
Fast C-obstacle Query Computation
for Motion Planning

Liangjun Zhang 1 Young J. Kim 2 Gokul Varadhan 1 Dinesh Manocha 1

1 Dept. of Computer Science, University of North Carolina at Chapel Hill, USA, {zlj,varadhan,dm}@cs.unc.edu
2 Dept. of Computer Science and Engineering, Ewha Womans University, Korea, kimy@ewha.ac.kr

http://gamma.cs.unc.edu/cobstacle

Abstract— The configuration space of a robot is partitioned
into free space and C-obstacle space. Most of the prior work in
collision detection and motion planning algorithms is targeted
towards checking whether a configuration or a 1D path lies in
the free space. In this paper, we address the problem of checking
whether a C-space primitive or a spatial cell lies completely inside
C-obstacle space, without explicitly computing the boundary of
C-obstacle. We refer to the problem as the C-obstacle query.
We present a fast and conservative algorithm to perform this
C-obstacle query. Our algorithm uses the notion of generalized
penetration depth that takes into account both translational and
rotational motion. We compute the generalized penetration depth
for polyhedral objects and compare it with the extent of the
motion that the polyhedral robot can undergo.

Our approach is general and useful for designing practical
algorithms for complete motion planning of rigid robots. We have
integrated our query computation algorithm with star-shaped
roadmaps [1] – a deterministic sampling approach for complete
motion planning. We have applied our modified planning algo-
rithm to planar robots undergoing translational and rotational
motion in complex 2D environments. Our algorithm is able to
perform the C-obstacle query in milliseconds and improves the
performance of the complete motion planning algorithm.

I. INTRODUCTION

The concept of robot’s configuration space is widely used
for motion planning of rigid and articulated robots [2], [3].
The robot is represented as a configuration in the parameter
space that encodes the robot’s degree-of-freedom (DOF). The
obstacles in the workspace map to the forbidden regions (or C-
obstacle space) in the configuration space. The complement of
C-obstacle space is called free space. The free space is the set
of collision-free configurations, i.e. the robot does not collide
with the obstacles. The goal of motion planning is to check
whether there exists a path from the initial configuration to the
final configuration that lies completely within the free space.

The complexity of computing the boundary of C-obstacle
space is exponential in the number of DOFs. Furthermore,
exact C-obstacle space computation is prone to floating point
errors and degeneracies. As a result, it is hard to compute
the boundary of C-obstacle space exactly, even for low-DOF
robots. Instead of computing this boundary explicitly, many
planning algorithms perform collision and proximity queries
to check whether a configuration lies in the free space or
not. This reduces to checking whether a specific placement
of the robot in the workspace collides with any obstacle or
not. The probabilistic roadmap planners (PRM) [4] also check

whether a continuous 1D path segment connecting two free
configurations lies in the free space.

In this paper, we address the problem of checking whether
a configuration space primitive or a cell lies completely in C-
obstacle space (i.e. C-obstacle query). Formally speaking, this
query is defined as checking whether the following predicate
P is true:

P (A,B, Q) : ∀q ∈ Q, A(q) ∩ B 6= ∅. (1)

Here, A is a robot, B represents obstacles and Q is a C-space
primitive or a cell; A(q) represents the placement of A at the
configuration q. Q may be a line segment, a cell or a contact
surface that is generated from the boundary features of the
robot and the obstacles.

The C-obstacle query is useful for cell decomposition
based algorithms for motion planning [2]. These algorithms
subdivide the configuration space into cells and need to check
whether a cell is fully contained either in the free space or in
C-obstacle space. The C-obstacle query also arises in sampling
based approaches for motion planning, especially complete
motion planning. These include the star-shaped roadmap al-
gorithm [1], which is a deterministic sampling algorithm and
subdivides the configuration space into a collection of cells in a
hierarchical fashion. Given that the time and space complexity
of these methods grows quickly with the level of subdivision,
it is important to identify cells that lie in C-obstacle so that
no further subdivision is performed on those cells.

