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Figure 1: Sticking and penetration problems: We highlight sticking and penetration problems in the Chain Benchmark (a)(14.3k tri-
angles, 60fps) and the Rings Benchmark (b)(7.4k triangles, 35fps) with traditional penalty methods. Our novel continuous penalty force
formulation can alleviate these problems based on continuous collision and force computation.

Abstract

We present a simple algorithm to compute continuous penal-
ty forces to determine collision response between rigid and de-
formable models bounded by triangle meshes. Our algorithm com-
putes a well-behaved solution in contrast to the traditional stability
and robustness problems of penalty methods, induced by force dis-
continuities. We trace contact features along their deforming trajec-
tories and accumulate penalty forces along the penetration time in-
tervals between the overlapping feature pairs. Moreover, we present
a closed-form expression to compute the continuous and smooth
collision response. Our method has very small additional overhead
compared to previous penalty methods, and can significantly im-
prove the stability and robustness. We highlight its benefits on sev-
eral benchmarks.
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1 Introduction

Contact and collision modeling is an important problem in com-
puter graphics, haptics and robotics. With the recent advances in
processing power, many interactive applications such as games and
virtual environments use physics-based simulations to generate re-
alistic behaviors. Two important components of a physical simu-
lation are reliable detection of collisions between objects, and re-
sponding to those collisions by modeling a contact force that keeps
the objects well-separated.

There is extensive literature on methods for detecting and han-
dling collisions. Our work deals with penalty forces, which of-
fer a computationally simple, yet often effective solution for colli-
sion response. In a nutshell, penalty methods estimate the magni-
tude of penetration depth once objects have collided and compute
a restoring force as a function of the penetration depth. Penal-
ty methods are often used for real-time applications [Heidelberg-
er et al. 2004] as well as complex scenarios involving deformable
solids, cloth [Baraff and Witkin 1998], and articulated models. Be-
sides computer graphics, penalty methods are widely used in hap-
tics [Hasegawa and Sato 2004; Barbič and James 2008], robotic-
s [Yamane and Nakamura 2006; Drumwright 2008; Rengifo et al.
2009], and engineering applications [Wriggers 2006].

There are many robustness and stability problems that arise due to
use of penalty-based methods. Two key issues are computation of
force magnitude and force direction. An appropriate choice of force
should ensure penetration constraint resolution while maintaining
continuity and smoothness, both in space and time. Inappropriate
choices involving force discontinuities, underestimation or overes-
timation of force magnitude may lead to problems such as jitter,
instability, or constraint violation in the form of excessive penetra-
tion or even pop-through.

Main Results: We present a simple algorithm to compute contin-
uous penalty-based forces between rigid and deformable model-
s. Our approach is general and decomposes a mesh into vertices,
edges, and triangles. We use continuous collision detection (CCD)
algorithms to estimate penetration time intervals between overlap-
ping feature pairs, by approximating their trajectories using con-
tinuous formulations. We take into account both vertex-face and
edge-edge feature pairs, and compute analytic expressions of con-
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tact impulses by accumulating continuous penalty forces along the
entire feature trajectories. The overall algorithm offers the follow-
ing benefits:

• Simplicity: Our approach retains the simplicity and flexibility
of penalty-based forces.

• Efficiency: The overall computation is very fast. It takes about
3 µsec to check for collisions for each penetrating feature pair
and compute the response force, on a single core.

• Integrated collision detection and response: The underlying
formulation does not miss any penetrations and computes the
response force for each vertex-face and edge-edge feature pair.

• Improved robustness: As compared to previous penalty-based
methods, we observe reduction in jitter and constraint violation,
as well as improved stability.

The rest of the paper is organized as follows. We give a brief
overview of prior work in Section 2. Section 3 introduces our nota-
tion and presents closed form expressions for continuous penalty-
based forces. We highlight their performance on different bench-
marks in Section 4 and compare with prior algorithms in Section 5.

2 Related Work

We give a brief overview of prior work in collision detection and
contact force computation.

Collision Detection: There is extensive work on collision detec-
tion and contact computation [Teschner et al. 2005]. At a broad
level, prior methods can be classified into discrete and continuous
collision detection. Discrete methods check for collisions or pene-
tration at a specific time instance. Continuous methods are regard-
ed as more robust as they check for collisions between two discrete
time instances and compute the first time of contact [Bridson et al.
2002; Redon et al. 2004; Ortega et al. 2007; Tang et al. 2009].

Contact Force Computation: At a broad level, collision response
algorithms can be classified into three categories [Witkin and Baraff
1997]: constraint-based formulations [Bridson et al. 2002; Duriez
et al. 2004; Pauly et al. 2004; Duriez et al. 2006; Otaduy et al.
2009], penalty-based methods [Terzopoulos et al. 1987; Moore and
Wilhelms 1988; Wriggers et al. 1990], and impulse-based method-
s [Mirtich 1996]. In general, constraint-based methods result in a
more plausible simulation at the cost of extra computation. In this
paper, we limit ourselves to penalty-based methods.

Penalty-Based Methods: Penalty-based methods stem from the
definition of a conservative force field that tries to restore a non-
penetrating state when two or more objects have penetrated. Mul-
tiple definitions of penetration depth exist, and we use one of the
simplest formulations. Given a point ~x belonging to object A and
penetrating object B, the simplest definition of penetration depth
δ(~x) is the distance to the closest point to ~x on the surface of B.
Based on the magnitude of penetration depth, the basic penalty en-
ergy is typically defined as:

E(~x) =
1

2
k δ(~x)2, (1)

where k is the stiffness constant. The penalty force can be comput-
ed as the gradient of the penalty energy, i.e.,

~F (~x) = −∇E(~x) = −k δ(~x)∇δ(~x). (2)

Given the above definition of penetration depth, the (negative) gra-
dient of penetration depth equals the unit surface normal ~n at the
closest point on the surface of the penetrated object. The penalty
force can be computed simply as:

~F (~x) = k δ(~x)~n. (3)

This basic formulation, discrete penalty force, suffers from sever-
al problems. One is that penetration depth is not differentiable at
points lying on the medial axis of the penetrated object, due to a
discontinuity in the definition of closest points on the boundary.
This discontinuity translates into a discontinuous contact normal
~n, and the resulting penalty forces at those points are discontinu-
ous in direction. In a discrete-time setting, the discontinuity of the
penalty force can be approximated with a large derivative. Unfor-
tunately, a large derivative formulation may violate the passivity of
the discrete-time simulation [Mahvash and Hayward 2005]. Non-
passive contact adds spurious energy to colliding objects, and may
result in undesired jitter (i.e., high-frequency deviation from the ex-
pected path) or even instability (i.e., unbounded growth of physical
quantities such as momentum). To avoid discontinuities, Barbič
and James [2008] redefine ~n as the surface normal at the penetrat-
ing point ~x, but this approach is discrete and may miss collisions
under large time steps.

