of rendering the new shadow volume
interval may exceed any savings in rasterization cost. A sim-
ple heuristic can be used for determining whether or not to
create a new interval. Let V be the vertex processing cost of
the new interval and R be the rasterization cost of the gap.
If V > R, then a new interval is not created. Instead, the re-
ceiver depth interval is merged as in case 2.

V and R can be computed with the following equation:

V = (2C +2S)v,
R = Ar

Light

Overlaps on light 

image plane
Depth intervals

Shadow

volumes

Figure 4: Continuous Clamping: Bounding box overlap
tests on the light’s image plane are used to determine po-
tential shadow receivers. Depth intervals of receivers are
merged to determine shadow volume intervals.

where C and S are the number of vertices in the shadow vol-
ume cap and silhouette respectively, v is cost per vertex, A
is an estimate of the area of the gap in pixels, and r is the
rasterization cost per pixel. The values of v and r can be de-
termined empirically by rendering a “typical" set of shadow
volumes at different resolutions. Rendering at a low resolu-
tion, e.g. 10× 10, gives an estimate of v. Rendering at high
resolution and subtracting v gives an estimate of r. Though
this heuristic assumes an overly simplified model of graphics
processing, it gives acceptable results.

Temporal Coherence: We accelerate the overlap tests by
performing incremental computations. We employ a varia-
tion of the sweep-and-prune algorithm [CLMP95] used to
perform bounding box overlap tests in large environments
composed of multiple moving objects. We project the inter-
vals of the AABBs along the X and Y axis in the light’s
image plane and sort the projected values along each axis.
When the objects or the light move we update the AABBs
and re-sort the list using an insertion sort with local inter-
changes. The list of depth intervals is maintained similarly.
We compute the overlapping AABBs from the sorted lists.

3.2.2. Discrete Shadow Clamping

The continuous shadow clamping algorithm computes
clamped volumes CVi for each shadow caster based on
the AABBs of shadow receivers. In many cases, AABBs
can generate tight fitting clamped volumes (e.g. CV1 . . .CV3
in Fig. 2(c)). Since the entire extents of the shadow re-
ceivers are used to determine occupied intervals, continuous
clamped volumes may fit poorly when only a small part of a
receiver lies within a shadow volume (e.g. CV5 in Fig. 2(c)).

Discrete shadow clamping uses the GPU to test for
shadow receivers within discrete shadow volume intervals.
A set of similarly-oriented planes partition the view frustum
into slices. The discrete intervals are determined by the in-
tersection of the shadow volumes with the slices(Fig. 5). A
convenient choice for slicing planes are those which face to-
wards the light source and pass through the viewpoint, split-
ting the image plane into strips of equal width. The inter-
vals created by these slicing planes cover an approximately
equal area on the image plane, regardless of how far away
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Figure 5: Discrete Clamping: A single shadow caster is
tested against an empty interval (left). In the next slice
(right), the interval is occupied so a shadow volume is ren-
dered for this interval.

a shadow volume is from the viewpoint. An additional ben-
efit is that the caps between intervals need not be drawn.
Since they lie on planes that pass through the eye, the caps
do not affect any pixels. Note that this choice of planes is
most useful if the light source lies outside the view frustum.
This corresponds to situations where the empty space prob-
lem is most common.

The discrete clamping computations are performed in the
light’s view. Each slice is rendered in back-to-front order us-
ing a pair of clipping planes. We test each shadow caster
against a given slice with an occlusion query. We set depth
test to GREATER and project the shadow caster onto the bot-
tom plane of the slice. If the occlusion query indicates that
no pixels passed the depth test, then the shadow volume in-
terval corresponding to the slice is empty.

Projecting a shadow caster onto a plane does not change
its shape in the light view, only the depth of the pixels raster-
ized. The projection is accomplished with a simple transfor-
mation matrix. A plane p is represented in homogeneous 4D
coordinates as p = (a b c d) with vector components corre-
sponding to the coefficients of the plane equation:

ax+by+ cz+d = 0

The 4×4 matrix M that projects onto the plane p through a
center of projection c = (cx cy cz 1) is given by:

M = c⊗p− (p · c)I

where ⊗ denotes outer product and I is the identity matrix.
M should be negated if the center of projection is below the
plane. Though this has no effect on the final 3D coordinates
of the projected points, it does ensure that the fourth coordi-
nate is positive, which is necessary to prevent the point from
being clipped by the graphics hardware. If a portion of an ob-
ject is farther away from a slicing plane than the light, then
it will not be projected correctly. To handle this problem,
the edges of the object’s shadow volume should be extruded
to infinity from the last plane onto which the object can be
correctly projected.