Most prior work has focused on checking whether such
a continuous primitive lies inside the free space, such as
collision-free checking for a path segment [5], [6]. However,
these techniques are not directly applicable to the C-obstacle
query. Previous methods to perform C-obstacle query require
enumerating contact surfaces and tend to be inefficient in
practice [2]. In the workspace, C-obstacle query is equivalent
to deciding whether the robot and the obstacles overlap at
all the configurations that belong to the primitive or the cell.
Conceptually, this is opposite to the problem of Continuous
Collision Detection (CCD) for collision-free path checking [5],
[6]. However, C-obstacle query computation is more difficult.
Standard techniques based on bounding volume hierarchies
cannot be directly used to check whether a cell or a primitive
completely lies in the C-obstacle space. Moreover, the C-
obstacle query is often used for multi-dimensional primitives,

such as cells or contact surfaces. On the other hand, prior work
on CCD has been restricted to 1-dimensional paths.

A. Main Results

We present a fast C-obstacle query algorithm for rigid
robots. Our algorithm efficiently checks whether a continuous
C-space primitive, such as a cell or a contact surface, lies
inside the C-obstacle space. Our algorithm uses the notion
of generalized penetration depth, which takes into account
object’s translational as well as rotational motion to compute
the extent of penetration. In order to perform C-obstacle cell
query, we first compute a lower bound on the generalized
penetration depth PDg between a robot A and an obstacle B.
The lower bound on PDg is calculated by decomposing both
A and B into convex polytopes and computing all possible
pairwise, convex PDg between these polytopes and taking
their maximum value. We extend Schwarzer et al.’s method [6]
for a 1-dimensional path segment to a multi-dimensional set
of paths to compute an upper bound on the motion trajectory
of a moving robot. We compare the lower bound of PDg with
the upper bound on the motion trajectory to perform the C-
obstacle query. Our approach is conservative and provides a
sufficient condition for the query. In practice, our algorithm
is fast and performs the query in a few milliseconds for 2D
rigid robots. We have used our algorithm to accelerate the
performance of star-shaped roadmap algorithm for complete
motion planning.

B. Organization

The rest of the paper is organized as follows. In Section II,
we briefly survey related work in this area. We introduce the
notation and give an overview of our approach in Section III.
In Section IV, we present our algorithm for computing a lower
bound on PDg and extend our algorithm to perform queries
on contact surfaces in Section V. We highlight the performance
of these algorithms and its application to star-shaped roadmaps
in Section V.

II. RELATED WORK

In this section, we briefly review the previous work on C-
obstacle query, continuous collision detection (CCD) for local
planning, penetration depth, and motion bound calculation.

A. C-obstacle Query

A C-obstacle query algorithm based on contact surface
enumeration and convex decomposition has been described
in [2]. A configuration cell lies entirely inside C-obstacle
if it is contained by C-obstacle region formed by a pair of
convex pieces from the robot and the obstacles respectively.
One drawback of this method is that it enumerates all the
contact surfaces for every convex pair to test the containment.
Moreover, it is rather difficult to extend this approach to higher
DOFs robots.

B. Continuous Collision Detection and Local Planning

The goal of continuous collision detection (CCD) is to
determine whether all configurations along a continuous path
are collision-free or not. Different types of approaches have
been proposed for this purpose: algebraic solving approach
[7], [8], swept volume-based approach [9], adaptive bisection
approach [5], [6] and kinetic data structures approach [10],
[11]. A typical application of CCD is local motion planning
such as probabilistic roadmap approach (PRM) [4], where one
needs to quickly determine whether a given path segment is
collision-free or not [6].

C. Penetration Depth

Penetration Depth (PD) is a distance measure to describe the
extent of inter-penetration between two overlapping objects.
One can define PD differently depending on whether consider-
ing only translational motion or considering both translational
and rotational motion in the measure. A classical definition of
translational PD, PDt, is defined as a minimum translational
distance to make two objects disjoint. This definition can be
formulated in terms of the Minkowski sum of two objects [12]–
[16]. The generalized PD, PDg takes into account both the
translational and rotational motion [17].

D. Motion Bound Calculation

Schwarzer et al. [6] propose a method to bound a motion
trajectory by calculating the maximal length of curve segments
traced by all points on a moving robot with constant linear and
angular velocities. This technique has been extended to bound
the motion of an articulated robot, and the upper bound on
the motion trajectory is obtained by taking the weighted sum
of differences between all configuration parameters along the
motion trajectory. Redon et al. [18] bound the motion trajec-
tory of linear swept spheres (LSS) by using interval arithmetic
and this bound has been used for dynamic collision checking
between a moving avatar and the virtual environment.