Another difficulty with respect to penalty methods is that the sim-
plest, local approach described above for defining penetration depth
based on the closest point on the penetrated surface may not result
in a globally consistent solution. Global inconsistency is character-
ized by the existence of multiple penetrating points with opposing
penalty forces, and may prevent the resolution of inter-penetration
or induce pop-through artifacts. Using only points of maximum
penetration is not sufficient, as it may result in oscillatory behav-
ior [Drumwright 2008]. Heidelberger et al. [2004] improve consis-
tency by performing a global contact treatment. Other approaches
include computation of global penetration depth, but this approach
is suited mostly for rigid bodies. Moreover, it is difficult to com-
pute global penetration depth for non-convex objects by taking into
account rotational motion [Zhang et al. 2007].

Another issue with penalty methods is that, in order to avoid inter-
penetrations, repulsive forces need to be stiff or non-linear [Ter-
zopoulos et al. 1987]. Higher contact stiffness increases the risk of
instability, in particular if the force direction is discontinuous. In
such cases, a high stiffness could magnify the discontinuities.

Despite their difficulties, penalty-based methods are widely used,
even on complex applications such as cloth simulation [Baraff and
Witkin 1998; Choi and Ko 2002]. However, several authors have
highlighted the challenges in computing appropriate contact forces
that can prevent inter-penetrations [Bridson et al. 2002; Heidel-
berger et al. 2004; Drumwright 2008]. Many algorithms use dis-
tance fields to estimate inter-penetrations and compute response
forces [Fisher and Lin 2001; Heidelberger et al. 2004; Teschner
et al. 2005]. Harmon et al. [2009] introduce a new penalty-based
approach that uses a barrier method instead of stiff springs, and use
a mixed explicit-implicit integrator to simulate contact forces at a
higher rate than the rest of the system [Harmon et al. 2011]. Ellis
et al. [1997] propose a filtering method to partially solve instability
problems due to discrete sampling of contact forces in haptic ren-
dering. To overcome the stability problems of penalty forces based
on penetration depth, Hasegawa and Sato [2004] propose a volume-
based penalty method to compute contact forces between colliding
rigid bodies for haptic rendering. Volume-based penalty methods
have also been extended to deformable bodies [Faure et al. 2008;
Teran et al. 2005]. Some of the challenges in these approaches
include the appropriate partitioning of global penetration volumes
into sub-volumes [Allard et al. 2010].

3 Continuous Contact Handling

In this section, we introduce our notation and present our continu-
ous penalty force (CPF) formulation.



3.1 Notation

Our algorithm is applicable to rigid and deformable models, which
are represented as triangulated meshes. We do not make any as-
sumptions about the motion of any object or its deformation, though
our current formulation is limited to explicit time integration. Fur-
thermore, the objects may undergo topological changes, such as
fracture. We use the symbols V , E, and F to represent vertices,
edges, and faces, respectively. We use lower-case symbols v, e, and
t to denote a specific vertex, edge, and triangle, respectively. Vector
quantities are represented with a little arrow, e.g., ~n for the normal
of a triangle. Moreover, we use the notation {v, f} or {e, e} to
denote a pairwise relationship between two features.

3.2 CCD and Penetration Depth

We normalize each simulation time step to the unit interval [0, 1].
For collision response, we consider all possible pairwise features,
{v, f} and {e, e}, and use CCD algorithms to identify the first time
of contact between these pairs [Tang et al. 2009]. The simplest
algorithms for CCD assume constant vertex velocities during the
time interval, which yield linear vertex trajectories. In this case, the
problem of finding the times of collision reduces to computing the
roots of a cubic polynomial [Provot 1997]. Other methods represent
the trajectories using higher degree polynomials based on constant
acceleration or rotational object motions. For example, finding the
times of contact in the constant acceleration case requires comput-
ing the roots of a degree 6 polynomial. In the rest of the paper, we
assume linear trajectories, although our formulation can be easily
extended to higher order trajectories (see Section 3.6).

As discussed in Section 2, the simplest penalty methods compute
penetration depth based on the distance between closest points. In-
stead, we use a different definition of penetration depth δ that lever-
ages CCD. We compute all overlapping VF and EE pairs using a
CCD algorithm. We use the symbols ~p and ~q to represent the colli-
sion points on each pair of contact features. These points, ~p and ~q,
correspond to the first-time-of-contact between those feature pairs
and are traced along their deforming trajectories, as the features
move (Fig. 2). We also define a contact normal ~n for each fea-
ture pair, given by the triangle’s normal for a VF pair, and by the
normalized cross-product of edge vectors for an EE pair. For sub-
sequent simulation time steps, we define the penetration depth as
the distance between the collision points projected onto the contact
normal, i.e.,

δ = ~nT (~p− ~q). (4)

Once a feature pair is identified by CCD, we consider it to be col-
liding until its penetration depth reduces to zero. Our definition
of contact features prevents discontinuities in the definition of the
contact normal, ensures a continuous and smooth penetration depth,
and therefore ensure a continuous penalty force as defined by Equa-
tion (3). These properties largely improve stability and robustness
of penalty methods as shown in our benchmarks.

For a colliding feature pair, we define a penetration time interval
[tia, t

i
b] ∈ [0, 1] as a time interval during which their penetration
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Figure 2: Collision points of
a VF pair: For a triangle and
a vertex undergoing deforma-
tion, the collision points ~p and
~q are computed at the first-
time-of-contact t′ and traced
along their deforming trajec-
tories as the features move.
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Figure 3: Deforming VF pair: For the deforming VF pair in (a),
there are three times of contact (t′, t′′, and t′′′) in [0, 1]. Two
penetration time intervals [t′, t′′] and [t′′′, 1] are used to compute
continuous penalty forces in this case. For the VF pair shown in
(b), the features are penetrating at t = 0. Two times of contact (t′

and t′′) yield two penetration time intervals, [0, t′] and [t′′, 1].

depth is strictly positive. Even with linear trajectories, an elemen-
tary collision test for a VF or EE pair may return up to 3 real roots.
Therefore, the interval [0, 1] may be split into multiple penetration
time intervals. Fig. 3 shows two cases with higher-degree trajecto-
ries and two penetration time intervals.

3.3 Continuous Penalty Forces

Our continuous penalty force formulation is based on the following
observation: for any feature pair that is inter-penetrating and moves
along a continuous path between two discrete positions, the contact
force from Equation (3) varies continuously along the feature tra-
jectories. Based on this observation, we present a continuous penal-
ty force formulation that takes into account the overall trajectory of
penetration features (see Fig. 4(b)).

