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Abstract
We present a novel algorithm for accurately detecting all contacts,
including self-collisions, between deformable models. We precom-
pute a chromatic decomposition of a mesh into non-adjacent prim-
itives using graph coloring algorithms. The chromatic decomposi-
tion enables us to check for collisions between non-adjacent primi-
tives using a linear-time culling algorithm. As a result, we achieve
higher culling efficiency and significantly reduce the number of
false positives. We use our algorithm to check for collisions among
complex deformable models consisting of tens of thousands of tri-
angles for cloth modeling and medical simulation. Our algorithm
accurately computes all contacts at interactive rates. We observed
up to an order of magnitude speedup over prior methods.

CR Categories: I.3.5 [Computing Methodologies]: Compu-
tational Geometry and Object Modeling—Geometric algorithms;
I.3.7 [Computing Methodologies]: Three-Dimensional Graphics
and Realism—Visible surface algorithms, animation, virtual real-
ity;

Keywords: Deformable collision detection, self-collision, graph
coloring, cloth simulation

1 Introduction
Dynamic simulation of deformable models is essential to many ap-
plications, including character animation, path planning, computer
gaming, haptic rendering, medical simulation and human-computer
interaction. Fast and accurate collision detection is critical for gen-
erating realistic deformation and achieving real-time performance.
In this paper, we address the problem of computing all contacts
between deformable objects for interactive simulation. We restrict
our inputs to polygonal meshes and assume that mesh connectivity
does not change throughout the simulation. The mesh primitives
may undergo any motion, but no vertices or edges can be inserted
or deleted in the mesh. We make no other assumptions with respect
to model topology, vertex connectivity, or the underlying simulation
model. Many commonly used models for interactive deformation,
such as mass-spring systems, free-form deformation, boundary ele-
ment methods, and linearized finite element methods, satisfy these
constraints.

One of the driving motivations for this work is cloth simulation.
Efficient and robust handling of contacts remains a major challenge
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Figure 1: Benchmark I: This simulation generates complex folds and wrinkles on
the skirt. The cloth is modeled as a mesh with 13K triangles. Our collision detection
algorithm accurately checks for all self-collisions within 400-500ms during each step
of the simulation. We significantly reduce the number of false positives and perform
relatively few exact intersection tests between the primitives.

in simulating cloth dynamics [Baraff et al. 2003; Bridson et al.
2002; Volino and Thalmann 2000]. High-quality animation often
requires modeling cloth with tens of thousands of mass particles.
This combinatorial complexity leads to many collisions and numer-
ous primitive pairs in close proximity. It is important to accurately
detect all interferences, including self-collisions and collisions be-
tween the cloth and other objects. Even a single missed collision
can result in an invalid simulation and noticeable visual artifacts,
such as cloth passing through itself.

Several techniques have been proposed to accelerate collision
detection. Most existing methods, like hierarchical representations,
work well for rigid bodies. Some of these methods extend to de-
formable meshes, but may not be able to offer interactive perfor-
mance on complex models. Only a limited number of techniques
can handle self-collisions for deformable models – often at non-
interactive rates even for relatively simple meshes. Accurate self-
collision detection is challenging to perform in real time because
many adjacent or nearby primitives of a deforming mesh are al-
ways in close proximity. Current algorithms are unable to achieve
significant culling in such cases and often result in a high number
of false positives. In practice, collision detection, especially self-
collisions, can account for 50-90% of the total simulation time and
may take tens of seconds for a single time step. Therefore, many in-
teractive simulators for deformable models either use approximate
algorithms or do not check for self-collisions.



Main Results: We present a novel algorithm for fast and reliable
collision detection between deformable meshes with fixed connec-
tivity. We assume that the simulator proceeds in discrete time steps.
Continuous motion is modeled by linearly interpolating the vertex
positions. In order to efficiently handle self-collisions and perform
significant culling, we employ two new techniques:

1. Chromatic Mesh Decomposition: As part of a preprocess,
we partition the mesh of each deforming object into independent
sets. We ensure that no two primitives within each set are adjacent
and impose some additional constraints. We compute the chromatic
decomposition by performing graph coloring on the extended-dual
graph of the mesh. Our chromatic decomposition transforms the
self-collision detection problem into pairwise N-body collision de-
tection between non-adjacent primitives.

2. Set-based Self-Collision Detection: We use a set-based for-
mulation to compute potentially colliding primitives within each
independent set. Our algorithm culls away primitives within each
set using a bounding volume hierarchy. We describe a linear-time
culling algorithm that performs 1D overlap tests on the CPU and
2.5D overlap tests on the GPU. We exploit spatial relationships be-
tween the primitives and also frame-to-frame coherence to reduce
the number of exact overlap tests.

Our algorithm is robust and can handle various types of meshes with
arbitrary topology and connectivity. The overall time complexity of
the algorithm is nearly linear in the size of the input and the number
of primitive pairs in close proximity. We have implemented our al-
gorithm on a PC with a 3.4 GHz Pentium IV CPU and an NVIDIA
GeForce 6800 GPU and applied it to many complex deformable
meshes, including cloth simulation with 10K - 40K polygons and
a medical simulation with over 90K polygons. We can compute
all the contacts within 60 − 550 msec per frame in IEEE 64-bit
floating-point arithmetic. We also compare the performance of our
algorithm with earlier techniques based on bounding volume hierar-
chies. Our set-based culling algorithm reduces the number of false
positives by more than an order of magnitude for close proximity
configurations. And, we have observed up to an order of magnitude
speedup.

Organization: The rest of the paper is organized in the following
manner. We survey some related work on collision detection in Sec-
tion 2. Section 3 gives an overview of our approach and we present
our algorithm to compute a chromatic decomposition in Section 4.
Section 5 describes the set-based collision detection algorithm and
we highlight its performance on different benchmarks in Section 6.
We analyze the runtime complexity of our algorithm in Section 7
and discuss some of its limitations.