III. C-OBSTACLE QUERY ALGORITHM

In this section we introduce our notation and give an
overview of our C-obstacle query algorithm.

A. Notations

We use the following notation throughout the rest of the pa-
per. We define a rigid robot A moving among stationary rigid
obstacles B1, ...,Bn. For a rigid robot in 2D with translational
and rotational DOFs, its C-space resides in R2 × SO(2). A
configuration q in this space represented by three independent
configuration parameters: x, y representing its translational
components, and φ representing its rotational angle. A line
segment in C-space connecting configurations qa and qb is
represented as πqa,qb

. A cell C in this C-space is defined as
a Cartesian product of the following form (Figure 1):

C = [x1, x2] × [y1, y2] × [φ1, φ2].

We denote A(q) as a placement of a robot A at a configuration
q. Let l(t) be an arbitrary curve in C-space. When A moves

Fig. 1. The upper bound of the motion of the robot when it is
restricted to the cell C: C is a cell in R2×SO(2) with configuration
parameters x, y, and φ. Initially, the robot is placed at qa, the center
of the cell. The bounding motion of the robot, when it moves along
the diagonal segment, i.e. from qa to qc, is greater than or equal
to the bounding motion moving along line segment from qa to qb,
where qb is an arbitrary point on the boundary of the cell.

along l, any point p on A traces a distinct curve in workspace.
Let p(q) as the position of the point p at the configuration q.
The length µ of the curve traced by the point p is:

µ(p, l) =

∫
||ṗ(l(t))|| d(l(t)). (2)

B. Motion Bound Calculation

The formulation of C-obstacle query requires an extent of
the motion that the robot A can undergo in workspace, when
it is restricted to a C-space primitive Q. If the underlying
primitive is a 1-dimensional curve (e.g., l), Schwarzer et al.
[6] define the bounding motion λ as:

λ(A, l) = UpperBound(µ(p, l) | p ∈ A).

In particular, when the rigid robot A moves along a line seg-
ment πqa,qb

in C-space, Schwarzer et al. compute a bounding
motion λ as the weighted sum of the difference between qa

and qb for each component x, y and φ:

λ(A, πqa,qb
) = |qb.x − qa.x| + |qb.y − qa.y| + Rφ × |qb.φ − qa.φ|.

(3)
The weight Rφ is defined as the maximum Euclidean

distance between every point p on A and the rotation center.
This equation can be easily extended to a rigid robot in 3D
with higher translational and rotational DOFs.

We define the bounding motion λ of the robot when it is
restricted within a cell C instead of a curve:

λ(A, C) = max{λ(A, πqa,qb
) | qb ∈ ∂C}, (4)

where qa is the center of C, and qb is any point on ∂C, the
boundary of C (Figure 1).

Among all line segments πqa,qb
, the diagonal line segments

have the maximum difference on each configuration compo-
nent. According to Eq. (3), the maximum of the bounding
motion λ(A, πqa,qb

) is achieved by any diagonal line segment
of the cell. Therefore, the bounding motion for the cell C

is equivalent to the bounding motion over any diagonal line
segment πqa,qc

:

Fig. 2. Notations of separating path and trajectory length for
generalized penetration depth PDg: The robot A with a reference
point o initially intersects with the obstacle B. The curve l is called
a separating path, since when A moves along this path, it finally
separates from B. The length of the trajectory traced by any point p

on A is the arc length of its moving trajectory pp′. Eq. (6) uses these
two notations to define the generalized penetration depth PDg .

λ(A, C) = λ(A, πqa,qc
), (5)

where qa is the center of the cell and qc is any corner of the
cell.

C. Generalized Penetration Depth

The formulation of our C-obstacle query also requires an
extent of inter-penetration between the robot and the obstacle.
The translational PD, PDt, is often defined as a minimum
translational distance to separate two overlapping objects.

PDt(A,B) = min({‖ d ‖ |interior(A + d) ∩ B = ∅}).

However, this notion is not directly applicable to our
method, because a rigid robot can have both translational and
rotational DOFs.