To derive our force formulation, we pay attention to the impulse ~I
produced by a penalty force ~F during a time interval of length ∆t.
From Newton’s Second Law of Motion, the change in momentum
produced by an impulse ~I is defined as

m~v(t+ ∆t) = m~v(t) + ~I. (5)

The impulse produced by a time-dependent force ~F between time
instants ta and tb is defined using the following integral:

~I =

∫ tb

ta

~F (t)dt. (6)

Given this formulation, the choice of integration method (e.g., ex-
plicit vs. implicit) determines the computation of impulse ~I in E-
quation (5). In our current implementation, we opt for an explicit
Euler integrator. We first apply all other forces Fother, then we pre-
dict the velocity ~v∗(t + ∆t) = ~v(t) + ∆t

m
~Fother based on those

forces, execute CCD, and finally correct the momentum based on
the penalty impulse. Altogether, we compute the change in momen-
tum as

m~v(t+ ∆t) = m~v(t) +

∫ t+∆t

t

~F (~x(t) + (τ − t)~v∗(t+ ∆t))dτ.

(7)

Theorem 1: Continuous Penalty Force Theorem. For a pair of
moving collision points ~p and ~q, with time-varying contact normal
~n, the impulse produced by a continuous time-dependent penalty
force in the time interval [0, 1] is defined as:

~I = k

i<N∑
i=0

∫ tib

tia

~n(t)T (~p(t)− ~q(t))~n(t) dt, (8)
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Figure 4: Trajectory based penalty forces: Discrete penalty force
computation tends to be independent of the actual trajectories of
features between discrete time instances; therefore, it returns ze-
ro contact force for the colliding VF pair in (a). Our continuous
penalty force, on the other hand, averages the force in (c) along the
trajectory, and therefore produces different collision response for
different trajectories shown in (b).

where k is the stiffness constant, [tia, t
i
b] ∈ [0, 1] the i-th penetration

time interval, and N the number of penetration time intervals.

Proof. We substitute the definition of penalty force in Equation (3)
into the definition of impulse produced by a time-dependent force
in Equation (6) for the interval [0, 1]:

~I =

∫ 1

0

k δ(t)~n(t)dt. (9)

The penetration depth is δ = 0 when the objects are disjoint. There-
fore, we split the integral into penetration time intervals,

~I =

i<N∑
i=0

∫ tib

tia

k δ(t)~n(t)dt. (10)

Finally, substituting our definition of penetration depth from Equa-
tion (4), we obtain the expression in Equation (8).

We use the formulation in Equation (8) to derive the forces for VF
and EE feature pairs in Sections 3.4 and 3.5 respectively.

By analogy with Euler integrators, the impulse in Equation (5) can
be interpreted as the integral of a constant force, ~I = ∆t ~F ∗. For
our choice of explicit impulse in Equation (7), this constant force
turns out to be simply the time-average of the continuous penalty
force,

~F ∗ =
1

∆t

∫ t+∆t

t

~F (t)dt. (11)

This observation allows us to further interpret our formulation of
continuous penalty forces in Equation (8). In the example shown
in Fig. 4(a), discrete penalty methods produce no contact force, as
they depend only on the end positions of penetrating features. Our
continuous formulation, on the other hand, accumulates the penal-
ty force along the trajectory to compute the total contact impulse.
As we observe, this is equivalent to the integration of the average
penalty force along the trajectory. As a result, the subtle trajectory
variations in Fig. 4(b) result in different penalty forces.

3.4 VF Contact Force

Based on Equation (8), for VF pairs under linear interpolating mo-
tion (Fig. 5), we derive the following formulation for penalty force
computation:

Corollary 1: Continuous VF Contact Force Corollary. The im-
pulses produced by a time-varying penalty force on a vertex p and
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Figure 5: Continuous
penalty force for VF con-
tact: For a triangle T and a
vertex p undergoing linear
motion, the accumulated
impulse can be computed
by evaluating a polynomial
of degree 6 (Equation (12)).

the vertices a, b and c of a triangle T , over N penetration time
intervals [tia, t

i
b] ∈ [0, 1], can be expressed as

~Ip = k

i<N∑
i=0

∫ tib

tia

(~nT )T (~p− wa ~a− wb
~b− wc ~c)~nT dt, (12)

~Ia = −wa
~Ip, ~Ib = −wb

~Ip, ~Ic = −wc
~Ip. (13)

The point q = wa ~a+ wb
~b+ wc ~c corresponds to a collision point

on the triangle T , expressed as a Barycentric combination of vertex
positions; ~nT is the normal of the triangle; and k is the contact
stiffness. The symbols ~p, ~a,~b, ~c and ~nT correspond to time-varying
functions.

For vertices with constant velocities and end positions (~p0, ~p1),
(~a0,~a1), (~b0,~b1) and (~c0,~c1), the vertex velocities can be com-
puted as ~vp = ~p1 − ~p0, and similarly for ~va, ~vb and ~vc. Then the
time-varying contact normal can be expressed as

~nT (t) =
~n0 B

2
0(t) + ~n1 B

2
1(t) + ~n2 B

2
2(t)

L(t)
, (14)

with B2
i (t) = 2!

i!(2−i)!
ti (1 − t)2−i the Bernstein polynomials of

degree 2; (constant) basis coefficients ~n0 = (~b0−~a0)× (~c0−~a0),
~n2 = (~b1 − ~a1)× (~c1 − ~a1), and ~n1 = ~n0+~n2−(~vb−~va)×(~vc−~va)

2
,

respectively; and a (time-varying) normalization factor L(t) =√
(L0 L1 . . . L4) · (B4

0(t) B4
1(t) . . . B4

4(t))T .

The exact coefficients {L0 . . . L4} are given in the supplementary
document. The computation of the exact accumulated impulse re-
quires the integral of rational functions, due to the normalization
factor L(t). We use a numerical integration scheme based on
quadrature to compute the exact integral. However, we found that
the approximation of L(t) given as

L(t) ≈ Lk =

√
L0 + L1 + L2 + L3 + L4

5
(15)

produces no noticeable difference in simulation results, as shown in
Fig. 6. On the other hand, the use of the constant normalization term
Lk largely simplifies the computation of the accumulated impulse
in Equation (12), providing large performance speedups in all our
benchmarks, up to an order of magnitude.

The evaluation of the impulse follows from Equation (12), where
t is the integration variable. ~nT is approximated by a quadratic

t

Force

0

kL

)(tL

Figure 6: Result comparison
between exact and approxi-
mate normal vector: By ap-
proximating L(t) with Lk, the
magnitude of contact force d-
iffers by 4.2%− 8.1% for the
Chain Benchmark (Fig. 1(a)).
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Figure 7: Continuous
penalty force for EE con-
tact: For two deforming
edges E1 and E2 under-
going linear motion, the
accumulated impulse can
be computed by evaluating
a polynomial of degree 6
(Equation (16)).

polynomial (by replacing L(t) with Lk); ~p, ~a, ~b, and ~c are linear
polynomials; wa, wb, and wc are scalars. Therefore, the integrand
corresponds to a degree-five polynomial, and the total impulse can
be computed as a degree-six polynomial by summing over all pene-
tration time intervals. The exact terms of this degree-six polynomial
are given in the supplementary document.