2 Related Work
In this section, we give a brief overview of related work in collision
detection and cloth simulation. The problem of collision detection
has been extensively studied and some recent surveys are available
in [Lin and Manocha 2004; Teschner et al. 2004]. We limit our
discussion to collision detection between deformable models, in-
cluding cloth.

2.1 Hierarchical Approaches
Many collision detection algorithms use spatial partitioning or
bounding volumes hierarchies to accelerate interference computa-
tions. Different bounding volumes including axis-aligned bounding
boxes (AABBs) [Bridson et al. 2002; Baraff et al. 2003; DeRose
et al. 1998] and k-DOPs [Mezger et al. 2003; Volino and Thal-
mann 2000] have been used to accelerate collision detection be-
tween deformable models. The cost of updating the hierarchies can
be high and it is relatively inexpensive to use spheres or AABBs
as bounding volumes. Recently, algorithms have been proposed
to lower the overhead of updating the hierarchy during each time
step of the deformable simulation: including top-down and bottom-

Figure 2: Benchmark II: We use our collision detection to compute all contacts,
including self-collisions, during cloth simulation. The cloth mesh consists of more than
23K triangles and our chromatic decomposition partitions the mesh into 19 indepen-
dent sets. Our algorithm accurately computes all the collisions within 400-550 msec
during each step of the simulation.

up techniques [Larsson and Akenine-Möller 2001; van den Bergen
1997], models deformed by morphing [Larsson and Akenine-
Möller 2003], and a sub-linear-time algorithm for deformable mod-
els expressed as linear superposition of precomputed displacements
[James and Pai 2004]. Kimmerle et al. [Kimmerle et al. 2004]
present an improved stochastic collision detection algorithm using
hierarchies of k-DOPs and permit a trade-off between accuracy and
speed. However, these hierarchies may not be able to perform sig-
nificant culling. The overlap tests performed using bounding vol-
umes can be rather conservative especially when some triangles
have high aspect ratios or the primitives are in close proximity con-
figurations (e.g. wrinkles, folds, self-collisions). In practice, these
algorithms can result in a high number of false positives.

2.2 GPU-based Collision Detection
GPUs have been used to perform interference and proximity com-
putations [Heidelberger et al. 2003; Knott and Pai 2003; Govin-
daraju et al. 2003; Govindaraju et al. 2004; Rossignac et al. 1992].
These algorithms involve no preprocessing and are directly applica-
ble to deformable models. Some specialized GPU-based algorithms
have also been presented for self-collision and cloth collision detec-
tion [Baciu and Wong 2002; Heidelberger et al. 2004; Govindaraju
et al. 2005; Vassilev et al. 2001]. However, these algorithms may be
limited in terms of handling the type of input models (e.g. closed
objects) and contact configurations (e.g. tangential contacts). A
major limitation of the GPU-based algorithms is that the interfer-
ence computations are performed at image-space resolution. As
a result, these algorithms can miss collisions between small trian-
gles due to sampling errors. Some enhancements based on comput-
ing offsets of primitives have been proposed to overcome image-
precision errors and check for overlaps among disjoint objects at
object-space resolution [Govindaraju et al. 2004]. However, these
approaches cannot handle self-collisions.

2.3 Cloth Collision Detection
Many other algorithms have been proposed for collision detection
and avoidance. Some earlier methods used repulsion forces be-
tween the two potentially colliding primitives [Baraff and Witkin
1998; Breen et al. 1994; Huh et al. 2001] and actual collisions are
tested by interference computations between the primitives. Volino
and Thalmann [1994] presented a sufficient condition for detect-
ing self-collisions in highly tessellated surfaces using curvature and
convexity properties [Mezger et al. 2003; Provot 1997; Volino and
Thalmann 2000]. This test can be applied in a hierarchical manner



on large models, though it can be expensive for interactive appli-
cations [Volino and Thalmann 2000]. Many algorithms treat each
polygonal primitive as a separate object and apply N -body colli-
sion detection algorithms based on uniform grids or AABB based
sorting [Baraff 1992; Cohen et al. 1995]. However, prior N-body
approaches have two major limitations in terms of using them for
self-collision detection. First, the level of culling based on AABBs
or rectangular cells of a grid may be low. Second, the storage re-
quirements of coherence based sorting algorithms can grow as a
quadratic function of the number of primitives.
Approximate Techniques: Given the complexity of self-collision
detection, many interactive algorithms either do not check for self-
collisions [Cordier and Magnenat-Thalmann 2002; Fuhrmann et al.
2003] or perform approximate collision detection using multiple
layers [Kang and Cho 2002] or voxelized grids [Meyer et al. 2000].
It may be difficult to give bounds on the accuracy of a simulation
with approximate collision detection.

3 Overview
In this section, we introduce our notation and give an overview of
our approach.
3.1 Notation and Background
We focus on fast collision detection between deformable models
represented using polygonal meshes. The mesh representing a de-
formable object can have arbitrary topology or vertex connectivity.
We assume that the mesh connectivity or the polygon neighborhood
information does not change during the simulation. Such meshes
can be used to model stretching, shearing and bending. The simu-
lator proceeds in discrete time steps, and during each time step we
use a piecewise linear motion of the vertices to model the continu-
ous motion of the triangles in the mesh.

