2D Geometric Transformations

COMP 770
Fall 201 |

A little quick math background

* Notation for sets, functions, mappings
 Linear transformations
 Matrices

— Matrix-vector multiplication

— Matrix-matrix multiplication

* Geometry of curves in 2D

— Implicit representation

— Explicit representation

Implicit representations

Equation to tell whether we are on the curve
{V | f(v) =0}

Example: line (orthogonal to u, distance k from 0)
{(viv-u+k=0}

Example: circle (center p, radius r)
{vI(v—=p)-(v—p)+r’ =0}

Always define boundary of region

— (if f is continuous)

Explicit representations

* Also called parametric
* Equation to map domain into plane

1f(t) [t e D}

* Example: line (containing p, parallel to u)

{p+tu|teR}

* Example: circle (center b, radius r)
{p+r[cost sint|! |t € [0,2m)}

 Like tracing out the path of a particle over time

* Variable t is the “parameter”

Transforming geometry

* Move a subset of the plane using a mapping from the
plane to itself

S —A{T(v)|veS}
 Parametric representation:

{f@)[te Dy = {T(f(t)) [t € D}
* Implicit representation:

WIf(v) =07 = T(v)| f(v) =0}
={v[f(T7}(v)) =0}

Translation

« Simplest transformation: 7'(v) = v +u
e Inverse: T '(v) =v —u

* Example of transforming circle

Linear transformations

* One way to define a transformation is by matrix
multiplication:
T(v)=Mv
* Such transformations are linear, which is to say:

T(au+v)=al(u)+T(v)

(and in fact all linear transformations can be written this way)

Geometry of 2D linear trans.

* 2x2 matrices have simple geometric interpretations
— uniform scale
— non-uniform scale
— rotation
— shear

— reflection

* Reading off the matrix

Linear transformation gallery

e Uniform scale |° 0| | _|5®

0 s| |y SY

Linear transformation gallery

e Nonuniform scale

Sx

0

.

Sy_

x
Y

Sy
Syl

1.5
0

-
0.8

Linear transformation gallery

e Rotation

cos 0

sin 6

— sin 6]

cos 0

K

X

xcosf — ysin b

'0.866
0.5

xsinf + ycosf

— .05
0.866

Linear transformation gallery

 Reflection

— can consider it a special case
of nonuniform scale

Linear transformation gallery

 Shear

0
O 1

x
Y

ZB%—ay_

Y

Composing transformations

* Want to move an object, then move it some more

- p—T(p)— S(T(p)) = (SoT)(p)
* We need to represent So T ("S compose T")

— and would like to use the same representation as for $ and T

* Translation easy

T(p)=p+ur;S(p) =p+us
(SoT)(p) =p+ (ur + ug)

* Translation by u; then by u¢ is translation by u; + ug

— commutative!

Composing transformations

* Linear transformations also straightforward

-~ T(p) = Mrp; S(p) = Msp
(S O T)(p) — MsMTp

* Transforming first by M+ then by M¢ is the same as
transforming by MM+
— only sometimes commutative
* e.g. rotations & uniform scales

* e.g. non-uniform scales w/o rotation
— Note MM+, or So T, is T first, then §

Combining linear with translation
* Need to use both in single framework

» Can represent arbitrary seq. as T(p)=Mp+u
- T(p) = Mrp+ur
- S(p) = Msp +us
-~ (SoT)(p) = Ms(Mrp +ur) + us

= (MsMr)p + (Mgsur + ug)
~ & S(1(0)) = S(ur)

* Transforming by M; and u4, then by M¢ and ug, is the

same as transforming by M¢M; and uc+tMu;

— This will work but is a little awkward

Homogeneous coordinates

* A trick for representing the foregoing more elegantly

* Extra component w for vectors, extra row/column for
matrices

— for affine, can always keep w = |

* Represent linear transformations with dummy extra
row and column

a b O |z az + by |
c d 0| |yl = |cx+dy
0 0 1] [1] 1

Homogeneous coordinates

* Represent translation using the extra column

t] [x 4+t
S yl = |y+s
1_ 1 J

o O
o~ O

Homogeneous coordinates

* Composition just works, by 3x3 matrix multiplication

Ms ug| [Mr ur||p
0 1 0 1 1

(MsM7)p + (Msur + ug)
1

* This is exacuy tne same as carrying arouna /vi ana'u

— but cleaner

— and generalizes in useful ways as we'll see later

Affine transformations

* The set of transformations we have been looking at is
known as the “affine” transformations