3.5 EE Contact Force

Similarly, for a given EE pair undergoing linear interpolating mo-
tion (Fig. 7), we derive the following formulation for penalty force
computation:

Corollary 2: Continuous EE Contact Force Corollary. The im-
pulses produced by a time-varying penalty force on the vertices a
and b of an edge E1 and the vertices c and d of an edge E2, over
N penetration time intervals [tia, t

i
b] ∈ [0, 1], can be expressed as

~IE = k

i<N∑
i=0

∫ tib

tia

~nT
E(wa ~a+ wb

~b− wc ~c− wd
~d)~nE dt, (16)

~Ia = wa
~IE , ~Ib = wb

~IE , ~Ic = −wc
~IE , ~Id = −wd

~IE . (17)

The points p = wa ~a + wb
~b and q = wc ~c + wd

~d correspond to
the collision points on edges E1 and E2, respectively, expressed as
Barycentric combinations of vertex positions; ~nE is the normalized
cross product of edge vectors; and k is the contact stiffness. The
symbols, ~a,~b, ~c, ~d and ~nE correspond to time-varying functions.

As in the VF case, we assume constant velocities and linear trajec-
tories between the vertex end-positions. The time-varying contact
normal can be expressed as

~nE(t) =
~n′0 B

2
0(t) + ~n′1 B

2
1(t) + ~n′2 B

2
2(t)

L′(t)
, (18)

with Bernstein basis coefficients ~n′0 = (~b0 − ~a0) × (~d0 − ~c0),
~n′2 = (~b1 − ~a1)× (~d1 − ~c1), and ~n′1 =

~n′
0+~n′

2−(~vb−~va)×(~vd−~vc)

2
,

respectively; and a (time-varying) normalization factor L′(t) simi-
lar to the one in the VF case.

3.6 Discussion

Theoretical Smoothness Analysis: We present a theoretical
derivation to show that our method (CPF) can attenuate jitter and
produce smoother motion. Our method compares stability condi-
tions and robustness to perturbations of a 1D linear contact scenari-
o, for Symplectic Euler (SE) and CPF. We show that CPF exhibits
increased robustness to perturbations and nonlinearities.

For a simple 1D particle with mass m dropped onto a plane with
penalty stiffness k, symplectic Euler (SE) is stable for time step-
s ∆t < 2

√
m
k

. This stability condition can be reached through
eigenvalue analysis of the linear state update rule (See the supple-
mentary document for a derivation). For this 1D case, our CPF

method is linear, and stable for time steps ∆t <
√

2m
k

(worse than
SE due to the filtering introduced by integration). However, SE is
critically stable for the pure linear system, with eigenvalues exactly
|λ| = 1, and may hence suffer jitter under nonlinearities or pertur-
bations. With CPF, the eigenvalues are always |λ| < 1 in the stable
regime. In other words, similar to e.g., implicit Euler, CPF adds
numerical damping, which attenuates jitter.
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We have confirmed this analy-
sis empirically too. We have
simulated the particle’s motion
with SE and CPF, while apply-
ing sinusoidal perturbations to
the penalty stiffness. The plot
on the left shows the motion of
a 1kg particle, as it is dropped
from a height of 0.1m onto
a plane with stiffness 10kN/m
±25%, simulated with a time
step of 2ms. The motion is
damped with CPF, but the same
situation becomes unstable with
SE. Under these conditions, we found SE to be robust only to s-
tiffness perturbations below 15%, while CPF is robust to stiffness
perturbations up to 70%. Our method’s numerical damping could
be regarded as a limitation in some situations, and the design of a
penalty method that is both free of numerical damping and robust to
jitter, for general 3D contacts, is an exciting area for future research.

Initializing the Penetrating State: Penetrations may occur at the
beginning of a time step, i.e., t = 0. This is not an issue, as the
contact impulse in Equation (8) can naturally handle such situations
by accumulating the continuous penalty force during penetration
time intervals. An example of initialization in penetrating state is
shown in Fig. 3(b). In this example, two penetration time intervals,
[0, t′] and [t′′, 1], are used to compute continuous penalty forces.

Contact Normal: ~nt is defined as the contact normal of the pene-
trating features. These features are identified at the first time of con-
tact and are tracked until the penetration is resolved, but ~nt prop-
erly rotates as the features deform between discrete time instances.
Our approach could be extended by continuously redefining feature
pairs during sliding contact (similar to [Irving et al. 2004]).

Extension to Higher Order Deformations: The VF and EE con-
tact force theorems can easily generalize to cases where vertices
deform based on higher degree functions, i.e., d > 1. With the con-
stant approximation of normalization factors L(t) and L′(t), the
time-varying contact normals ~nT and ~nE can be approximated us-
ing Bernstein basis functions of degree 2d. Therefore, the accumu-
lated contact impulses can be computed by evaluating polynomials
of degree 5d+1. For example, with constant-acceleration deforma-
tions (i.e., with vertex positions defined by polynomials of degree
2), the complexity for CCD and continuous force computation will
correspond to polynomials of degree 6 and degree 11, respectively.

Friction Force: A friction force orthogonal to the contact force,
both static and kinetic, can be defined using Coulomb’s law [Mir-
tich 1996]. Even though one could formulate a friction impulse by
trajectory integration (similar to the continuous penalty force), we
use a simple and efficient formulation to compute the friction force,
which is independent of the contact force, with a single friction fac-
tor µ [Yamane and Nakamura 2006; Drumwright 2008].

4 Results

Our algorithm can be used with explicit time integration schemes
and any dynamic simulation algorithm that employs penalty meth-
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Figure 8: Force stability in Chain Benchmark: We plot the mag-
nitude of the contact forces between the swinging chain and the
rigid box shown in Fig. 1(a). The continuous forces (c) result in
more stable behavior over discrete penalty forces (a), and show s-
moother changing than discrete penalty forces with CCD (b). The
continuous penalty force is computed using penetration time inter-
vals, while the discrete penalty force is computed based on the pen-
etration depth at t=1.

ods for collision response. Specifically, we have implemented
our CPF computation for mesh-based models in the SOFA sys-
tem, which is freely available for download at http://www.sofa-
framework.org/. All the experiments were carried out on a standard
PC (Windows/XP 32bits, Q6600 CPU@2.4GHz, 2GB RAM), and
the timings reported here were generated using a single core.

In all examples, we assume that the vertices of the mesh deform
according to linear trajectories (i.e., with constant velocities) dur-
ing each time step, and we perform the VF/EE elementary colli-
sion tests by solving cubic equations to compute the penetration
time intervals. We use the Self-CCD 1 package to perform collision
computations. In practice, computing penetration time intervals for
each pair takes about 2 µsec. Our approximation of continuous
penalty forces defines contact impulses as polynomials of degree 6.
In practice, the cost of computing a penalty impulse is under 1 µsec.