3.2.3. Conservative Discrete Shadow Clamping

The use of image-precision occlusion queries in discrete
clamping may lead to sampling errors due to limited screen

resolution and z-buffer precision. The errors can cause oc-
cupied intervals to be incorrectly classified as empty lead-
ing to small areas of missing shadows. Recently Govindaraj
et al. [GLM04] described a technique for performing robust
interference detection using graphics hardware. This tech-
nique “fattens” the geometric primitives sufficiently to avoid
sampling errors. Discrete clamping is an interference com-
putation problem between shadow casters and the objects
within the slices. It is possible to adapt the conservative over-
lap tests [GLM04] to perform reliable clamping. First, the
bounding representations of the shadow volumes are con-
structed and fattened. Using these representations, we can
then perform overlap tests with the fattened objects enclosed
in the slices. The resulting algorithm is slower but eliminates
the image-precision artifacts.

3.3. Rendering Clamped Volumes

Both continuous and discrete clamped shadow volumes are
rendered in a similar manner. In the continuous case, silhou-
ette edges of a shadow caster are extruded to form quads that
extend across the occupied intervals. Caps are drawn at in-
terval boundaries. In the discrete case, the quads are formed
by projecting the silhouette edges onto the slicing planes. No
caps need to be drawn because they lie in the slicing planes
which pass through the eye, so they have zero area in screen-
space.

Two shadow casters may have edges in common if they
are sub-objects of the same parent object. To avoid redun-
dant shadow volume sides arising from shared edges, the
list of occupied intervals for the triangles on either side of
a shared edge are merged. Portions occupied on both sides
are not drawn.

3.4. Omnidirectional Light Sources

The culling and clamping algorithms depend on planar pro-
jections, which implies that they can only be used within
a restricted frustum. For omnidirectional light sources, CC
shadow volumes can be used for a portion of the space
around the light and standard shadow volumes can be used
for the rest. This works best for lights that are located near
the edge of the viewport or close to a wall. In these cases,

Figure 6: CC shadow volumes in a 96K polygon scene com-
posed of multiple robots.
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Figure 7: CC Shadow Volumes vs. Standard Shadow Volumes (SV): These graphs show the reduction in fill and shadow
volume rendering time obtained with CCSVs in two test scenes with continuous, discrete, and exact clamping (described in
Section 4). Also shown are the number of stencil writes (SV-SW) and the time to render shadow volumes with an empty depth
bounds range (SV-DB).

the large shadow volumes which would benefit most from
culling and clamping lie predominantly in one direction.

4. Implementation and Performance

We have implemented our system on a PC with a NVIDIA
GeForce FX 5950 Ultra graphics card and dual 2.8GHz
Xeon processors, although only one processor was utilized
for our computations. The system uses the OpenGL API. We
use the vertex array range extension for accelerating shadow
volume rendering by storing the vertex information in video
memory on the graphics card. To perform occlusion queries,
we use the GL_NV_occlusion_query extension.

The computations on the CPU and GPU are organized
so as to maximize parallelism. Occlusion queries for culling
and clamping require the CPU to wait for the GPU, so they
are performed first. Then using data precomputed in the pre-
vious frame, the CPU rapidly issues the commands for the
ambient pass, shadow volume rendering, and the lit pass.
While the GPU processes the commands, the CPU is used
for continuous clamping and constructing the shadow vol-
umes for the next frame. The CPU computations usually fin-
ish before the GPU, so they have no affect on the frame rate.

We tested the performance of our system on two different
scenes:

1. Corridor Scene: The corridor shown in Fig. 1 is part of
a model consisting of 96K triangles. Most of the primitives
are contained in the complex trusses overhead which cast
shadows on the floor and walls below. This scene demon-
strates the savings achieved by shadow volume clamping.
Most of the shadow volumes traverse empty space. Since
there is very little occlusion in the scene, we perform only
view-frustum culling to compute PSC and PSR.

2. Robot Scene: This part of the scene is a large room with a
crowd of moving robots (Fig. 6) which creates a high degree
of occlusion. When the light is placed low in the scene, the
shadow culling algorithm removes many shadow casters.