We use the following notation in the rest of the paper. The mesh
is represented using the symbol M, and the polygonal primitives
are represented as pi, i = 1, . . . , n, where n is the number of poly-
gons in M. The symbols v and e are used to denote vertices and
edges, respectively, of a polygon. We use ∆t to represent the max-
imum time step between successive instances of the simulator. We
use the symbol Pi to refer the swept volume of a primitive pi dur-
ing the interval [0, ∆t] and represent the volume with a prism. The
function Adj(pi, pj) tests if two primitives pi and pj are adjacent,
i.e., share a common edge or a vertex.
Exact elementary tests between features: Checking whether the
swept volumes of two primitives overlap reduces to performing
elementary tests based on co-planarity conditions. These include
vertex-face (VF) and to edge-edge (EE) elementary tests. Each el-
ementary test requires the computation of roots of a cubic equation
that lie in the interval [0, ∆t] [Provot 1997; Bridson et al. 2002].
In case of non-adjacent triangles, we perform 9 EE tests and 6 VF
tests. For adjacent polygons, we do not test the shared vertices and
edges for co-planarity. We also add distance threshold constraints
in the vertex-face or edge-edge co-planarity conditions for collision
response computations.
3.2 Our Approach
Given a mesh M, the goal of self-collision detection is to compute
the first time of contact, t ∈ [0, ∆t], such that no two primitives in
the mesh overlap at any time in the interval [0, t]. Otherwise, we
report there are no collisions between the two discrete time steps.
We cull primitives that do not overlap, reducing the number of false
positives in terms of VF or EE elementary tests. In the rest of this
paper, we describe our algorithm to detect self-collisions in a de-
formable mesh. Our algorithm can be directly applied to collision
detection between two different objects using CULLIDE [Govin-
daraju et al. 2003].

We decompose the self-collision detection problem into two sub-
problems:

• Non-Adjacent Collision Detection (NACD) between non-
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Figure 3: Chromatic decomposition and reordering: We decompose a rectangu-
lar mesh with polygons pi into nine independent sets, each shown in a different color
(e.g. in Fig. 3(a) {p1

1
, p1

2
}, {p6

1
, p6

2
}). We use a linear-time algorithm to compute the

chromatic decomposition of rectangular meshes. For each pair of sets (e.g. S
i, Sj ),

we reorder the primitives such that pi
l ∈ S

i and p
j

l
∈ S

j are adjacent. Fig. 3(a)
and 3(b) show the reordering of primitives in the remaining sets based on the primitive
order in the sets S

1 and S
2, respectively.

adjacent primitives (e.g. the pairs {p5
1, p

5
2}, {p1

2, p
2
1} in Fig.

3(a)).

• Adjacent Collision Detection (ACD) between adjacent prim-
itives (e.g. the pairs {p1

1, p
2
1}, {p3

1, p
6
2} in Fig. 3(a)).

The ACD amounts to checking O(n) pairs of adjacent primitives
for overlap by performing elementary tests. On the other hand,
NACD involves checking up to O(n2) pairs for overlap. Therefore,
the performance of a self-collision detection algorithm is governed
mainly by the performance of NACD, in terms of reducing the num-
ber of false positives between non-adjacent primitives. We use the
problem decomposition and check for self-collisions as:

1. Compute all pairs of overlapping, non-adjacent primitives us-
ing a linear-time culling algorithm. We obtain high culling
efficiency because we are only considering overlaps between
non-adjacent primitives.

2. Perform exact VF and EE elementary tests between adjacent
primitives. The results of non-adjacent primitive pairwise
tests are used to eliminate a high fraction of false positives
in terms of elementary tests between the adjacent primitives.

In order to compute pairs of overlapping non-adjacent primi-
tives, we partition the mesh into disjoint sets M = {S1, . . . ,Sk},
called independent sets. NACD performs exact intersection tests
between non-adjacent primitives (pi, pj) within every pair of sets
(Si,Sj), pi ∈ S

i, pj ∈ S
j . In order to ignore collision tests be-

tween adjacent primitives, we introduce constraints and ensure that
each primitive in one independent set is adjacent to at most one
primitive in another independent set, as shown in Fig. 3(b). We
compute a extended-dual graph of the mesh and use graph color-
ing algorithms to decompose the mesh into independent sets, i.e.
chromatic decomposition.

We present an efficient self-collision culling algorithm to com-
pute the overlapping primitives within each pair of sets. We extend
the idea of potentially colliding sets (PCS) presented by Govin-
daraju et al. [2004] to handle swept volumes (i.e. the prisms). In
particular, a primitive in a set Si is potentially colliding if its swept
volume during the time interval [0, ∆t] overlaps with the swept vol-
ume of some non-adjacent primitive in a set Sj during [0, ∆t]. We
compute the PCS by making linear passes over the primitives in
the independent sets and using reliable image-based 2.5D overlap
tests to cull non-overlapping primitives. We also present techniques
based on temporal coherence and depth relationships to reduce the
number of 2.5D overlap tests.
Collision Detection: We use a set-based collision detection al-
gorithm to compute all pairs of non-adjacent overlapping primi-
tives. In order to improve the culling performance, we precompute
a AABB hierarchy in a bottom-up manner for each mesh. The leaf
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Figure 4: Self-collision detection algorithm: Our algorithm pro-
ceeds in four stages. Stages I and II perform broad phase collision
detection and cull many of the primitives that do not overlap with
other non-adjacent primitives. Stage II is optional and performs
2.5D overlap tests when the PCS computed after stage I is large.
Stages III and IV perform elementary tests on the primitives for ex-
act collision detection.

nodes of the hierarchy enclose the swept volume of a single poly-
gon of the mesh. We add an offset to each box in the hierarchy to
account for distance tolerances used in collision resolution compu-
tation. Our overall collision detection algorithm proceeds in four
stages (as shown in Fig. 4):

• Stage I: Update the AABB hierarchy to account for chang-
ing vertex positions. Use the hierarchy to cull primitives in
independent sets that do not overlap with other non-adjacent
primitives (Section 5.1).

• Stage II: Use a set-based culling algorithm and perform 1D
and 2.5D overlap tests to compute the PCS for each indepen-
dent set (Section 5.2).

• Stage III: Compute pairs of overlapping, non-adjacent prim-
itives by performing exact VF and EE elementary tests on the
primitives within each PCS (Section 5.3).

• Stage IV: Check for overlaps between adjacent primitives by
performing elementary tests and eliminate false positives by
using the results of Stage III (Section 5.4).