Chain Benchmark (Fig. 1(a)) highlights the benefit of continuous
contact forces as the swinging chain collides against a rigid box. We
use a symplectic Euler integrator with a large time step (> 0.4s).
Under such a large time step, standard discrete penalty methods suf-
fer from contact leaking, leading to inter-penetrating configurations
that cannot be resolved, and producing a ‘sticking’ behavior. These
problems are alleviated using our continuous penalty force formula-
tion that is based on penetration time intervals. Fig. 8 compares the
profile of contact forces during the simulation under three differen-
t settings. (a) Standard discrete penalty methods produce contact
forces with high-frequency noise. (b) The combination of discrete
penalty forces with our definition of penetration depth based on C-
CD (see Section 3.2) reduces noise because of the continuity of
contact normals. (c) CPF results in smooth force computation.

Stick Benchmark (Fig. 9) demonstrates the different results gener-
ated with (a) continuous penalty force computation and (b) discrete
penalty force computation. In this case, the ball bounces back after
hitting the stick. We compute a more accurate trajectory with con-
tinuous contact forces, i.e., the ball should bounce back upwards.
At t = 0.45 the stick and the ball have already collided (with an
angle > 90 degree). With discrete penalty force computation, an
incorrect result is obtained, i.e., the ball bounces back horizontally.

Octopus Benchmark (Fig. 10 & Fig. 11) and Cloth Benchmark
(Fig. 12 & Fig. 13) demonstrate the application of continuous
penalty forces on deformable objects. The Dragons Benchmark
(Fig. 14) highlights the scalability of the continuous formulation in

1http://gamma.cs.unc.edu/SELFCD/

(a) Continuous penalty forces (b) Discrete penalty forces

t=0.5t=0.2 t=0.45 t=0.75 t=0.75

Figure 9: Stick Benchmark: Different trajectories (shown at t =
0.75) computed using continuous vs. discrete penalty forces: the
rigid ball bounces back at different velocities (shown with arrows)
after colliding with a stick. (3k triangles, 60fps)

(b) Discrete penalty force(a) Continuous penalty force

Figure 10: Octopus Benchmark: A soft deforming octopus in
a rigid bowl. The benchmark exhibits many inter-object & intra-
object collisions, but continuous penalty forces result in a robust
simulation and no penetration despite the thin features. The model
has 14.7k triangles and the frame rate of the simulation is 10fps
on a single core.
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(b) Continuous penalty force(a) Discrete penalty force

Figure 11: Force stability in Octopus Benchmark: The magni-
tude of contact forces between the soft octopus and the rigid bowl
shows improved stability with continuous vs. discrete penalty force
computation. The continuous penalty force is computed using pen-
etration time intervals, while the discrete penalty force is computed
using penetration depth values at t = 1.

terms of the number of geometric features. The Rings Benchmark
(Fig. 1(b)) demonstrates the benefit of continuous penalty forces in
terms of alleviating over-penetration problems.

Our approach is not limited to closed objects, as shown in the cloth
(Fig. 12) and bucket examples (Fig. 14). We perform CCD tests and
compute penetration depth for VF or EE features (Eq. (4)) without
any inside/outside information. Our method handles both inter- and
intra-cloth collisions, but it may not resolve all tangled scenarios.

We use SOFA scene files to define the settings for all benchmarks:
stiffness constants, friction models, time-step sizes, damping, inte-
gration methods, collision detection tolerances, etc.. For the Chain
Benchmark, we have used a time step of 0.02s, a collision tolerance
of 0.4mm, and a stiffness constant of 10N/m. For the Cloth Bench-
mark, we have used a time step of 0.0333s, a collision tolerance



Figure 12: Cloth Benchmark: Multiple deforming tori fall on
the cloth and generate many inter-object collisions (65k triangles,
6fps). Using discrete penalty forces, the simulation suffers severe
penetrations between the tori and the cloth.
Force
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(a) Discrete penalty force (b) Continuous penalty force
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Figure 13: Force stability in Cloth Benchmark: The magnitude
of contact forces between the deforming tori and the cloth shows
improved stability with continuous forces. Using discrete penalty
forces, the contact force tends to be noisy with a large time step
(∆t = 0.03s, blue curve) as well as a small time step (∆t = 0.01s,
green curve). With continuous penalty forces, the contact force is
smooth with the large and small time steps.

of 0.2mm, and a stiffness constant of 2N/m. We used the friction
model implemented in SOFA, which is orthogonal to contact force
computation. We set the viscous friction coefficient to 0.005, and
Coulomb friction coefficient to 0.8. We observe good energy be-
havior in our benchmarks. From an implementation point of view,
our continuous penalty force approach can be easily integrated into
the SOFA framework by simply replacing the penalty force com-
putation method, and by changing the collision detection routine
from “NewProximityIntersection” to “ContinuousIntersection”. In
the examples, we use the same sets of parameters to compute both
discrete and continuous penalty forces.

5 Analysis & Comparisons

5.1 Benefits

There are two main reasons for the various benefits of using con-
tinuous penalty forces. First, contact primitives are detected us-
ing CCD and tracked along their trajectories. This feature provides
valid contact primitives even under large time steps, alleviates force
inconsistency issues, and prevents excessive inter-penetration. Sec-
ond, collision impulses are computed by accumulating continuous
penalty forces along the trajectories of contact primitives. This fea-
ture provides a low-pass filter of penalty forces that reduces jitter
and improves stability.

In practice, our continuous penalty force formulation can allevi-
ate many of the robustness issues associated with discrete penalty
forces, such as:

Jitter: The Chain Benchmark (Fig. 1(a)) exhibits jitter under dis-
crete penalty forces, as shown in Fig. 8 (also in Fig. 11 & Fig. 13).

Figure 14: Dragons Benchmark: 40 deforming dragons fall in-
to a rigid bucket (103k triangles, 3fps), and generate many inter-
object and intra-object collisions. Using discrete penalty methods,
the simulation fails to resolve object inter-penetrations.

The filtering effect of our continuous penalty force formulation dra-
matically reduces jitter and produces smooth forces. The supple-
mentary video shows an example of a box falling on a plane that
comes to rest fine with continuous forces, but the jitter present with
discrete forces prevents it from stopping completely.

Inter-Penetration: In the Chain (Fig. 1(a)), Octopus (Fig. 10), and
Rings Benchmarks (Fig. 1(b)), the use of traditional penalty meth-
ods based on discrete collision detection leads to excessive, often ir-
reversible, inter-penetrations. In the Octopus Benchmark, the video
clearly shows how two of the tentacles penetrate the bowl. In the
Rings Benchmark, penetrations with the thin pins are not resolved.
In all these benchmarks, our continuous penalty force formulation
resolves interactions satisfactorily and significantly alleviates inter-
penetration problems. These improvements are possible because
we detect contact features based on CCD, and track these features
along their trajectories to compute penetration time intervals.