Fig. 7 shows the fill and shadow volume rendering times
for the paths shown in the accompanying video. The test
scenes were rendered at 1280× 1024 resolution. Clamping
and culling are performed at the same resolution. We mea-
sured the performance of standard shadow volumes and CC
shadow volumes with continuous and discrete clamping. For
comparison we also used a more precise form of continuous
clamping that determines the exact intervals of intersection
of the oriented bounding boxes (OBBs) of the receivers with
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the shadow volume of the OBB of the shadow caster. The fill
we measured is the total number of pixels touched when ren-
dering the shadow volumes with the depth test disabled. We
also measured the number of stencil writes using standard
shadow volumes (SV-SW). For z-pass shadow volumes, this
is equivalent to the number of fragments that pass the depth
test. For both paths there are portions where z-fail shadow
volumes are faster than z-pass shadow volumes, and vice
versa. For path 1, the average frame rate with z-pass was
slightly faster so we present that data here. Z-fail was used
for path 2.

With CC shadow volumes we have observed up to 7 times
reductions in fill and up to 4 times speed-up in shadow vol-
ume rendering time. For the paths shown in Fig. 7, we see an
average of 2–3 times reduction in fill and 2.5 times speed-up
in shadow volume rendering time. Figure 8 shows the break-
down of the average timings.

5. Analysis

The cost of shadow volume rendering can be divided into
two parts. The vertex processing cost includes the time to
compute the vertices of the shadow volumes on the CPU
and the time to transmit, transform, and setup the geometric
primitives on the graphics hardware. This cost is indepen-
dent of screen resolution. The rasterization cost is higher
when anti-aliasing is enabled and increases proportionally
with screen resolution. Our algorithm is targeted for scenes
in which rasterization cost is the major bottleneck. Shadow
volume culling reduces both the vertex processing and ras-
terization cost by eliminating the redundant shadow volumes
altogether. Shadow clamping splits the shadow volumes into
smaller pieces to significantly reduce rasterization cost in
empty space while increasing the vertex processing cost. The
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graphs in Fig. 7 show the existence of a strong empirical re-
lationship between the area of the shadow volumes and the
shadow volume rendering time, though the exact relation-
ship can be hardware dependent.

In continuous clamping, the overlap tests are relatively
inexpensive. Although there are potentially n2 interactions
between shadow casters and shadow receivers, by utilizing
temporal coherence the expected running time is reduced to
O(n+k), where n is the number of objects and k is the actual
number of overlapping bounding boxes. In typical scenes, k
is usually fairly small. The main cost is incurred in merging
depth intervals.

For the discrete clamping, vertex processing and clamp-
ing costs increase linearly with the number of slices. Fig.
9 shows the timings for a varying number of slices. The
overall savings introduced by adding more slices are large
at first, but then begin to diminish. At some point the cost of
additional slicing planes dominates the savings. In our ex-
periments maximum savings were obtained by using 8−16
slices.

The extra rendering used for performing culling and dis-
crete clamping is fairly inexpensive for several reasons.

1. Whenever possible, we use tight bounding volumes in-
stead of the objects themselves to reduce rendering over-
head.

2. There are no pixel writes when performing occlusion
queries, so this rasterization is less expensive than that of
shadow volumes.

3. There is less overdraw. After culling, the depth complex-
ity in the light view is usually much lower than that of the
shadow volumes when viewed from the side.

Thus the extra rendering incurred in reducing the size and
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complexity of large shadow volumes often leads to signifi-
cant savings.

On average, discrete clamping resulted in greater fill sav-
ings and lower shadow volume rendering time than continu-
ous clamping in our tests, but it had about twice the overhead
on the hardware we used. The much more expensive, exact
clamping method was only slightly better than the much sim-
pler method we use for continuous clamping. Since contin-
uous clamping uses AABBs in light space, it performs best
when the light direction was aligned well with the orienta-
tion of the objects in the scene. Discrete clamping is less
sensitive to changes in light direction.

Occlusion queries are currently a bottleneck in our sys-
tem. We have observed a maximum of only 1.2M queries per
second at any resolution, though the graphics hardware can
render the objects without occlusion queries at a higher rate.
We expect the overhead associated with occlusion queries
will be reduced considerably in the future. Since the current
performance of occlusion queries is slow we are forced to
use fewer of them. We have to use a coarser object subdivi-
sion which leads to less fill savings.