4 Chromatic Mesh Decomposition
In this section, we present our mesh decomposition algorithm for
computing independent sets. Given a polygonal mesh, we trans-
form the mesh decomposition problem into a graph coloring prob-
lem and compute a chromatic decomposition of the graph. We first
define the independent sets and then present an algorithm to com-
pute them.
4.1 Independent Sets
The goal of mesh decomposition is to partition a mesh M into k

disjoint independent sets S
i such that M = S

1 ∪ S
2 ∪ . . . ∪ S

k,
and ∀i, j,Si ∩ S

j = ∅. Each independent set Si is composed of a
set of primitives pi

m, 1 ≤ m ≤ ‖Si‖. We impose two constraints
on the primitives within each S

i:

1. No two primitives in S
i are adjacent, and

2. For every pair of independent sets, (Si,Sj), we ensure that
each primitive pi ∈ S

i has at most one primitive pj ∈ S
j

such that Adj(pi, pj) is true.

The second constraint is required by our self-collision culling algo-
rithm, which is described in Section 5. We illustrate the decompo-
sition for a rectangular mesh in Fig. 3. Note that any two polygons
belonging to the same independent set have a gap of at least two
polygons between them.

4.2 Graph Coloring
We transform mesh decomposition into a graph coloring problem
and compute independent sets. A set of vertices in a graph is called
an independent set if no two vertices of the set are connected in the
graph by an edge. Graph coloring assigns each vertex a color such
that no two adjacent vertices of the graph have the same color. All
vertices with the same color are grouped into a color class [Jensen
and Toft 1995]. Graph coloring results in a decomposition of the
vertices into different color classes. The minimum number of colors
in any proper coloring is called the chromatic number of a graph.

Our goal is to partition the primitives of a mesh into independent
sets. Given a mesh, we construct the extended-dual graph G =
(V,E) as follows:

• Each primitive p ∈ M corresponds to a vertex V (p) ∈ G.

• An edge (V (pl), V (pm)) ∈ G if and only if one of the fol-
lowing edge constraints are satisfied:

– Edge Constraint 1: pl and pm are vertex-adjacent i.e.,
Adj(pl, pm) is true, or

– Edge Constraint 2: There exists a primitive p ∈ M
such that both Adj(pl, p) and Adj(pm, p) are true.

Note that if we use only Edge Constraint 1, we obtain the stan-
dard dual graph of the mesh. We extend the standard dual graph by
placing additional edges among the vertices based on Edge Con-
straint 2. These two edge constraints guarantee that the mesh de-
composition computed using graph coloring on G satisfies the con-
straints on the primitives described in Section 4.1. The first edge
constraint ensures that adjacent primitives belong to different sets.
The non-adjacency is ensured as an edge exists between every pair
of adjacent primitives in the graph. Graph coloring assigns dif-
ferent colors to the corresponding vertices and they are in differ-
ent independent sets. The second edge constraint ensures that no
two primitives pi

l , p
i
m ∈ S

i are adjacent to a common primitive
pj ∈ S

j . Otherwise, both Adj(pi
l , p

j) and Adj(pi
m, pj) would be

true and there would be an edge (V (pi
l), V (pi

m)) in G because of
Edge Constraint 2.

Given a graph G, its decomposition into color classes is not
unique. In particular, we can either minimize the number of in-
dependent sets, say k, or compute a decomposition such that the
number of vertices in each independent set is bounded by some
constant. In this case, our goal is to compute a decomposition that
minimizes the number of independent sets. This is mainly because
our self-collision detection algorithm (presented in Section 5) has
an expected complexity of O(kn), where n is the number of prim-
itives in M. As a result, our problem reduces to the minimal graph
coloring problem [Jensen and Toft 1995]. The minimal graph col-
oring problem is a well-studied problem and has been shown to be
NP-hard for general graphs. In many cases, the mesh has a rect-
angular connectivity and can be mapped to a quad-tree. Eppstein
et al. [2002] have presented a simple linear-time algorithm for col-
oring the squares of balanced and unbalanced quad-trees. We ex-
tend this algorithm to take into account our edge constraints and
color meshes with rectangular connectivity, i.e. every vertex has
four neighbors and every polygon is rectangular, in linear time. An
example is shown in Fig. 3. In order to handle general meshes,
we use an extension of the DSATUR algorithm [Brélaz 1979] to
compute a graph coloring. The overall algorithm is fast and has a
worst case complexity of O(‖E‖ log ‖V‖). This algorithm is near-
optimal for a large variety of graphs. In practice, this algorithm
works well and the number of color classes is close to the chro-
matic number of the extended-dual graph. Theoretically, a simple
upper bound on the chromatic number of any graph G = (V,E)

is (0.5 +
√

2||E|| + 0.25). Based on our graph construction algo-
rithm, we expect ||E|| = O(||V||) and hence, a loose upper bound
for a mesh M is O(

√

||M||). Theoretical bounds on k also exist as



a function of the maximum face size and the maximum valence in
the mesh [Sanders and Zhao 1998].

The extended-dual graph coloring computes k disjoint sets of
primitives S

i, i = 1, . . . , k, where the vertices corresponding to
the primitives in a set are assigned the same color in the extended-
dual graph. Given a decomposition of a mesh into independent sets,
our algorithm reorders the primitives within each pair of indepen-
dent sets. The order of the primitives is used by our self-collision
detection algorithm which requires that every pair of primitives,
(pi

l , p
j
m), in a pair of independent sets (Si,Sj), 1 ≤ i, j ≤ k sat-

isfy the following constraints:

Adj(pi
l , p

j

l ) = true, (1)

Adj(pi
l , p

i
m) = Adj(pj

l , p
j
m) = Adj(pi

l , p
j
m) = false, l 6= m.

It is possible that a primitive pi
l ∈ Si has no adjacent primitive p

j

l ∈
Sj since the graph coloring algorithm only ensures that at most
one primitive in a set is adjacent to another primitive in any other
independent set. In such cases, we treat p

j

l as NULL. The pseudo-
code for our simple reordering algorithm for a pair of independent
sets is given in Algorithm 4.1.