We adopt the generalized penetration depth PDg by [17],
which takes both translational and rotational motion into
account. The generalized PD can be defined using the notions
of separating path and trajectory length. As Fig. 2 illustrates,
a separating path l in C-space is such a curve that when a
robot moves along l, the robot can be completely separated
from the obstacle. The length of the trajectory of any point p

on the robot A moving along l is defined by Eq. (2).
Given a set L of all possible candidates of separating paths,

PDg between a robot A and an obstacle B is defined as:

PDg(A,B) = min({max({µ(p, l)|p ∈ A})|l ∈ L}). (6)

A useful property related to PDg is as follows:

THEOREM 1 For two convex polytopes A and B, we have

PDg(A,B) = PDt(A,B).

The proof of this result can be found in [17]. Furthermore,
like PDt, PDg satisfies the property: PDg(A,B) = 0 if and
only if A and B are disjoint.

Fig. 3. Gear example: This figure illustrates an application of our
C-obstacle query algorithm to speedup a complete motion planner -
the star-shaped roadmap algorithm. In this example, the object Gear
needs to move from initial configuration A to goal configuration A′

by translating and rotating within the shaded rectangular 2D region.
There are five gear-like obstacles Bi(i = 1, ..., 5) in this example,
and there are narrow passages between B1 and B2, and B4 and B5,
and no path existing in the passage between B3 and B5. We show
the robot’s intermediate configurations for the found path. Using our
C-obstacle query, we can achieve about 2.5 times speed up for the
star-shaped roadmap algorithm for this example.

D. C-obstacle Cell Query Criterion

We now state a sufficient condition for C-obstacle cell query,
i.e., to check whether A and B overlap at every configuration
q in a cell C (Fig. 1).

Lemma 1: For a cell C with the center qa, the predicate
P (A,B, C) is true if:

PDg(A(qa),B) > λ(A, C). (7)

Proof: We want to prove that Eq. (7) implies that there
is no free configuration on any line segment πqa,qb

, where qb

is any configuration on the boundary of the cell C. According
to the definition of PDg , the maximum trajectory length for
every point on the robot A moving along a possible separating
path should be greater than or equal to PDg(A(qa),B).
Moreover, according to Eq. (4), the trajectory length of the
robot when it moves along πqa,qb

is less than or equal to
λ(A, C). Since PDg(A(qa),B) > λ(A, C), the minimum
motion required to separate the robot A from the obstacle
B is larger than the maximum motion the robot A could
make. Therefore, there is no free configuration along any line
segment πqa,qb

.
Because there is no free configuration in every line segment

between qa to qb, this concludes that every configuration
in the cell C lies inside C-obstacle space, and the predicate
P (A,B, C) holds.

We use Lemma 1 to conservatively decide whether a given
cell C lies inside C-obstacle space. The C-obstacle query
algorithm includes two parts: computing a lower bound on
PDg for the robot A(qa) and the obstacle B, which is
presented in the next section, and computing an upper bound
on motion: λ(A, C), which can be easily computed by Eqs.
(5) and (3).

IV. LOWER BOUND ON GENERALIZED PENETRATION
DEPTH

In this section, we present our algorithm for efficiently
computing a lower bound on PDg . The algorithm is based
on the fact that PDg is equal to PDt for convex polytopes
[17]. As a result, we can obtain a lower bound on PDg by
(1) decomposing non-convex models into convex pieces and
(2) taking a maximum value of PDgs between all pairwise
combinations of convex pieces. More precisely, the algorithm
can be described as follows:

1) As a preprocess, decompose a non-convex robot A and
obstacle B into convex pieces; i.e., A = ∪Ai, where
i = 1, ...,M and B = ∪Bj , where j = 1, ..., N .

2) During run-time query, place A at configuration q to
obtain A(q).

3) For each pair of (Ai(q),Bj),
a) Perform collision detection to check for overlaps.
b) If the pair overlaps, PD

g
k = PDt((Ai(q),Bj),

where k = (i − 1)N + j; otherwise PD
g
k = 0.

4) Lower bound on PDg = max(PD
g
k) for all k.

A. Translational Penetration Depth Computation

In our method, the lower bound on generalized PDg

computation is decoupled into a set of PDt queries among
convex pieces. The PDt between two convex polytopes can
be computed [15], [19], [20]. These methods compute PDt by
calculating a minimum distance from the origin to the surface
of Minkowski sum between two convex polytopes.

