Triangle meshes

COMP 770
Notation

- \(n_T = \#\text{tris}; n_V = \#\text{verts}; n_E = \#\text{edges} \)
- Euler: \(n_V - n_E + n_T = 2 \) for a simple closed surface
 - and in general sums to small integer
 - argument for implication that \(n_T:n_E:n_V \) is about 2:3:1

[Foley et al.]
Validity of triangle meshes

• in many cases we care about the mesh being able to bound a region of space nicely
• in other cases we want triangle meshes to fulfill assumptions of algorithms that will operate on them (and may fail on malformed input)
• two completely separate issues:
 – topology: how the triangles are connected (ignoring the positions entirely)
 – geometry: where the triangles are in 3D space
Topology/geometry examples

- same geometry, different mesh topology:

- same mesh topology, different geometry:
Topological validity

- strongest property, and most simple: be a manifold
- this means that no points should be "special"
- interior points are fine
- edge points: each edge should have exactly 2 triangles
- vertex points: each vertex should have one loop of triangles
- not too hard to weaken this to allow boundaries

[Foley et al.]
Geometric validity

• generally want non-self-intersecting surface
• hard to guarantee in general
 – because far-apart parts of mesh might intersect
Representation of triangle meshes

- Compactness
- Efficiency for rendering
 - enumerate all triangles as triples of 3D points
- Efficiency of queries
 - all vertices of a triangle
 - all triangles around a vertex
 - neighboring triangles of a triangle
 - (need depends on application)
 - finding triangle strips
 - computing subdivision surfaces
 - mesh editing
Representations for triangle meshes

- Separate triangles
- Indexed triangle set
 - shared vertices
- Triangle strips and triangle fans
 - compression schemes for transmission to hardware
- Triangle-neighbor data structure
 - supports adjacency queries
- Winged-edge data structure
 - supports general polygon meshes
Separate triangles

<table>
<thead>
<tr>
<th>tris[0]</th>
<th>[0]</th>
<th>[1]</th>
<th>[2]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x_0, y_0, z_0</td>
<td>x_2, y_2, z_2</td>
<td>x_1, y_1, z_1</td>
</tr>
<tr>
<td>tris[1]</td>
<td>x_0, y_0, z_0</td>
<td>x_3, y_3, z_3</td>
<td>x_2, y_2, z_2</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Separate triangles

- array of triples of points
 - float\([n_T][3][3]\): about 72 bytes per vertex
 - 2 triangles per vertex (on average)
 - 3 vertices per triangle
 - 3 coordinates per vertex
 - 4 bytes per coordinate (float)

- various problems
 - wastes space (each vertex stored 6 times)
 - cracks due to roundoff
 - difficulty of finding neighbors at all
Indexed triangle set

- Store each vertex once
- Each triangle points to its three vertices

Triangle {
 Vertex vertex[3];
}

Vertex {
 float position[3]; // or other data
}

// ... or ...

Mesh {
 float verts[nv][3]; // vertex positions (or other data)
 int tInd[nt][3]; // vertex indices
}
Indexed triangle set

<table>
<thead>
<tr>
<th>verts[0]</th>
<th>(x_0, y_0, z_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_1, y_1, z_1)</td>
</tr>
<tr>
<td></td>
<td>(x_2, y_2, z_2)</td>
</tr>
<tr>
<td></td>
<td>(x_3, y_3, z_3)</td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>verts[1]</th>
<th>(x_0, y_0, z_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(x_1, y_1, z_1)</td>
</tr>
<tr>
<td></td>
<td>(x_2, y_2, z_2)</td>
</tr>
<tr>
<td></td>
<td>(x_3, y_3, z_3)</td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tInd[0]</th>
<th>0, 2, 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0, 3, 2</td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tInd[1]</th>
<th>0, 2, 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0, 3, 2</td>
</tr>
<tr>
<td></td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>
Indexed triangle set

• array of vertex positions
 – float[n_V][3]: 12 bytes per vertex
 • (3 coordinates x 4 bytes) per vertex
• array of triples of indices (per triangle)
 – int[n_T][3]: about 24 bytes per vertex
 • 2 triangles per vertex (on average)
 • (3 indices x 4 bytes) per triangle
• total storage: 36 bytes per vertex (factor of 2 savings)
• represents topology and geometry separately
• finding neighbors is at least well defined
Triangle strips