Inconsistent Forces: As a consequence of excessive inter-
penetration, typical penalty methods may enter situations with in-
consistent forces that fail to resolve collisions correctly, producing
sticking behavior or pop-through effects. The Chain Benchmark
(Fig. 1(a)) highlights a clear example of sticking behavior with
discrete penalty methods, which is resolved with our continuous
penalty force formulation. The Stick Benchmark (Fig. 9) illustrates
another limitation of discrete penalty methods. For two moving ob-
jects, discrete penalty forces are computed at a particular point in
their trajectories, resulting in inaccurate force directions. Again,
our continuous penalty force formulation, which computes the first
time of contact, alleviates force direction inaccuracies.

Fast Moving Objects: When objects move rapidly and collide, the
continuous penalty force tends to produce a repulsive force based
on contact features at the first-time-of-contact, and will restore the
objects to a non-penetrating state accordingly.

5.2 Parameter and Performance Analysis

Fig. 15 and Fig. 16 highlight the contact forces between the falling
rings and the base in the Ring Benchmark (Fig. 1(b)), under vari-
ous stiffness and time step values. Our continuous penalty forces
demonstrate good behavior for all these cases. We also note that
with a very small time step (δt = 0.0001), the discrete penalty
force tends to be smooth.

CCD and penalty force computation (CPF) take about 3 µsec per
feature pair. The CCD+CPF computations are about 3 − 4 times
slower than discrete collision detection (DCD) & force computa-
tion (DPF). Most of this slowdown is due to the use of CCD, to
guarantee that no collisions are missed. The additional overhead of
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Figure 15: Contact forces with different stiffness: We plot the
magnitude of the contact forces between the falling rings and the
base shown in Fig. 1(b) (∆t = 0.03333).

CPF corresponds to evaluating a degree-6 polynomial vs. a linear
polynomial. Even if we reduce the size of the time step for dis-
crete force computation to one third of the original time step, the
resulting DPF is not smooth (see Fig. 16). In the Cloth Benchmark
(Fig. 12), we need a step size < δt = 0.0002s (i.e. 50 − 100x
smaller) to produce smooth DPFs.

5.3 Comparison

Unlike distance field based approaches [Fisher and Lin 2001; Bar-
bič and James 2008], our algorithm performs no pre-processing to
construct the distance field and computes a more accurate mea-
sure of penetration. Our formulation of continuous contact forces
is based on local penetration time intervals between the overlap-
ping features. Compared to volume-based approaches [Faure et al.
2008], which use intersection volumes to compute contact forces
and distribute the forces to vertices with appropriate weights, our
formulation computes the contact force for each vertex using an
analytic formulation. Most prior penalty-based algorithms calcu-
late the contact forces using only the end positions of the object.
Although Ortega et al. [2007] used CCD, along with constraint-
based methods, for haptic interaction between rigid bodies, it is
difficult to extend his approach to deformable models. Hasegawa
and Sato [2004] performed integration on the intersection volume
of convex polytopes to compute contact forces for haptics. This
formulation is prone to degeneracies and is relatively expensive.

Many techniques have been proposed in the literature to overcome
the robustness problems, which include jitter and lack of stability.
The techniques proposed are based on adaptive time steps, checking
relative velocity of objects, use of signed distance fields, different
integration methods (e.g. implicit integrators), etc. Our formula-
tion is orthogonal to these approaches and the main benefit arises
from the continuous formulation of the trajectory and computation
of contact forces by accumulating the contact force along the entire
trajectory. No additional parameters or other forms of tweaking are
used, and our continuous formulation can be easily combined with
other methods.

5.4 Limitations

Our approach has some limitations. Degenerate collision scenar-
ios, such as edge-edge collisions corresponding to parallel edges,
may require special treatment. Under large rotational motions be-
tween discrete time instances, our approximation of penetration
depth based on linear vertex trajectories may not be accurate. Fur-
thermore, our algorithm computes only local penetration depth, as
opposed to global penetration depth [Zhang et al. 2007], and we

Force (b) Continuous penalty force

Force

(a) Discrete penalty force

Time step

0.03333
0.01111
0.00333
0.00111

0.00010

Figure 16: Contact forces with different time steps: We plot the
magnitude of the contact forces between the falling rings and the
base shown in Fig. 1(b) (Stiffness = 8000).

cannot rigorously guarantee global resolution of inter-penetrations.
Finally, our current formulation of contact impulses uses explicit
integration of continuous penalty forces, and could suffer instabil-
ity issues under very large time steps or large contact stiffness val-
ues. Stability could be improved by extending our formulation to
handle implicit integration methods. They are typically nonlinear
and solved with Newton’s method, which would not be a problem
for our continuous force definition, which is differentiable. Find-
ing times of contact implicitly, on the other hand, would probably
require some approximation.

6 Conclusion and Future Work

We present a novel continuous penalty force computation algorith-
m between rigid and deformable objects that estimates penetration
time intervals between overlapping features. The contact force is
expressed as a closed-form polynomial expression, and this force
is integrated along feature trajectories to produce a smooth contac-
t impulse. We highlight the improved robustness of penalty-based
methods on many benchmarks.

There are many avenues for future work. We would like to further
improve the robustness of our approach against all type of inter-
penetrations. It may be possible to obtain more accurate force com-
putations by using higher order trajectories for deep penetrations.
Finally, we would like to explore the combination of our approach
with constraint-based methods to perform fast and robust collision
handling between complex models.

Acknowledgements: We would like to thank François Fau-
re and the SOFA team for their support, and Jianfei Chen for
useful discussions. This research is supported in part by NS-
FC (61170140), the National Basic Research Program of China
(2011CB302205), the National Key Technology R&D Program of
China (2012BAD35B01), NSFZC (Y1100069). Manocha is sup-
ported in part by ARO Contract W911NF-10-1-0506, NSF award-
s 0917040, 0904990, 1000579 and 1117127, and Intel. Otaduy is
supported in part by the Spanish Ministry of Science and Innovation
(TIN2009-07942) and by the European Research Council (ERC-
2011-StG-280135 Animetrics). Tong is partly supported by NSFC
(61170141).

References

ALLARD, J., FAURE, F., COURTECUISSE, H., FALIPOU, F.,



DURIEZ, C., AND KRY, P. G. 2010. Volume contact constraints
at arbitrary resolution. ACM Transactions on Graphics 29, 3.

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simula-
tion. In Proc. of ACM SIGGRAPH, 43–54.
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In this supplementary document, we include:

• Proofs of the continuous normal theorems given in the paper.

• A detailed derivation of the polynomial corresponding to the
continuous force for linear trajectories.

• A derivation of stability conditions of 1D particle-on-plane
contact for Symplectic Euler and continuous penalty forces.

A Time-Varying Contact Normals for VF and
EE Pairs

Theorem 1: Continuous Normal Theorem for a Deforming Tri-
angle. Given the start and end positions of the vertices of a triangle
during the interval [0, 1], whose positions are linearly interpolated
in the interval with respect to the time variable, t. The unit normal
vector, ~nT (t), of the triangle, at time t, is given by the equation:

~nT (t) =
~n0 B

2
0(t) + ~n1 B

2
1(t) + ~n2 B

2
2(t)

L(t)
, (1)

where

• B2
i (t) = 2!

i!(2−i)!
ti (1− t)2−i.