REORDER(Si, Sj )
1 O = NULL /* output */
2 for each primitive P in S

i

3 for each primitive Q in S
j

4 if Q is adjacent to P ,
5 append the pair (P, Q) to O and mark Q

6 if no primitive Q in S
j is adjacent to P ,

7 append the pair (P , NULL) to O

8 for each unmarked primitive Q in S
j ,

9 append the pair (NULL,Q) to O

9 return O

ALGORITHM 4.1: Reordering algorithm: The reordering algorithm computes
pairs of adjacent primitives between two independent sets, and outputs a list of such
pairs O. Our edge constraints ensure that a primitive in a set Si can have at most one
adjacent primitive in another set Sj , j 6= i. If j = i, then the adjacent primitive is
itself. If a primitive P ∈ S

i has no adjacent primitive Q ∈ S
j , then we append the

pair (P, NULL) (Lines 6 and 7). Similarly, we output (NULL, Q) for unmarked
primitives Q ∈ S

j (Lines 8 and 9).

5 Collision Detection
In this section, we present our self-collision detection algorithm.
We use properties of chromatic mesh decomposition and perform
set-based culling to compute potentially colliding, non-adjacent
primitives. Finally, we use elementary tests for exact collision de-
tection. We initially compute a prism Pl for each primitive pl and
also compute a bounding box around each prism. Our collision de-
tection algorithm proceeds in four stages as described in Section
3.
5.1 Set-based Culling Using AABB Hierarchy
We dynamically update the AABB hierarchy for the mesh in a
bottom-up manner. We update leaf nodes taking into account their
vertex positions. The size of the boxes are increased based on the
distance threshold. Next, we update the AABBs of the parent node
based on the children’s AABBs. We use the AABB hierarchy to
cull primitives that are not overlapping with any other non-adjacent
primitive. We compute a bounding box for each primitive P i

m,
check for overlaps using the hierarchy, and ignore the overlaps with
adjacent primitives. The overlap tests are performed efficiently by
testing the hierarchy against itself. We show the potentially col-
liding set of triangles in a cloth model computed using the AABB
hierarchy in Fig. 5(a).
5.2 Set-based Culling Using 2.5D Overlap Tests
In this section, we present our linear-time algorithm that performs
reliable 2.5D overlap tests using GPUs. For each independent set,

(a) Collision Culling with AABB
hierarchy

(b) Collision Culling with AABB
hierarchy + 2.5D overlap tests

Figure 5: Improved culling performance with 2.5D overlap tests: The cloth
model consists of 12, 296 triangles. The left image shows the 6, 442 potentially
colliding triangles (in orange) computed using an AABB hierarchy (i.e., the output
of Stage I). This results in more than 65K pairwise elementary tests (VF + EE). The
right image shows the 524 potentially colliding triangles (in orange) computed after
the 2.5D overlap tests (i.e., the output of Stage II), which results in 2, 737 pairwise
elementary tests.

our algorithm computes a PCS associated with that independent set.
We also present techniques to reduce the number of 2.5D overlap
tests by performing 1D tests on the CPU and use temporal coher-
ence.

Given a decomposition of a mesh into independent sets, as ex-
pressed in Eq. (1), we check the non-adjacent primitives within
each set for collisions. Given an independent S

i and a primi-
tive P i

m, we define two subsets S
i
<m = {P i

1, . . . , P i
m−1} and

S
i
>m = {P i

m+1, . . . , P
i
‖Si‖}. Given this formulation, we further

decompose the NACD problem into two subproblems:

• Intra-Set Collision Detection (Si,Si): Test each triangle
P i

m ∈ S
i for overlap with its non-adjacent primitives in S

i

i.e., Si
<m, and S

i
>m.

• Inter-Set Collision Detection (Si,Sj , i 6= j): Test each
primitive P i

m ∈ S
i for overlap with its non-adjacent primi-

tives in S
j i.e. S

j
<m, and S

j
>m. Similarly, test each primitive

P j
m ∈ S

j for overlap with its non-adjacent triangles in S
i i.e.

S
i
<m, and S

i
>m.

As a result, the collision detection problem reduces to performing
O(k) intra-set collision detections and O(k2) inter-set collision de-
tections.
5.2.1 2.5D overlap tests
We extend the set-based culling algorithm, CULLIDE [Govindaraju
et al. 2003], to perform self-collision detection. CULLIDE checks
whether one object, say oi, overlaps with a group of objects, say O,
by performing visibility computations between them. If oi is fully
visible with respect to all the objects in O along any viewpoint,
then oi does not overlap with any object in O. We refer to this test
as the 2.5D overlap test between oi and O. The 2.5D overlap test
implicitly checks whether there exists a separating surface of unit
depth complexity from a given view direction. We implement this
test using occlusion queries on a GPU. An occlusion query returns
the number of pixels that pass the depth test. In order to perform
the 2.5D tests using occlusion queries, we first render all the objects
in O and compute its visible surface in the depth buffer. We then
render the object oi using an image-space occlusion query and test
whether the depth of all rasterized fragments of oi are in front of the
visible surface in the depth buffer. We overcome image-precision
errors in occlusion queries by adding an offset to the bounding
swept volume of each primitive [Govindaraju et al. 2004]. The size
of the offset is a function of the pixel resolution used to perform
the overlap tests. In practice, the 2.5D overlap test is less conserva-
tive as compared to bounding volume based tests and culls a larger
fraction of non-overlapping primitives in close proximity.

CULLIDE performs a linear-time front-to-back and back-to-
front traversal of the list of objects and computes a potentially col-
liding set (PCS) of objects. However, CULLIDE is unable to check
for self-collisions or perform inter-set culling between independent



sets. If we treat each polygon in a connected mesh as a separate ob-
ject, CULLIDE would not be able to cull any primitive and the PCS
would consist of all the primitives in the set. In the same manner, if
we apply CULLIDE to a union of two sets, say S

i and S
j , it would

perform no culling because every primitive in S
i has an adjacent

primitive in S
j .