Given that our C-obstacle query requires the lower bound
on PDg , this imposes that the PDt computation used in our
method should be exact or be a lower bound too. In particular,
the method in [19] guarantees such a lower bound and [15]
provides a even tighter lower bound based on an iterative
method.

B. Convex Decomposition

In our method, the convex decomposition is performed
as a preprocess. Our query algorithm also works when the
decomposed convex pieces may overlap with each other.
Moreover, our method also allows the union of decomposed
convex pieces to cover only a proper subset of the initial
model, i.e. ∪Ai ⊂ A. We use these properties to reduce the
number of convex pieces.

C. Bounding Volume Hierarchy Acceleration

Our lower bound on generalized PDg computation can
be accelerated by standard bounding volume hierarchy-based
collision detection technique. For two disjoint convex pieces,
their PDt is trivially set to 0. In practice, there are many
disjoint pairwise combinations of convex pieces for two non-
convex overlapping polytopes. Therefore, to accelerate our
query algorithm, we detect such disjoint pairs and prune them
away. We employ standard bounding volume hierarchy-based
collision detection technique such as axis-aligned bounding
box (AABB) or oriented bounding box (OBB) [21], to con-
servatively check whether the convex pieces are disjoint.

Fig. 4. World Map Example: This figure shows an application of our
C-obstacle query to speed up a complete motion planner - the star-
shaped roadmap method. In this example, the object needs to move
from initial configuration A to goal configuration A′ by translating
and rotating within the shaded rectangular 2D region. Our C-obstacle
query can achieve about 2.0 times speedup for this example.

V. APPLICATIONS

In this section, we highlight several applications of our C-
obstacle query algorithm. First, we apply our C-obstacle cell
query to the star-shaped roadmap approach [1] to improve its
performance. Next, we apply the query algorithm to a different
C-space primitive – a contact surface. We highlight the per-
formance of our query algorithm on both these applications.

A. C-obstacle Query for Star-Shaped Roadmaps

We have applied our C-obstacle query algorithm to acceler-
ate the star-shaped roadmap algorithm [1], [22]. This algorithm
computes a roadmap that captures the connectivity of free
space and is able to perform complete motion planning. It
constructs the roadmap by performing an adaptive subdivision
in C-space. The adaptive subdivision method generates a
volumetric grid in C-space such that every grid cell C satisfies
the following property: the portion FC of free space contained
within C is star-shaped, i.e., there exists a point o ∈ FC such
that o can “see” every point in FC . This star-shaped property
of the grid cells is used to extract a roadmap of the free space
that captures its connectivity.

One of the major performance bottlenecks in the original
star-shaped roadmap arises from processing many cells that
lie in the C-obstacle space and do not contribute to the final
roadmap. For example, in the Gear example (shown in Fig. 3),
during C-space subdivision, about 70% cells that completely
lie inside C-obstacle and handling these cells takes about 40%
of the total time.

In order to accelerate the star-shaped roadmap construction,
we apply the C-obstacle query algorithm to conservatively
identify the cells that are inside C-obstacle and cull them away.

Another benefit of the C-obstacle query is to accelerate
the checking of non-existence of any collision-free path. The
star-shaped roadmap method determines that no path exists
between the start and the goal configurations if the correspond-
ing parts of the roadmap are disconnected, i.e., separated by
C-obstacle. This computation is accelerated by using the C-
obstacle query.

B. Contact Surface Culling

Contact surface or C-surface is defined to be the locus of
configurations of a robot at which a specific feature of the

robot is in contact with a feature of an obstacle. The boundary
of free space can be extracted from an arrangement of contact
surfaces.

Removing contact surfaces that do not contribute to the
boundary of free space (i.e., contact surfaces lying inside C-
obstacle) is an important step in terms of accelerating the
process of constructing the boundary of free space [23]. Since
the time complexity of these computations is a polynomial
function of the number of contact surfaces in d dimension,
effectively identifying and culling contact surfaces can signif-
icantly improve the performance of constructing the bound-
ary of free space. In order to determine whether a contact
surface lies inside the C-obstacle space, we first compute an
axis aligned cell that bounds the given contact surface. If
this cell lies inside C-obstacle, the associated C-surface lies
completely inside C-obstacle, and can be culled away. This
computation can be performed by using our C-obstacle cell
query algorithm.