• a0, a1, b0, b1, c0, c1 are the start and end positions of the
three vertices of the deforming triangle, respectively.

• ~va = a1 − a0, ~vb = b1 − b0, and ~vc = c1 − c0.

• ~n0 = (b0 − a0) × (c0 − a0), ~n2 = (b1 − a1) × (c1 − a1),
~n1 = ~n0+~n2−(~vb−~va)×(~vc−~va)

2
, respectively.

• L0 = (~nT
0 ~n0), L1 = (~nT

0 ~n1), L2 =
2 (~nT

1 ~n1)+(~nT
0 ~n2)

3
,

L3 = (~nT
1 ~n2), L4 = (~nT

2 ~n2), respectively.

• B4
i (t) = 4!

i!(4−i)!
ti (1− t)4−i.

• L(t) =

√
(L0 L1 . . . L4) · (B4

0(t) B4
1(t) . . . B4

4(t))T .

Proof. We define the following terms: ~at = ~a0 + ~va t, ~bt = ~b0 +
~vb t, and ~ct = ~c0 + ~vc t. The normal vector of triangle4atbtct is
given as:

~mt = (~bt − ~at)× (~ct − ~at)
= [(b0 − a0) + (~vb − ~va) t]× [(c0 − a0) + (~vc − ~va) t]

= (b0 − a0)× (c0 − a0) + (~vb − ~va)× (c0 − a0) t+

(b0 − a0)× (~vc − ~va) t+

(~vb − ~va)× (~vc − ~va) t2. (2)
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Let ~n0 and ~n2 be the normal vectors of triangle 4a0b0c0 and
4a1b1c1, respectively. Then:

~n0 = (b0 − a0)× (c0 − a0), (3)
~n2 = (b1 − a1)× (c1 − a1)

= (b0 + ~vb − a0 − ~va)× (c0 + ~vc − a0 − ~va)

= (b0 − a0)× (c0 − a0) + (~vb − ~va)× (c0 − a0) +

(b0 − a0)× (~vc − ~va) + (~vb − ~va)× (~vc − ~va). (4)

Based on the above equations, we obtain:

~n2 − ~n0 = (~vb − ~va)× (c0 − a0) + (b0 − a0)× (~vc − ~va) +

(~vb − ~va)× (~vc − ~va). (5)

We define:
~ω = (~vb − ~va)× (~vc − ~va). (6)

Then from equations (5) and (6):

~n2−~n0−~ω = (~vb−~va)× (c0−a0)+(b0−a0)× (~vc−~va) (7)

By plugging the equations (3), (6), and (7) into equation (2), ~mt

can be represented as:

~mt = ~n0 + (~n2 − ~n0 − ~ω) t+ ~ω t2

= ~n0 (1− t)2 +
~n0 + ~n2 − ~ω

2
2 t (1− t) + ~n2 t

2

= ~n0 B
2
0(t) +

~n0 + ~n2 − ~ω
2

B2
1(t) + ~n2 B

2
2(t)

= ~n0 B
2
0(t) + ~n1 B

2
1(t) + ~n2 B

2
2(t). (8)

And:

||~mt||2 = ~mT
t ~mt

= (~nT
0 ~n0)B2

0(t)B2
0(t)

+ 2 (~nT
0 ~n1)B2

0(t)B2
1(t)

+ (~nT
1 ~n1)B2

1(t)B2
1(t)

+ 2 (~nT
0 ~n2)B2

0(t)B2
2(t)

+ (~nT
2 ~n2)B2

2(t)B2
2(t)

+ 2 (~nT
1 ~n2)B2

1(t)B2
2(t). (9)

Based on the properties of the Bernstein basis functions, we have:

B2
0(t)B2

0(t) = B4
0(t)

B2
0(t)B2
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1(t)

2
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1(t)B2
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2B4

2(t)

3
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0(t)B2

2(t) =
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2(t)
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B2
1(t)B2
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B4

3(t)

2

B2
2(t)B2

2(t) = B4
4(t). (10)



By plugging the equation (10) into equation (9), we have:

||~mt||2 = (~nT
0 ~n0)B4

0(t) + (~nT
0 ~n1)B4

1(t)

+
2 (~nT

1 ~n1) + (~nT
0 ~n2)

3
B4

2(t)

+ (~nT
1 ~n2)B4

3(t) + (~nT
2 ~n2)B4

4(t)

= L(t)L(t). (11)

Based on equation (8) and (11), the normalized normal vector,
~nT (t), will be:

~nT (t) =
~mt

||~mt||

=
~n0 B

2
0(t) + ~n1 B

2
1(t) + ~n2 B

2
2(t)

L(t)
(12)

Theorem 2: Continuous Normal Theorem for Two Deforming
Edges. Given the start and end positions of the vertices of two
edges during the interval [0, 1], whose positions are linearly in-
terpolated in the interval with respect to the time variable, t, the
normal vector, ~nE(t), between the two edges, at time t, is given by
the equation:

~nE(t) =
~n′0 B

2
0(t) + ~n′1 B

2
1(t) + ~n′2 B

2
2(t)

L′(t)
, (13)

where

• B2
i (t) =

(
2
i

)
(1− t)i t2−i.

• a0, a1, b0, b1, c0, c1, d0, d1 are the start and end positions of
the four vertices of the two deforming edges, respectively.

• ~va = a1−a0, ~vb = b1−b0, ~vc = c1−c0, and ~vd = d1−d0.

• ~n′0 = (b0 − a0) × (c0 − d0), ~n′2 = (b1 − a1) × (c1 − d1),
~n′1 =

~n′
0+~n′

2−~ω′

2
, and ~ω′ = (~vb−~va)×(~vc−~vd), respectively.

• L′0 = (~n
′T
0 ~n′0), L′1 = (~n

′T
0 ~n′1), L′2 =

2 (~n
′T
1 ~n′

1)+(~n
′T
0 ~n′

2)

3
,

L′3 = (~n
′T
1 ~n′2), L′4 = (~n

′T
2 ~n′2), respectively.

• B4
i (t) = 4!

i!(4−i)!
ti (1− t)4−i.

• L′(t) =

√
(L′0 L

′
1 . . . L

′
4) · (B4

0(t) B4
1(t) . . . B4

4(t))T .