5.2.2 Self-Collision Culling
We present a modified linear-time algorithm that uses 2.5D over-
lap tests to perform self-collision culling. We take advantage of
chromatic decomposition and properties of independent sets to cull
the non-overlapping primitives within each PCS. Our mesh decom-
position algorithm ensures that every primitive P i

m ∈ S
i has one

adjacent element P j
m ∈ S

j and P j
m partitions S

j − {P j
m} into two

subsets: S
j
<m and S

j
>m. We make two linear passes over these

sets.

• First pass: Traverse the primitives in S
i from the last to the

first. During the traversal, we test if the current primitive
P i

m ∈ S
i is fully visible against the previously rendered prim-

itives in S
j using a 2.5D overlap test (i.e., with primitives in

S
j
>m). We then render the potentially intersecting primitive

P j
m ∈ S

j into the frame buffer.

• Second pass: Traverse the primitives in S
i from the first

primitive to the last. During each scan, we only test the prim-
itive P i

m ∈ S
i which was fully visible in the first pass for

potential overlap with the PCS in S
j ( i.e. S

j
<m). We then

render P j
m ∈ S

j into the frame buffer.

The two passes are sufficient to test each primitive in S
i against

non-adjacent, potentially intersecting primitives in S
j . We repeat

the same algorithm to compute the PCS for the set S
j in (Si,Sj).

We use multiple view directions along the three world-space axes.
The pruning algorithm is used repeatedly till the PCS does not de-
crease between successive instances. The same two-pass algorithm
is used for the inter-set and the intra-set culling. The 2.5D overlap
tests can cull away a high number of non-overlapping primitives in
close proximity (Fig. 5(b)).
5.2.3 Reducing 2.5D overlap tests
The self-collision algorithm described above performs 2kn 2.5D
overlap tests, where k is the number of independent sets and n is
the number of primitives. In the case of a complex model, n can be
very high while k is typically in the range 10 − 20. As a result, the
overall performance of the algorithm is governed by the number of
2.5D overlap tests used for self-collision culling. In this section, we
present three techniques that use spatial relationships and temporal
coherence to reduce the number of 2.5D overlap tests.

View Coherence: We utilize coherence between different views to
reduce the number of 2.5D overlap tests between each pair of sets
(Si,Sj). For example, if a primitive P j

m does not overlap with any
of the primitives S

i
>m along some view, then P j

m does not over-
lap with any primitive in S

i
>m. Therefore, we do not need to ren-

der P j
m while testing the overlap status of primitives in S

i
>m along

any view. Specifically, we do not render P j
m after testing the full-

visibility of P i
m in the first pass. We use a similar sufficient con-

dition to reduce the rendering operations in the second pass based
on the overlap between P j

m and S
i
<m. Intuitively, we are reduc-

ing the depth complexity of the PCS associated with S
j against the

PCS associated with S
i by rendering only the potentially overlap-

ping primitives in S
j . As a result, view coherence accelerates the

performance of the culling algorithm.

1D overlap tests: We reduce the number of 2.5D overlap tests
by first performing 1D overlap tests on the CPU. Our 1D algo-
rithm uses view coherence relations along the world-space axes.
We compute the 1D overlap relations before performing the 2.5D

GPUCULL(Si, Sj )
1 Mark each primitive P i

k in S
i as potentially colliding /* Initialization */

2 n = ||Si|| = ||Sj ||

3 for each view
4 for k= n to 1 /* first pass */
5 if P i

k 6= NULL and is not fully visible in first pass
6 Render P i

k with an occlusion query
7 If fully visible, mark P i

k as first-pass-fully-visible
8 if P

j

k
6= NULL and is not fully visible in second pass

9 Render P
j

k

10 for k= 1 to n /* second pass */
11 if P i

k 6= NULL and is not fully visible in second pass
12 Render P i

k with an occlusion query
13 If fully visible, mark P i

k as second-pass-fully-visible
14 if P

j

k
6= NULL and is not fully visible in fully pass

15 Render P
j

k

ALGORITHM 5.1: Self-collision culling algorithm: Our self-collision culling
algorithm proceeds in two passes. Lines 4-9 perform the first pass and test each prim-
itive P i

k ∈ S
i for overlap with S

j

>k
. Similarly, lines 10 − 15 perform the second

pass and test each primitive P i
k against Sj

<k
. Each visibility test is performed using

an occlusion query (Lines 6 and 12) and the rendering operation during the occlusion
query is performed with the depth test GL GEQUAL. The remaining rendering op-
erations (Lines 9 and 15) are performed using the depth test GL LESS. Primitives
which are fully visible in both first and second passes do not collide with any of the
primitives in S

j and are pruned from the PCS of these pair of sets.

overlap tests. In particular, we project the AABBs of the primi-
tives along each axis and apply our culling algorithm described in
Section 5.2.2. The 1D overlap test is performed using the same
two-pass algorithm. In the first pass, we maintain and update the
minimum and maximum values of the AABB of the primitives in
S

j
>m along each axis and check for overlap against the AABB of

P i
m. The second pass is performed in the same manner. Combined

with the conditions used to check for view coherence, 1D overlap
tests can reduce the number of 2.5D overlap tests.

Temporal Coherence: The 2.5D overlap tests are used to check
whether a primitive is fully visible with respect to the rest of the
primitives along a view direction. In most interactive applications,
there is high coherence in the visibility relationships between the
primitives. We rearrange the primitives based on the order in which
they were fully visible in the previous frame or the last viewing
direction. Due to the temporal coherence, we expect the primitives
to be fully visible in nearly the same order. This optimization is
useful for reducing the required number of views used to compute
the PCS. As a result, we perform fewer 2.5D overlap tests.

Our overall GPU-accelerated culling algorithm is simple and ef-
ficient. A pseudo-code description to compute the potentially col-
liding primitives of a set S

i against a set S
j is given in Algorithm

5.1.