• Take advantage of the mesh property
 – each triangle is usually adjacent to the previous
 – let every vertex create a triangle by reusing the second and third vertices of the previous triangle
 – every sequence of three vertices produces a triangle (but not in the same order)
 – e.g., 0, 1, 2, 3, 4, 5, 6, 7, … leads to (0 1 2), (2 1 3), (2 3 4), (4 3 5), (4 5 6), (6 5 7), …
 – for long strips, this requires about one index per triangle
Triangle strips

<table>
<thead>
<tr>
<th>verts[0]</th>
<th>x_0, y_0, z_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>verts[1]</td>
<td>x_1, y_1, z_1</td>
</tr>
<tr>
<td></td>
<td>x_2, y_2, z_2</td>
</tr>
<tr>
<td></td>
<td>x_3, y_3, z_3</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>tStrip[0]</th>
<th>4, 0, 1, 2, 5, 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>tStrip[1]</td>
<td>6, 9, 0, 3, 2, 10, 7</td>
</tr>
<tr>
<td></td>
<td>\vdots</td>
</tr>
</tbody>
</table>
Triangle strips

- array of vertex positions
 - float$[n_V][3]$: 12 bytes per vertex
 - (3 coordinates x 4 bytes) per vertex
- array of index lists
 - int$[n_S][\text{variable}]$: 2 + n indices per strip
 - on average, $(1 + \varepsilon)$ indices per triangle (assuming long strips)
 - 2 triangles per vertex (on average)
 - about 4 bytes per triangle (on average)
- total is 20 bytes per vertex (limiting best case)
 - factor of 3.6 over separate triangles; 1.8 over indexed mesh
Triangle fans

• Same idea as triangle strips, but keep oldest rather than newest
 – every sequence of three vertices produces a triangle
 – e.g., 0, 1, 2, 3, 4, 5, … leads to (0 1 2), (0 2 3), (0 3 4), (0 4 5), …
 – for long fans, this requires about one index per triangle
• Memory considerations exactly the same as triangle strip
Triangle neighbor structure

- Extension to indexed triangle set
- Triangle points to its three neighboring triangles
- Vertex points to a single neighboring triangle
- Can now enumerate triangles around a vertex
Triangle neighbor structure

Triangle {
Triangle nbr[3];
Vertex vertex[3];
}

// t.nbr[i] is adjacent
// across the edge from i to i+1

Vertex {
// ... per-vertex data ...
Triangle t; // any adjacent tri
}

// ... or ...

Mesh {
// ... per-vertex data ...
int tInd[nt][3]; // vertex indices
int tNbr[nt][3]; // indices of neighbor triangles
int vTri[nv]; // index of any adjacent triangle
}
Triangle neighbor structure

\[
\begin{array}{c|ccc}
& tNbr[0] & 1, 6, 7 \\
tNbr[1] & 10, 2, 0 & \\
tNbr[2] & 3, 1, 12 \\
tNbr[3] & 2, 13, 4 & \vdots \\
\end{array}
\]

\[
\begin{array}{c|ccc}
vTri[0] & 0 & \\
vTri[1] & 6 & \\
vTri[2] & 1 & \\
vTri[3] & 1 & \vdots \\
\end{array}
\]

\[
\begin{array}{c|ccc}
tInd[0] & 0, 2, 1 \\
tInd[1] & 0, 3, 2 \\
tInd[2] & 10, 2, 3 \\
tInd[3] & 2, 10, 7 & \vdots \\
\end{array}
\]
Triangle neighbor structure

TrianglesOfVertex(v) {
 t = v.t;
 do {
 find t.vertex[i] == v;
 t = t.nbr[pred(i)];
 } while (t != v.t);
}

pred(i) = (i+2) % 3;
succ(i) = (i+1) % 3;
Triangle neighbor structure

• indexed mesh was 36 bytes per vertex
• add an array of triples of indices (per triangle)
 – int[n_T][3]: about 24 bytes per vertex
 • 2 triangles per vertex (on average)
 • (3 indices x 4 bytes) per triangle
• add an array of representative triangle per vertex
 – int[n_V]: 4 bytes per vertex
• total storage: 64 bytes per vertex
 – still not as much as separate triangles
Triangle neighbor structure—refined