Proof. We define the following terms: ~at = ~a0 + ~va t, ~bt = ~b0 +

~vb t, ~ct = ~c0 + ~vc t, and ~dt = ~d0 + ~vd t. The normal vector of the
two edges defined by at, bt and ct, dt, respectively, is given as:

~m′t = (~bt − ~at)× (~ct − ~dt)

= [(b0 − a0) + (~vb − ~va) t]× [(c0 − d0) + (~vc − ~vd) t]

= (b0 − a0)× (c0 − d0) + (~vb − ~va)× (c0 − d0) t+

(b0 − a0)× (~vc − ~vd) t+

(~vb − ~va)× (~vc − ~vd) t2. (14)

Let ~n′0 and ~n′2 be the normal vectors of the two edges defined by
a0, b0, c0, d0 and a1, b1, c1, d1, respectively. Then:

~n′0 = (b0 − a0)× (c0 − d0), (15)
~n′2 = (b1 − a1)× (c1 − d1)

= (b0 + ~vb − a0 − ~va)× (c0 + ~vc − d0 − ~vd)

= (b0 − a0)× (c0 − d0) + (~vb − ~va)× (c0 − d0) +

(b0 − a0)× (~vc − ~vd) + (~vb − ~va)× (~vc − ~vd). (16)

Based on the above equations, we obtain:

~n′2 − ~n′0 = (~vb − ~va)× (c0 − d0) + (b0 − a0)× (~vc − ~vd) +

(~vb − ~va)× (~vc − ~vd). (17)

We define:
~ω′ = (~vb − ~va)× (~vc − ~vd). (18)

Then from equations (17) and (18):

~n′2−~n′0−~ω′ = (~vb−~va)×(c0−d0)+(b0−a0)×(~vc−~vd) (19)

By plugging the equations (15), (18), and (19) into equation (14),
~m′t can be represented as:

~m′t = ~n′0 + (~n′2 − ~n′0 − ~ω′) t+ ~ω′ t2

= ~n′0 (1− t)2 +
~n′0 + ~n′2 − ~ω′

2
2 t (1− t) + ~n′2 t

2

= ~n′0 B
2
0(t) +

~n′0 + ~n′2 − ~ω′

2
B2

1(t) + ~n′2 B
2
2(t)

= ~n′0 B
2
0(t) + ~n′1 B

2
1(t) + ~n′2 B

2
2(t) (20)

Analogous to the deduction in Theorem 1, the normalized normal
vector, ~nE(t), will be:

~nE(t) =
~m′t
||~m′t||

=
~n′0 B

2
0(t) + ~n′1 B

2
1(t) + ~n′2 B

2
2(t)√

(L′0 L
′
1 . . . L

′
4) · (B4

0(t) B4
1(t) . . . B4

4(t))T

=
~n′0 B

2
0(t) + ~n′1 B

2
1(t) + ~n′2 B

2
2(t)

L′(t)
(21)

B Computation of Continuous Penalty Force

In this section, we give the exact formula for the degree six poly-
nomial used for contact force computation. We use Corollary I to
derive this formula for VF contact force.

Coefficients of the Degree-Six Polynomial. For the evaluation of
the following equation:

~Ip = k

i<N∑
i=0

∫ tib

tia

(~nT )T (~p− wa ~a− wb
~b− wc ~c)~nT dt,

where t is the unknown. ~nT is approximated by a quadratic polyno-
mial (by replacing L(t) with Lk). ~p, ~a,~b, ~c are linear polynomials;
wa, wb, and wc are scalars.

From Theorem 1, let:

~nT = ât2 + b̂t+ ĉ,

~p− wa ~a− wb
~b− wc ~c = d̂t+ ê,

where:

â =
~n0 − 2~n1 + ~n2

Lk
,

b̂ =
2(~n1 − ~n0)

Lk
,

ĉ =
~n0

Lk
,

d̂ = p0 − waa0 − wbb0 − wcc0,

ê = (p1 − p0)− wa(a1 − a0)− wb(b1 − b0)− wc(c1 − c0).



The inner term of the integral corresponds to a degree-five polyno-
mial:

(~nT )T (~p−wa ~a−wb
~b−wc ~c)~nT = â′t5+b̂′t4+ĉ′t3+d̂′t2+ê′t+f̂ ′,

where:

â′ = (âT d̂) â,

b̂′ = (âT d̂) b̂+ (âT ê+ b̂T d̂) â,

ĉ′ = (âT d̂) ĉ+ (âT ê+ b̂T d̂) b̂+ (b̂T ê+ ĉT d̂) â,

d̂′ = (âT ê+ b̂T d̂) ĉ+ (b̂T ê+ ĉT d̂) b̂,

ê′ = (b̂T ê+ ĉT d̂) ĉ+ (ĉT ê) b̂,

f̂ ′ = (ĉT ê) ĉ.

Then we get the coefficients of the degree-six polynomial:∫ tib

tia

(~nT )T (~p− wa ~a− wb
~b− wc ~c)~nT dt =

(
â′t6

6
+
b̂′t5

5
+
ĉ′t4

4
+
d̂′t3

3
+
ê′t2

2
+ f̂ ′t)|t

i
b

tia
.

Analog to VF contact force, we can similarly derive the coefficients
of the degree six polynomial for EE contact force.

C Stability Analysis of 1D Particle-on-Plane
Contact

The (continuous) motion of a particle with massm under the action
of gravity and a penalty force with stiffness k centered at x = 0 is
described, through Newton’s 2nd Law, as:

mv̇ = −mg − k x. (22)

To analyze the stability of an integration method, we discretize the
equation above with a time step ∆t, discard the gravity force term,
and write an iterative update rule of the form(

x(t+ ∆t)
v(t+ ∆t)

)
= A

(
x(t)
v(t)

)
. (23)

The integration method is stable for time steps for which all eigen-
values ‖λ(A)‖ < 1.

With Symplectic Euler (SE), the velocity and position updates can
be written as

v(t+ ∆t) = v(t)−∆t
k

m
x(t), (24)

x(t+ ∆t) = x(t) + ∆t v(t+ ∆t). (25)

In the form of equation 23, the update rule is(
x(t+ ∆t)
v(t+ ∆t)

)
=

(
1−∆t2 k

m
∆t

−∆t k
m

1

)(
x(t)
v(t)

)
. (26)

And the eigenvalue analysis yields ∆t < 2
√

m
k

for stability.

With Continuous Penalty Forces (CPF), following the formulation
in Section 3.3 in the paper, we first predict the velocity at the end
of the time step, which in this case is simply v∗(t + ∆t) = v(t).
Then, we integrate the penalty force, and we obtain the following
average force:

F ∗ =
1

∆t

∫ ∆t

0

−k (x(t) + τ v(t)) dτ = −k x(t)−∆t
k

2
v(t).

(27)

The velocity and position updates with CPF can be written as

v(t+ ∆t) = v(t)−∆t
k

m
x(t)−∆t2

k

2m
v(t), (28)

x(t+ ∆t) = x(t) + ∆t v(t+ ∆t). (29)

In the form of equation 23, the update rule is(
x(t+ ∆t)
v(t+ ∆t)

)
=

(
1−∆t2 k

m
∆t−∆t3 k

2m

−∆t k
m

1−∆t2 k
2m

)(
x(t)
v(t)

)
.

(30)
And the eigenvalue analysis yields ∆t <

√
2m

k
for stability.
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