5.3 Exact Tests: Non-Adjacent Primitives

The set-based culling algorithm computes a PCS for each inde-
pendent set. In the third stage, we check for exact intersections
by performing elementary tests between non-adjacent pairs. We
first merge the PCS of all the independent sets by computing their
union. Next, we perform an N-body test between the elements to
compute potentially intersecting pairs. We use our AABB hierar-
chy to quickly compute the potentially intersecting pairs. Finally,
we perform elementary EE and VF tests between the pairs to check
for exact intersections. We explicitly maintain a list of all overlap-
ping, non-adjacent primitives and store this information in the data
structures used to represent the mesh. Even though each edge or
vertex can be shared by more than one polygon, we do not perform
redundant EE or VF tests.



Figure 6: Culling elementary tests between adjacent primitives: If non-adjacent
triangles in these examples are not overlapping, we do not need to perform the ele-
mentary test between (e1, e2) and (v1, T2) as shown in (a) and (v1, f2) as shown
in (b).

5.4 Exact Tests: Adjacent Primitives
In the last stage of the algorithm, we need to check all adjacent
primitives for exact intersection. We perform elementary EE and
VF tests between adjacent polygons, but we do not test the shared
edge or vertex for co-planarity conditions. For example, given two
triangles sharing a vertex, we perform only 4 VF and 5 EE tests.
Similarly if two triangles share an edge, we perform just 2 VF and
2 EE tests.

We use the results of non-adjacent, overlapping primitive pairs to
cull many of the elementary tests between adjacent primitives (i.e.
the false positives). We illustrate our algorithm with a figure. For
example, in Fig. 6(a), T1 and T2 are an adjacent pair of triangles
that share an edge. Let us assume that their neighboring triangles,
T3 and T4, do not overlap. As a result, we do not need to perform
elementary tests between (e1, e2) and (v1, T2). In Fig. 6(b), the
triangles T1 and T2 share a vertex. If T2 and T3 do not overlap,
then we do not need to perform an elementary test between the pair
(v1, f2). In this manner, we can cull a high number of elementary
tests between the adjacent primitives by using the results of Stage
III.

6 Implementation and Performance
We have implemented our algorithm on a PC running Windows
XP with a 3.4 GHz Pentium IV CPU, an NVIDIA GeForce 6800
GPU, and 2 GB of main memory. We use hyper-threading and
the Pentium IV SSE2 optimizations of the Intel compiler 8.0 to
improve the performance. Moreover, we use the asynchronous
GL NV occlusion query queries in OpenGL to implement fast and
reliable 2.5D overlap tests on the GPU. We optimize our rendering
throughput by using the GL ARB vertex buffer object extensions
and avoid the stalls by batching multiple visibility queries. In prac-
tice, we are able to achieve 1.1M occlusion query throughput per
second.

The chromatic mesh decomposition algorithm is performed once
as a pre-process for a mesh. We use the DSATUR algorithm [Brélaz
1979] to compute the color classes. In our benchmarks, this algo-
rithm works well and takes approximately two seconds on a mesh
with 10K triangles. The number of independent sets is typically in
the range 10 − 20.

The 2.5D overlap tests are performed along the three world-
space axes using orthographic projections. The reliable tests are
performed using a viewport resolution of 1K × 1K. The prisms,
P i

m are computed based on the deviation and height of the final
position of each vertex with respect to the plane corresponding to
the initial positions. When the time steps used in the simulation
are small, the prism tightly bounds the swept volume of the poly-
gon. Moreover, the prism computation time is relatively low. In
our implementation, we are able to compute the prisms on the CPU
and transfer to the GPUs at the rate of 10K prisms in 10 msec.
Moreover, view coherence, 1D overlap tests and temporal coher-
ence reduce the number of 2.5D overlap tests by 20-60% in our
benchmarks. We have implemented the VF and EE elementary tests
using interval arithmetic. We compute the coefficients of the cubic
equations and check for an existence of a root in the time interval.
We also take into account distance thresholds. It takes about 3 usec
on average to perform one elementary test.

Figure 7: Path planning for a deformable catheter: Our collision detection al-
gorithm is used for path planning of a deforming catheter in liver chemoembolization.
The catheter is modeled as a mass-spring system with 10K triangles. The geometric
model of static arteries and the liver has more than 83K triangles. Our algorithm
computes all the contacts between the catheter and the environment in 60-90 msec.

6.1 Performance
We use our collision detection algorithm in cloth simulation as well
as surgical planning of a catheter insertion for liver chemoemboliza-
tion. We highlight the results on three cloth simulations shown
in Fig. 1, Fig. 2, and Fig. 8. The number of polygons in the
mesh used to model the cloth vary from 10K to 40K. The time to
check for all collisions, including self-collisions, is in the range of
100 − 550msec. The performance depends on the input complex-
ity, output complexity and the number of independent sets gener-
ated using chromatic decomposition. Specifically, collision detec-
tion takes around 100− 150msec when the number of independent
sets is around 10, and 300−550msec when the number of indepen-
dent sets is around 20. We observed that checking for self-collisions
takes 3-5 times longer than cloth-object collision.

We also used our collision detection algorithm for surgical plan-
ning of a catheter in liver chemoembolization [Gayle et al. 2005].
The catheter is modeled as a mass-spring system undergoing real-
time deformation. As the catheter deforms, we check for self-
collisions as well as collisions with the arteries. The catheter is
modeled with 10K polygons and the arteries are modeled with 83K
triangles (Fig. 7). Our collision detection algorithm takes about 60-
90msec to compute all contacts during each time step. A collision
free path computed by the simulator is also shown in the video.