Triangle {
 Edge nbr[3];
 Vertex vertex[3];
}

// if t.nbr[i].i == j
// then t.nbr[i].t.nbr[j] == t

Edge {
 // the i-th edge of triangle t
 Triangle t;
 int i; // in {0,1,2}
 // in practice t and i share 32 bits
}

Vertex {
 // ... per-vertex data ...
 Edge e; // any edge leaving vertex
}
Triangle neighbor structure

```
TrianglesOfVertex(v) {
    {t, i} = v.e;
    do {
        {t, i} = t.nbr[pred(i)];
    } while (t != v.t);
}

pred(i) = (i+2) % 3;
succ(i) = (i+1) % 3;
```

T₀.nbr[0] = { T₁, 2 }
T₁.nbr[2] = { T₀, 0 }
V₀.e = { T₁, 0 }
Winged-edge mesh

• Edge-centric rather than face-centric
 – therefore also works for polygon meshes
• Each (oriented) edge points to:
 – left and right forward edges
 – left and right backward edges
 – front and back vertices
 – left and right faces
• Each face or vertex points to one edge
Winged-edge mesh

Edge {
 Edge hl, hr, tl, tr;
 Vertex h, t;
 Face l, r;
}

Face {
 // per-face data
 Edge e; // any adjacent edge
}

Vertex {
 // per-vertex data
 Edge e; // any incident edge
}
Winged-edge structure

EdgesOfFace(f)
{ e = f.e;
do {
 if (e.l == f)
 e = e.hl;
 else
 e = e.tr;
} while (e != f.e);
}

EdgesOfVertex(v)
{ e = v.e;
do {
 if (e.t == v)
 e = e.tl;
 else
 e = e.hr;
} while (e != v.e);
}
Winged-edge structure

- array of vertex positions: 12 bytes/vert
- array of 8-tuples of indices (per edge)
 - head/tail left/right edges + head/tail verts + left/right tris
 - int\[n_E\][8]: about 96 bytes per vertex
 - 3 edges per vertex (on average)
 - (8 indices x 4 bytes) per edge
- add a representative edge per vertex
 - int\[n_V\]: 4 bytes per vertex
- total storage: 112 bytes per vertex
 - but it is cleaner and generalizes to polygon meshes
Winged-edge optimizations

- Omit faces if not needed
- Omit one edge pointer on each side
 - results in one-way traversal
Half-edge structure

• Simplifies, cleans up winged edge
 – still works for polygon meshes

• Each half-edge points to:
 – next edge (left forward)
 – next vertex (front)
 – the face (left)
 – the opposite half-edge

• Each face or vertex points to one half-edge
Half-edge structure

HEdge {
 HEdge pair, next;
 Vertex v;
 Face f;
}

Face {
 // per-face data
 HEdge h; // any adjacent h-edge
}

Vertex {
 // per-vertex data
 // per-vertex data
 HEdge h; // any incident h-edge
}
Half-edge structure

EdgesOfVertex(v) {
 h = v.h;
 do {
 h = h.pair.next;
 } while (h != v.h);
}

<table>
<thead>
<tr>
<th>pair</th>
<th>next</th>
</tr>
</thead>
<tbody>
<tr>
<td>hedge[0]</td>
<td>1</td>
</tr>
<tr>
<td>hedge[1]</td>
<td>0</td>
</tr>
<tr>
<td>hedge[2]</td>
<td>3</td>
</tr>
<tr>
<td>hedge[3]</td>
<td>2</td>
</tr>
<tr>
<td>hedge[4]</td>
<td>5</td>
</tr>
<tr>
<td>hedge[5]</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>
Half-edge structure

- array of vertex positions: 12 bytes/vert
- array of 4-tuples of indices (per h-edge)
 - next, pair h-edges + head vert + left tri
 - int[2n_E][4]: about 96 bytes per vertex
 - 6 h-edges per vertex (on average)
 - (4 indices x 4 bytes) per h-edge
- add a representative h-edge per vertex
 - int[n_V]: 4 bytes per vertex
- total storage: 112 bytes per vertex
Half-edge optimizations

- Omit faces if not needed
- Use implicit pair pointers
 - they are allocated in pairs
 - they are even and odd in an array