Sampling and Reconstruction

Today:

- Finish up Color
- Tone mapping
- Image representation
- Signal processing
- Sampling
- Reconstruction

Color Theory

- CIE XYZ color space
 - 3 color matching functions: X, Y, Z
 - Y is luminance
 - X and Z are color values

WP user acdx

Color Theory

- xyY color space
 - Since Y is luminance, it carries no color data
 - Chromaticity can be carried in new parameters x and y
\[x = \frac{X}{X + Y + Z} \]
\[y = \frac{Y}{X + Y + Z} \]
\[Y = y \]

\[X = \frac{Y}{x} \]
\[Z = \frac{Y}{y} (1 - x - y) \]

Color Theory

- **Gamut**
 - Formed by plotting x,y colors

- Let's mix colors!

The line between two points represents all the mixes possible with those colors.

Color Theory

- sRGB space
Color Theory

Intuitive colors?
RGB is not necessarily intuitive with human color perception.

Color Theory

- RGB model

![RGB Model](image)

Visual Computing, Nielsen et al.

Color Theory

- HSV model
 - Color wheel (hue), saturation, value
Color Theory

- HSV model

Tone mapping

- Images
 - Stored for easy display
 - Not accurate representations
 - Most output devices show 256 brightness levels
 - Most image formats store 256 brightness levels

Today:

- Finish up Color
- Tone mapping
- Image representation
- Signal processing
- Sampling
- Reconstruction
Tone mapping

- Humans perceive more than 256 brightness levels
 - 4-5 log units, 100,000 : 1
 - Images are typically 2 log units, 100 : 1
- Your simulation images will have more than 256 brightness levels
 - Likely RGB float values
 - How to store them as standard images? (RGB bytes)

Tone mapping

- High dynamic range
 - This is normal range for humans
 - Images are low dynamic range
 - Must take HDR images and map them into smaller range

Tone mapping

- Clamping
 - Only keep small range (0.0 - 1.0)
 - Clamp low and high values
- Issues?

Can discard large amounts of the image, or even the entire image!

Tone mapping

- Remap values
 - Linear scaling to destination values
- Issues?

\[n = \frac{L}{L_{\text{max}}} \]

Can remap many colors to the same value, losing detail.
Tone mapping

- Many, many more mappings...
 - Average luminance scale
 \[n = 0.5 \cdot \frac{L}{L_{avg}} \]
 - Preserve color ratios
 - Separate reflectence and illuminance

Can remap many colors to the same value, losing detail.

Today:

- Finish up Color
- Tone mapping
- Image representation
- Signal processing
- Sampling
- Reconstruction

Image representation

- Grid of values
 - Each value is a 'pixel'
- How to store?
 - Single array with map/unmap function
 - 2d array (x,y dimensions)
 - Could be by spatial dimension
 - or channel dimension
Image representation

- What is a pixel?
 - Little box of color?
A pixel stores a single discrete sample result. It is not necessarily the color for the area under the pixel.

Image representation

- Aliasing
It is impossible to tell an aliased image from an image of an object that is similar to the alias pattern.

Image representation

- Aliasing
Anti-aliasing is used to show the original signal more clearly.

Image representation

- Aliasing
Today:

- Finish up Color
- Tone mapping
Signal processing

- Continuous vs. Discrete

- Frequency

- Maximum represented frequency
 - Two times the sampling rate

Today:

- Finish up Color
- Tone mapping
- Image representation
Sampling

- Sample the signal at some location
- Record value
 - Recording more than 1 value per pixel is called super sampling
- Many, many ways to do this

Sampling

- Uniform sampling
- Regular pattern
- Easy, fast
- Issues?

Sampling

- Random sampling
- Multiple random samplings per pixel
- Generally good distribution
- Issues?

Sampling

- Stratified sampling
- Divide pixel into grid
- Random sample in each grid

Today:

- Finish up Color
- Tone mapping
- Image representation
- Signal processing
- Sampling
- Reconstruction
Now that we have samples, we need a value for the pixel
 - We will use a reconstruction filter
 - Again, there are many, many ways to do this

Reconstruction is the process of combining samples to form a representative value. This value corresponds to the original signal.

Filter basics

Support
 - Range of the filter

Weighting
 - Area under filters should sum to 1

Box filter

$$a_{\text{box}, r}[i] = \begin{cases}
\frac{1}{(2r + 1)} & |i| \leq r, \\
0 & \text{otherwise}.
\end{cases}$$

For the box filter, we include both endpoints. As a

$$f_{\text{box}, r}(x) = \begin{cases}
\frac{1}{2r} & -r \leq x < r, \\
0 & \text{otherwise}.
\end{cases}$$

Tent filter
Reconstruction

- Gaussian filter

\[f_g(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}. \]