We give a breakup of the running time of our collision detection
algorithm among different stages as a function of model complexity
in Fig. 9(a). The stage I takes about 40−50% of time to update the
AABB hierarchy and perform culling. The stage II of the algorithm
takes about 35− 45% of the total time. We spend less than 10% of
the time in the elementary tests.
6.2 Comparison
We have compared the performance and culling efficiency of our al-
gorithm against prior collision detection algorithms for deformable
models. Current GPU-based algorithms either do not check for self-
collisions or their accuracy is limited by image-precision. There-
fore, we have limited our comparison to object-space algorithms
based on bounding volume hierarchies. Most collision detection
algorithms use AABBs or spheres as bounding volumes, since the
cost to update the hierarchy is relatively low [Larsson and Akenine-
Möller 2001; van den Bergen 1997]. These hierarchies are updated
during each time step and used to compute potentially overlapping
pairs of primitives. Finally, these algorithms perform elementary
tests between the primitives at the leaf nodes. We do not perform
elementary tests between the shared edges or vertices.

We compare the performance of our algorithm with AABB and
sphere hierarchies. In our benchmarks, the culling obtained by
sphere trees is rather poor as compared to the AABB trees. As
the cloth deforms, many triangles become long and skinny and the
bounding spheres can become rather large. Our algorithm also com-
putes an AABB hierarchy, but only uses the hierarchy to cull away
non-adjacent primitives that do not overlap. Fig. 9(b) shows the



Figure 8: Folding Curtains: This simulation highlights a stage scene with two
folding curtains. Each curtain is modeled using 32, 500 triangles and we decompose
each mesh into 10 independent sets. As the simulation progresses, the curtains are
pulled closer and generate complex folds and wrinkles. Our algorithm computes all
self-collisions within each curtain in about 100 msec.

improvement in the overall running time obtained by our algorithm
in a cloth simulation, where the cloth has about 32K triangles. Fig.
9(d) compares the culling efficiency of our algorithm in terms of
elementary VF and EE tests.
Speedups: Our algorithm obtains speedup due to fewer number of
elementary tests between the primitives. In our benchmarks, we
have observed five times improvement in the running time even
without 2.5D overlap tests, i.e. without Stage II. This performance
improvement is due to our decomposition of the problem into ACD
and NACD. Our algorithm results in relatively fewer false posi-
tives between non-adjacent primitives. Furthermore, we use the
results of NACD to cull away a high fraction of elementary tests
between the adjacent primitives. If we perform 2.5D overlap tests
on the GPUs (i.e. Stage II), we achieve up to 15− 20 times overall
speedup, because of high culling efficiency in close proximity sce-
narios. As a result, the use of GPU-based 2.5D overlap tests results
in additional speedup of 3 − 4 times.

7 Analysis and Limitations
We analyze the complexity of our algorithm by analyzing each
stage of the algorithm separately. Updating the AABB hierarchy
and performing culling tests during the first stage takes O(n) time,
where n is the number of primitives. The complexity of the sec-
ond stage also depends on the number of independent sets. Given a
pair of independent sets (Si,Sj), the collision culling algorithm re-
quires O(‖Si‖+‖Sj‖) operations. Therefore, each set Si requires
an average of O( k‖Si‖+n

2
) operations to test for overlaps against

other sets. As a result, the run-time complexity of the self-collision
culling algorithm is O(kn). The complexity of the third stage is a
function of the number of non-adjacent primitives that are in close
proximity or overlapping. Finally, the fourth stage takes linear time.

In our current benchmarks, most of the query time is spent on the
first two stages: 75- 90% of the query time. Since our algorithm
culls a very high fraction of non-overlapping primitive pairs, we
need to perform relatively fewer elementary tests. The 2.5D overlap
tests are useful when a high number of non-adjacent primitives are
in close proximity. If the PCS computed after the first stage is small,
we need not use the 2.5D overlap tests, therefore eliminating the
second stage of the algorithm all together.

The decomposition of the original problem into adjacent and
non-adjacent primitives, along with a fast set-based culling algo-
rithm enables us to achieve almost interactive performance on com-
plex deformable models. Since we first check for overlaps only
among non-adjacent primitives, we are able to perform significant
culling and significantly reduce the number of false positives. Fur-
thermore, we use the results from non-adjacent primitives to cull
away a very high fraction of elementary tests between the adjacent
primitives.
Limitations: Our algorithm has a few limitations. We restrict our
inputs to be polygonal meshes with fixed connectivity. The culling

efficiency of our algorithm can vary based on the relative configura-
tion of the primitives in the mesh and their placement with respect
to the viewing directions used for 2.5D overlap tests. Our set-based
culling algorithm works well when the number of overlapping pairs
is relatively small. If there are a high number of colliding or pen-
etrating primitives, the resulting PCS can be high and we may not
benefit much from set-based culling algorithm. The 2.5D based
overlap tests are more effective when the primitives are in close
proximity. Finally, our chromatic decomposition algorithm based
on graph coloring may produce a high number of independent sets,
even though the number of sets have varied in the range 10− 20 in
our benchmark.

8 Conclusions
We present a novel algorithm for collision detection between de-
formable models. We decompose the problem into ACD and NACD
and precompute a chromatic decomposition of the mesh. We use
a linear-time culling algorithm that performs 1D and 2.5D over-
lap tests. We have applied our algorithm to multiple benchmarks
in cloth modeling and medical simulation. Our initial results are
promising and we have observed more than an order of magnitude
improvement in running time over previous approaches.

There are many avenues for future work. We can improve the
performance for complex deformable models by grouping the prim-
itives into small clusters (e.g. 2-4 polygons) and then computing
potentially colliding sets of clusters using the AABB-hierarchy and
2.5D overlap tests. Currently, we only compute pairs of overlap-
ping primitives. It may be possible to combine our algorithm with
curvature-based tests to further improve the culling performance.
We would like to relax our assumption about fixed mesh connectiv-
ity and incrementally update the chromatic decomposition, when-
ever the connectivity changes. We would like to apply our algo-
rithm to higher-order primitives including NURBS or subdivision
surfaces. In this case, we may be able to directly compute the chro-
matic decomposition based on subdivision rules, as opposed to us-
ing graph coloring algorithms. Finally, we plan to use our collision
detection algorithm in other applications including avatars in virtual
environments.
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