C. Experimental Results and Analysis

We have implemented the C-obstacle query algorithm for
2D robots with two translational and one rotational DOFs.
For the PDt computation, we use the Mink2D package 1. We
employ the OBB intersection test to accelerate the intersection
test between two convex polygons.

Our query algorithms have been integrated into the star-
shaped roadmap method. We test the enhanced planner on
complex 2D benchmarks with translational and rotational
DOFs. Figures 3, 4 and 5 illustrate the collision-free paths
computed by our planner for the Gear, World Map and
Piano models. In order to demonstrate the effectiveness our
C-obstacle cell query, we define the Cell Culling Ratio as:

Cell Culling Ratio =
number of culled C-obstacle cells

number of C-obstacle cells
.

(8)
Table I illustrates that our C-obstacle query algorithm can
achieve from 65% up to 80% Cell Culling Ratio in our
benchmarks. Table I also shows the average time for each C-
obstacle query. For the Gear example, it takes about 0.12ms

for a single query. The executed number of C-obstacle query
is 111,313, and the total execution time for C-obstacle query
is 13.30s (Table II).

Table II shows the performance speedup for the star-shaped
roadmap method. We observe 2-3 times speedup in our
benchmarks. The effectiveness of our contact surface culling
is shown in Table I.

VI. CONCLUSION AND FUTURE WORK

We have presented a fast C-obstacle query algorithm for
rigid robots. The algorithm can check whether a cell or a con-
tact surface lies inside the C-obstacle space. We have presented
a novel technique to perform the query based on penetration
depth computation and bounds on the motion trajectory. Our
C-obstacle query algorithm is general and can be used with

1http://www.cs.tau.ac.il/˜efif/collision_detection/

Gear Piano World Map
Cell Culling Ratio 75.21% 67.21% 65.52%

Time Per Cell Culling 0.12ms 0.04ms 0.06ms
Surface Culling Ratio* 11.11% 20.20% 22.15%

Time for all C-surface Queries 3.28s 0.40s 11.27s

TABLE I
EFFECTIVENESS OF C-OBSTACLE CELL AND SURFACE QUERY:
FOR 2D EXAMPLES, OUR QUERY CAN IDENTIFY ABOUT 65% TO

80% C-OBSTACLE CELLS. THE AVERAGE QUERY TIME VARIES

FROM 0.04MS TO 0.12MS. *THE SURFACE CULLING RATIO IS

DEFINED AS THE RATIO BETWEEN CULLED CONTACT SURFACES

OVER ALL INPUT CONTACT SURFACES.

Gear Piano World Map
Time of Original Method(s) 261.4 47.0 160.5

Time of Accelerated Method(s) 110.4 15.9 78.7
Speedup 2.4 2.9 2.0

Time for C-obstacle Cell Query(s) 13.3 0.8 1.8

TABLE II
PERFORMANCE: THE PERFORMANCE IMPROVEMENT IN THE

STARSHAPED ROADMAP METHOD BY USING C-OBSTACLE CELL

QUERY. FOR THE COMPLEX 2D EXAMPLE - Gear, OUR

ALGORITHM CAN IMPROVE ITS PERFORMANCE BY 2.4 TIMES.

cell decomposition based planners. Moreover, our algorithm is
easy to implement and efficient in practice. We have applied
our C-obstacle query to accelerate the performance of the star-
shaped roadmap algorithm for complete motion planning. Our
experimental results show that by integrating our C-obstacle
cell and contact surface query algorithms with this method,
we can improve its performance.

There are several directions to pursue for future work. We
are interested in further improving the effectiveness of our
C-obstacle query algorithm. We would like to extend the
algorithm to handle articulated robots. Finally, we would like
to combine the C-obstacle query with probabilistic roadmap
methods to design a hybrid planner that can handle high DOF
robots.

ACKNOWLEDGMENT

This project was supported in part by ARO Contracts
DAAD19-02-1-0390 and W911NF-04-1-0088, NSF awards
0400134 and 0118743, ONR Contract N00014-01-1-0496,
DARPA/RDECOM Contract N61339-04-C-0043 and Intel.
Young J. Kim was supported in part by the grant R08-2004-
000-10406-0 of KRF, the STAR program of MOST, the Ewha
SMBA consortium and the ITRC program.

