
Wolinski et al. / Parameter Estimation and Comparative Evaluation of Crowd Simulations

Appendices

Appendix A: Executable

A sample executable implementing our framework can be
found in the supplemental material.

Appendix B: Metrics

Below we describe various metrics that can be easily used in
our framework. While a metric can take any form, for ease
of notation we describe the following ones as their value at a
given timestep. The complete metric (M) is then the absolute
value of the sum of its results over all timesteps (Mk):

M = |
m

∑
k=1

Mk|. (7)

Note that all metrics are defined to have a value of zero
whenever the simulated motion exactly matches the refer-
ence data.

Microscopic Data Metrics

In general, microscopic data can be used with a wide variety
of similarity metrics, which capture different aspects of the
data. Here we summarize several microscopic metrics tested
in this work. In all cases of microscopic data, we assume the
reference data zk consists of a vector of positions for all the
agents.

The absolute difference metric (D) computes the total
distance in position over all agents over all timesteps:

Dk = ‖zk−xk‖. (8)

The path length metric (L) compares the difference in
total length traveled between agents in the reference data and
the simulated agents:

Lk = (zk+1− zk)− (xk+1−xk). (9)

The inter-pedestrian distance metric (I) compares the
difference in average distance (as a 2-norm) between every
pair of agents. If P is the ensemble of all agent pairs P =⋃
{i, j}, then:

Ik = ∑
P
|xi

k−x j
k|−∑

P
|zi

k− z j
k|. (10)

The progressive difference metric (P) measures the ab-
solute difference between the simulated agents and the ref-
erence data when the simulation is reinitialized at each
timestep.

Pk = ‖zk+1− f (zk,speed(zk),zm,p)‖. (11)

Macroscopic Data Metrics

Unlike microscopic metrics, which are computed per agent,
macroscopic metrics are computed over all the agents. In
these cases, the form of the reference data (zk) generally
varies for each metric.

The vorticity metric (V) measures the vorticity of the
crowd flow. First a velocity field −→v is generated from the
agents’ motion, then:

Vk = zk− (∇×−→v), (12)

where zk is the target vorticity for the current timestep.

Finally, the fundamental diagram metric (F) compares
the speed of an agent to the density of agents in its location.
This metric is inspired by the field of pedestrian dynamics,
where it is commonly used to measure pedestrian flow rates
(e.g., [CM12]). Our implementation of the metric defines a
“gate” area on the agent’s path (as in [CSC09], which allows
us to compute the density of population at an agent’s location
(numberAgentsInsideGate

areaO f Gate) when the agent is inside this gate.

Fk = |zk(dk)−‖vk‖|, (13)

where dk is the density at the location of each agent while
inside the gate, and the reference data zk is a function that
maps density to speed based on results known from human
motion studies.

Appendix C: Optimization Techniques

Greedy algorithm

The greedy approach works by first selecting random pa-
rameters for every agent. The chosen data similarity metric
is then evaluated to establish a baseline measure of how well
the simulation matches the data. The algorithm then per-
forms several iterations, where in each iteration starts with
the best set of simulation parameter seen so far and one sim-
ulation parameter is randomly replaced by a sample from
the user defined distribution. This new set of parameters is
evaluated, whichever set of parameters has the lowest error
metric over all the iterations is chosen as the optimal param-
eters for the agents.

Simulated annealing

The main limitation with a greedy approach is that it will get
stuck in local minimum in search space. Simulated Anneal-
ing (SA) address this problem by occasionally accepting a
slightly worse evaluation as the current best parameter set.
This allows the procedure to “jump out" of a local minimum
with some non-zero probability. By convention, the prob-
ability of choosing a parameter set with worse evaluation
decreases over time, and decreases if the new evaluation is
much worse than the old one.

Algorithm 1 gives the pseudocode for the process where:

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Wolinski et al. / Parameter Estimation and Comparative Evaluation of Crowd Simulations

Algorithm 1: Simulated annealing.

k← 0 // initialize loop counter
while k < K do

T ← temperature(k,K) // compute
temperature
snew← neighborState(s) // try new
neighbor
enew← cost(s) // compute cost
if move(e,enew,T) then // is new state
better?

s← snew; e← enew // yes, change
state

end
if e < ebest then // did we find a new
minimum?

sbest ← s; ebest ← e // save new
optimum
k← 0 // reset loop counter

end
k← k+1 // increase loop counter

end

neighborState(): pick a new random value for a random pa-
rameter according to the parameter’s base distribution

move(): is True iff enew < eold , exp(eold−enew
T).

temperature(): is K−k
K , k being the number of iterations

with no improvement and K the number of such iterations
allowed.

cost(): the cost as returned by the currently used metric.

Genetic algorithm

Like simulated annealing, genetic algorithms seek to over-
come the problem of local minima in optimization. This is
accomplished by keeping a pool of parameter sets which
have performed well so far and during each iteration cre-
ating a new pool of potential states based on combining and
modifying the previously successful candidates.