— straight lines preserved; parallel lines preserved

— ratios of lengths along lines preserved (midpoints preserved)

20

Affine transformation gallery

* Translation

D & =

o = O

S~ S
8

1
0
0

2.15
0.85

21

Affine transformation gallery

e Uniform scale

O »

Va

0

0
1

1.5
0
0

0
1.5
0

22

Affine transformation gallery

e Nonuniform scale

S

0
0

0
Sy
0

0
0
1

23

Affine transformation gallery

e Rotation

cos 0

sin 6

0

—sinf O]
cosf O
0 1

10.866

0.5
0

—0.5
0.866
0

24

Affine transformation gallery

 Reflection

— can consider it a special case
of nonuniform scale

e

25

Affine transformation gallery

 Shear

- &

S = Q

0
0
1

26

General affine transformations

* The previous slides showed “canonical” examples of
the types of affine transformations

* Generally, transformations contain elements of
multiple types

— often define them as products of canonical transforms

— sometimes work with their properties more directly

27

Composite affine transformations

* In general not commutative: order matters!

A A

rotate, then translate translate, then rotate

28

Composite affine transformations

* Another example

scale, then rotate rotate, then scale

29

Rigid motions

* A transform made up of only translation and rotation
is a rigid motion or a rigid body transformation

* The linear part is an orthonormal matrix

_ @ u
=10 1

* Inverse of orthonormal matrix is transpose

— so inverse of rigid motion is easy:

10 1

poip_ [QF —QTu][@ u
0 1

Composing to change axes

* Want to rotate about a particular point

— could work out formulas directly...

* Know how to rotate about the origin

— so translate that point to the origin

t M =T"'RT

A

31

Composing to change axes

* Want to scale along a particular axis and point
* Know how to scale along the y axis at the origin

— so translate to the origin and rotate to align axes

S

M=T"'RISRT

32

Transforming points and vectors

* Recall distinction points vs. vectors
— vectors are just offsets (differences between points)
— points have a location

* represented by vector offset from a fixed origin

* Points and vectors transform differently

— points respond to translation; vectors do not
v=pP—q
T(x)=Mx+t
T'p—q)=Mp+t—(Mq+t)
=M(p-q)+(t—t)=Mv

33

Transforming points and vectors

* Homogeneous coords. let us exclude translation
— just put O rather than | in the last place

M t||p| |Mp+t M t||v| |Mv
ol 1| (1| 1 ol 10| | O
— and note that subtracting two points cancels the extra
coordinate, resulting in a vector!

* Preview: projective transformations

— what'’s really going on with this last coordinate?
— think of R* embedded in R3: all affine xfs. preserve z=1 plane

— could have other transforms; project back to z=1

34

More math background

* Coordinate systems
— Expressing vectors with respect to bases

— Linear transformations as changes of basis

35

Affine change of coordinates

* Six degrees of freedom

aq
a4

0

as as
as de
0 1
>
€

or

u v
0 0

>
1_

36

Affine change of coordinates

* Coordinate frame: point plus basis

* Interpretation: transformation Vv
changes representation of u
point from one basis to another p

 “Frame to canonical’ matrix has
frame in columns

-
1_

u Vv
— takes points represented in frame 0 0

— represents them in canonical basis
—eg. [00],[1 0], [0 I]
* Seems backward but bears thinking about

37

Affine change of coordinates

« A new way to read off’ the matrix
— e.g. shear from earlier

— can look at picture, see effect
on basis vectors, write
down matrix

* Also an easy way to construct transforms

— e. g. scale by 2 across direction (1,2)

-

1

38

Affine change of coordinates

* When we move an object to the origin to apply a
transformation, we are really changing coordinates

— the transformation is easy to express in object’s frame

— so define it there and transform it

T, = FTrF 1

— T, is the transformation expressed wrt. {e|, e,}
— Tgis the transformation expressed in natural frame

— Fis the frame-to-canonical matrix [u v p]

* This is a similarity transformation

39

Coordinate frame summary

* Frame = point plus basis
* Frame matrix (frame-to-canonical) is
W v P
0 0 1
* Move points to and from frame by multiplying with F
pe = Fpr pr=F'pe

* Move transformations using similarity transforms

F =

T,=FITrF ' Tp=F 'TF