REFERENCES

[1] G. Varadhan and D. Manocha, “Star-shaped roadmaps - a determinstic
sampling approach for complete motion planning,” in Proc. of Robotics:
Science and Systems, 2005.

[2] J. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1991.

[3] H. C. et al., Principles of Robot Motion. The MIT Press, 2005.
[4] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Automat., pp. 12(4):566–580, 1996.

Fig. 5. Piano example: our C-obstacle query algorithm can speedup
the star-shaped roadmap method about 2.9 times.

[5] S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha, “Fast continuous
collision detection for articulated models,” in Proceedings of ACM
Symposium on Solid Modeling and Applications, 2004.

[6] F. Schwarzer, M. Saha, and J. Latombe, “Adaptive dynamic collision
checking for single and multiple articulated robots in complex environ-
ments,” IEEE Tr. on Robotics, vol. 21, no. 3, pp. 338–353, June 2005.

[7] J. F. Canny, “Collision detection for moving polyhedra,” IEEE Trans.
PAMI, vol. 8, pp. 200–209, 1986.

[8] B. Kim and J. Rossignac, “Collision prediction for polyhedra under
screw motions,” in ACM Conference on Solid Modeling and Applica-
tions, June 2003.

[9] K. Abdel-Malekl, D. Blackmore, and K. Joy, “Swept volumes: Foun-
dations, perspectives, and applications,” International Journal of Shape
Modeling, 2002.

[10] P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and L. Zhang,
“Deformable free space tiling for kinetic collision detection,” 2000, to
appear.

[11] D. Kirkpatrick, J. Snoeyink, and B. Speckmann, “Kinetic collision
detection for simple polygons,” in ACM Symposium on Computational
Geometry, 2000, pp. 322–330.

[12] D. Dobkin, J. Hershberger, D. Kirkpatrick, and S. Suri, “Computing
the intersection-depth of polyhedra,” Algorithmica, vol. 9, pp. 518–533,
1993.

[13] P. Agarwal, L. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir,
“Penetration depth of two convex polytopes in 3d,” Nordic J. of
Computing, vol. 7, no. 3, pp. 227–240, 2000.

[14] R. A. Brooks and T. Lozano-Pérez, “A subdivision algorithm in configu-
ration space for findpath with rotation,” IEEE Trans. Syst, vol. SMC-15,
pp. 224–233, 1985.

[15] G. van den Bergen, “Proximity queries and penetration depth computa-
tion on 3d game objects,” Game Developers Conference, 2001.

[16] P. Agarwal, L. Guibas, S. Har-Peled, A. Rabinovitch, and M. Sharir,
“Penetration depth of two convex polytopes in 3d,” Nordic J. Computing,
vol. 7, pp. 227–240, 2000.

[17] L. Zhang, Y. Kim, G. Varadhan, and D. Manocha, “Generalized pene-
tration depth computation,” University of North Carolina at Chapel Hill,
Tech. Rep., 2005.

[18] S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha, “Interactive and
continuous collision detection for avatars in virtual environments,” in
Proceedings of IEEE VR Conference, 2004.

[19] S. Cameron, “Enhancing GJK: Computing minimum and penetration
distance between convex polyhedra,” IEEE International Conference on
Robotics and Automation, pp. 3112–3117, 1997.

[20] Y. Kim, M. Lin, and D. Manocha, “Deep: Dual-space expansion for
estimating penetration depth between convex polytopes,” in Proc. IEEE
International Conference on Robotics and Automation, May 2002.

[21] M. Lin and D. Manocha, “Collision and proximity queries,” in Handbook
of Discrete and Computational Geometry, 2003.

[22] G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha, “A simple algo-
rithm for complete motion planning of translating polyhedral robots,” in
Workshop on the Algorithmic Foundations of Robotics, 2004.

[23] G. Varadhan, Y. J. Kim, S. Krishnan, and D. Manocha, “Topology
preserving approximation of free configuration space,” in Proc. IEEE
International Conference on Robotics and Automation, 2006.