Algorithm 2: Genetic algorithm.

pop← initialize() // initialize population
while true do

selection(pop) // evaluate and select
fittest
if termination() then // should we
terminate?

stop // yes, stop loop
end
pop← reproduction(pop) // new
generation

end

Algorithm 2 provides pseudocode for the method given
the following functions:

initialize(): parameters randomly initialized in accordance
with the base distribution for each parameter.

selection(): individuals are sorted according to their score
and divided into 3 groups: Best (of size m), Middle (of
size n) and Worst (the remaining individuals).

termination(): the algorithm is terminated after finding K
successive loop iterations without any new optimum.

reproduction(): based on which group it belongs to, a pa-
rameter set is attributed three probabilities α, β and γ. For
each parameter of this individual, α decides if the value
is changed or not, β decides if the value is changed by
crossover or mutation and, finally, γ decides which type
of mutation is done.
• crossover: a crossover is done by copying a value from

an individual belonging to the Best group.
• mutation: a mutation is done by picking a new value

at random based on either the base distribution or the
current real distribution of an individual from the Best
group (according to γ).

Covariance Matrix Adaptation

Lastly, we also tested the CMA optimization algo-
rithm [HHOO96], implemented in the Shark Machine
Learning Library [sha]. Being a solution-pool based tech-
nique it shares the same general algorithm 2 as the genetic
algorithm except it generates new solutions by picking val-
ues from distributions defined by a covariance matrix that is
continuously modified over the iterations.

Appendix D: Optimization Comparison

Optimizing crowd parameters is a unique and challenging
problem. Because most simulation methods have several
parameters to tune for each agent, even moderately-sized
scenarios with a few dozen agents can become hundred-
dimensional optimization problems. We tested several dif-
ferent combinatorial optimization strategies on different sce-
narios to measure how they perform on two measures: com-
putational speed (how long it takes to converge to an answer)
and quality (how close the answer is to the true optimum).

In total we tested 8 optimization algorithms: the four al-
gorithms described above (Greedy algorithm (G), Simulated
Annealing (SA), a Genetic Algorithm (GA), and CMA), as
well as four hybrid approaches. The first hybrid approach
was to take the solution from the Genetic Algorithm ap-
proach (which searches broadly in parameter space) and re-
fine it using Greedy optimization, denoted as (GA+G). In
a similar manner, we have also tried refining the output of
the Genetic Algorithm with Simulated Annealing (GA+SA),
then CMA+G and CMA+SA.

We evaluated the optimization techniques on four dif-
ferent crowd simulation methods: the RVO2 algorithm, a

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Wolinski et al. / Parameter Estimation and Comparative Evaluation of Crowd Simulations

Boids-like steering model, the Helbing Social Force model,
and the Vision-based steering model. The initial parameter
sets for each of these methods are given in Appendix E.

The optimization methods were tested across different
scenarios. Because of the stochastic nature of the optimiza-
tion techniques, each scenario was run multiple times with
each simulation method to ensure a statistically meaning-
ful comparison. First, we found that the scores for various
metrics were improved by all optimization methods, and by
a statistically significant margin (Friedman test [Fri37] at
the p=0.05 level). Second, we performed a statistical rank-
ing test between optimization methods (post-hoc analysis
with the Wilcoxon signed-rank test [Wil45] at the p=0.0018
level). For each pair of optimization methods, this second
test measures whether the improvement in simulation scores
differs between the two methods.

We batched several tests into three sets of scenarios. The
first set of scenarios (Fig 12a) involved a small number of
agents (2-5 agents) crossing paths to reach their goals; for
this evaluation, we used the Difference metric (D). Here
GA+G and GA+SA algorithms give the best score improve-
ments and the CMA algorithm is the fastest. The second set
of scenarios comes from the data in [ZKSS12] (Fig 12c).
In this set of scenarios, many agents (between 30 and 100
agents) walked down a hallway; we evaluated these using
the Fundamental Diagram metric. Here, SA, GA+SA and
CMA+SA algorithms performed best at optimizing the met-
ric, and the GA and CMA algorithms are the fastest. In the
final scenario (Fig 12b), 24 agents walked to antipodal posi-
tions in a circle and were tested using the Progressive Differ-
ence (P) and Inter-pedestrian Distance (I) metrics. Here, the
CMA+G algorithm (resp. CMA+G, GA+SA and CMA+SA)
gave the best score improvements, and the CMA algorithm
(resp. CMA) is the fastest based on the Progressive Differ-
ence metric (resp. Inter-pedestrian Distance).

The complete ranking of the algorithms by their ability to
optimize the simulation metrics is given Table 1. A ranking
by their computational speed is given in Table 2. As can be
seen in these tables, GA+G provided the best balance be-
tween runtime and performance. For the rest of the paper,
we will use GA+G as the global optimization method.

Figure 14 shows the raw score and runtime results. Nota-
tions for optimization methods are: (G) Greedy, (SA) Sim-
ulated Annealing, (GA) Genetic Algorithm, (CMA) Covari-
ance Matrix Adaptation. Figure 15 shows the Friedman and
Wilcoxon tests’ results for the score. Figure 16 shows the
Friedman and Wilcoxon tests’ results for runtime.