5.1. Limitations

CC shadow volumes are appropriate only for those situations
where rasterization is a bottleneck. In addition, there must
be some degree of unnecessary shadow volume rendering.
Consider the complex self-shadowing of branches in a tree.
Shadow volumes in such a scene may be fill-bound, but since
there are few shadow casters that lie completely in shadow
and few large regions of empty space, CC shadow volumes
would provide very little performance gain. Clamping would
probably work well, however, to eliminate the empty space
in the shadow volumes between the branches and the ground.
In general, culling and clamping work best on complex mod-
els, which either have a high degree of occlusion and/or large
empty spaces.

Occlusion queries are performed in image-space and may
lead to artifacts. These artifacts are similar to those of other
hybrid algorithms that combine image- and object-space
[McC00, GLY∗03, SCH03, CD04]. Section 3.2.3 discusses
possible artifacts in discrete clamping. Artifacts may also
arise in shadow culling. The pixel sampling on the image
plane may miss small holes or small occluders, leading to
incorrect shadows. Triangles that are nearly parallel to the
view can also be problematic because they are covered by
few samples. These sampling problems are reduced by us-
ing slightly enlarged bounding boxes around the objects and
by ensuring that the light’s view is fit tightly to the visible
objects in the scene in order to maximize the sampling reso-
lution.

Another drawback of CC shadow volumes is that it re-
quires more CPU time to construct them. Methods that off-
load shadow volume construction to the GPU [BS03] are
difficult to adapt for use with CC shadow volumes since
the connectivity can change from frame to frame. Though
shadow volume construction on the CPU does not adversely

affect frame-rate in our current implementation, less time re-
mains for other computations.

5.2. Comparison with other Methods

BSP-tree based shadow volumes [CF89, CS95, BJ99] can
render shadows efficiently in static scenes or scenes with few
moving objects. However, when the light source moves or
many objects move, large portions of the BSP-tree need to
be re-built, which is usually an expensive process with large
models. Our algorithms can easily handle dynamic scenes
with a moving light source. The only limitation is that con-
tinuous clamping algorithm will require more computation if
the motion is not coherent. The discrete clamping algorithm
is completely insensitive to motion.

McGuire et al. [MHE∗03] recently demonstrated an ef-
fective algorithm for accelerating shadow volumes. Their
method uses a combination of the OpenGL scissor test and
depth bounds tests to reduce shadow volume fill. The scis-
sor region is set to the intersection of the viewport with the
screen projection of the light’s region of influence. In the
types of scenes for which our algorithm was designed, the
scissor region would usually contain the entire viewport be-
cause the whole scene lies within the light’s region of influ-
ence. Thus the only fill savings come from the depth bounds
test. Fig. 7 shows the time to render the shadow volumes
with a depth bounds range set to (0,0). This range effectively
early-rejects every fragment from the pipeline, establishing
an upper-bound on the performance of their algorithm. The
timings indicate that with the depth bounds test the rasteri-
zation cost is still significant. In fact, even if no pixels were
to pass the depth bounds test, these results indicate that on
the same hardware, CC shadow volumes would be faster
for these scenes. For scenes with little occlusion or without
large, mostly empty shadow volumes, our algorithm would
not perform as well because the overhead would dominate
the potential savings.

6. Conclusion and Future Work

In this paper, we have presented algorithms for shadow
culling and shadow clamping to accelerate the performance
of shadow volumes. These include visibility computations
for shadow culling and continuous and discrete shadow
clamping. These algorithm can be efficiently implemented
by utilizing temporal coherence between successive frames.
We have demonstrated the performance of these algorithms
on two relatively complex environments, reducing fill re-
quirements by up to 7 times.

There are several avenues for future work. Our main focus
in this paper has been to reduce rasterization costs. We would
like to explore methods to reduce the vertex processing cost
of shadow volumes which remains fairly high. Adaptive ap-
proaches using slice coverage information from one frame
might be used to compute a better set of slicing planes for
the next, i.e. use temporal coherence for discrete shadow
clamping. We could also improve the continuous clamping
by computing better depth bounds with more sophisticated

c© The Eurographics Association 2004.



B. Lloyd, J. Wendt, N. Govindaraju, & D. Manocha / CC Shadow Volumes

overlap tests. Finally we would like to extend these ideas
to improve the performance of soft shadow generation algo-
rithms, such as the work of [AAM03] which utilizes a vari-
ation on shadow volumes to identify penumbra regions.
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