Appendix E: Initial Parameters for Optimization

(a) Crossing Scenario

(b) Circle-24 Scenario

(c) Hallway Scenario

Figure 12: Illustration of reference data used for batch test-
ing. (a) A few people standing on a circle are asked to reach
the antipodal positions, they were motion-captured to record
their global trajectories. (b) The same experiment as the pre-
vious one with a larger number of subjects (up to 24). (c)
Several subjects walk through a hallway while being record-
ing with optical tracking equipment ([Zhang et al. 2012]).

Figure 13: Figures extracted from [Chattaraj et al. 2009].
Subjects from India (top) and Germany (bottom) were asked
to walk in a line. Video analysis was performed to extract
fundamental diagrams (speed vs. density).

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Wolinski et al. / Parameter Estimation and Comparative Evaluation of Crowd Simulations

Figure 14: Summary of the experiment testing optimization algorithms. Each row shows results for a different type of data. In
each row, the left side describes the data and metric. The middle shows scoreA f terClibration

scoreBe f oreClibration with a lower value indicating better
optimization. The right shows time in seconds. Each graph shows its results for each model for each optimization method.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Wolinski et al. / Parameter Estimation and Comparative Evaluation of Crowd Simulations

Figure 15: Statistical results of the Friedman’s Anova and Post-Hoc Wilcoxon signed rank tests on the score depending on the
optimization algorithm. Mean values are reported for each algorithm. Friedman’s Anova showed an influence of the optimiza-
tion algorithm on the score for each type of data (Few Agents, Hallway, 24-Agents (a), 24-Agents (b)). Significant differences
between algorithms are represented through a line (p < 0.0018).

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Wolinski et al. / Parameter Estimation and Comparative Evaluation of Crowd Simulations

Figure 16: Statistical results of the Friedman’s Anova and Post-Hoc Wilcoxon signed rank tests on the computation time
depending on the optimization algorithm. Mean values (s) are reported for each algorithm. Friedman’s Anova showed an
influence of the optimization algorithm on the computation time foreach type of data (Few Agents, Hallway, 24-Agents (a),
24-Agents (b)). Significant differences between algorithms are represented through a line (p < 0.0018).

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

Wolinski et al. / Parameter Estimation and Comparative Evaluation of Crowd Simulations

Crossing {GA+G, GA+SA} > GA > SA > {G, CMA+SA} > CMA+G > CMA
Hallway {SA, GA+SA, CMA+SA} > GA+G > {G, GA, CMA+G} > CMA
Circle-24 (P) CMA+G > {G, GA+G} > GA+SA > {GA, SA, CMA+SA} > CMA
Circle-24 (I) {CMA+G, GA+SA, CMA+SA} > GA+G > {G, GA, SA} > CMA

Table 1: This shows which optimization algorithms most successfully optimize the metrics, the formulation A > B means A
optimizes better than B. In the Circle-24(a) example, we have used the Progressive Difference metric, while in the Circle-24(b)
example, we have used the Inter-pedestrian distance metric, with the same data in both cases.

Crossing CMA < G < CMA+G < {SA, GA, GA+G} < CMA+SA < GA+SA
Hallway {GA, CMA} < G < CMA+G < GA+G < GA+SA < SA, {CMA+SA}
Circle-24 (P) CMA < GA < {G, CMA+G} < GA+G < GA+SA < CMA+SA < SA
Circle-24 (I) CMA < {G, GA, CMA+G} < GA+SA < {SA, GA+SA, CMA+SA}

Table 2: This shows which optimization algorithms most quickly optimize the metrics, the formulation A < B means A is faster
than B. In the Circle-24(a) example, we have used the Progressive Difference metric, while in the Circle-24(b) example, we
have used the Inter-pedestrian Distance metric, with the same data in both cases.

Parameter min max mean std. dev.
Boids model
radius (m) 0.1 1 0.3 0.2
comfort speed (m.s−1) 1 2 1.5 0.5
Helbing model
radius (m) 0.1 1 0.3 0.2
comfort speed (m.s−1) 1 2 1.5 0.5
RVO2 model
comfort speed (m.s−1) 1 2 1.5 0.5
neighbor distance (m) 10 20 15 5
radius (m) 0.2 0.8 0.5 0.25
agent time horizon (s) 0.1 5 2 2
obstacle time horizon (s) 0.1 5 2 2
Vision model
a 0 1 0.5 0.2
b 0.5 1.5 1 0.2
c 1 2 1.5 0.2
comfort speed (m.s−1) 1 2 1.5 0.5
Tangent model
comfort speed (m.s−1) 1 2 1.5 0.5
radius (m) 0.2 0.8 0.5 0.25
a 0 1 0.5 0.4
b 0 0.6 0.3 0.2

Table 3: Default values for simulation parameters for the 5 models integrated to the framework

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.

