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Abstract We introduce a novel proximity query, called connection collision query
(CCQ), and use it for efficient and exact local planning in sampling-based motion
planners. Given two collision-free configurations, CCQ checks whether these con-
figurations can be connected by a given continuous path that either lies completely
in the free space or penetrates any obstacle by at most ε , a given threshold. Our
approach is general, robust, and can handle different continuous path formulations.
We have integrated the CCQ algorithm with sampling-based motion planners and
can perform reliable local planning queries with little performance degradation, as
compared to prior methods. Moreover, the CCQ-based exact local planner is about
an order of magnitude faster than prior exact local planning algorithms.
1 Introduction
Planning a collision-free path for a robot amongst obstacles is an important problem
in robotics, CAD/CAM, computer animation and bioinformatics. This problem is
well studied and many approaches have been proposed. Over the last few decades,
sampling-based motion planners such as probabilistic roadmaps [10] (PRMs) or
rapidly-exploring random trees [15] (RRTs) have been shown to be successful in
terms of solving challenging problems with high degrees-of-freedom (DoFs) robots.
These planners attempt to capture the topology of the free space by generating ran-
dom configurations and connecting nearby configurations using local planning al-
gorithms.

The main goal of a local planner is to check whether there exists a collision-free
path between two free configurations. It is important that the local planner should
be reliable and does not miss any collisions with the obstacles [8, 1]. Moreover, a
significant fraction of the overall running time of a sampling-based planner is spent
in the local planning routines.

The simplest local planning algorithms compute a continuous interpolating path
between free configurations and check the path for collisions with any obstacles.
These algorithms sample the continuous path at a fixed resolution and discretely
check each of the resulting configurations for collisions. These fixed-resolution lo-
cal planning algorithms are simple to implement, but suffer from two kinds of prob-
lems:
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1. Collision-miss: It is possible for the planner to miss a collision due to insufficient
sampling. This can happen in narrow passages or when the path lies close to
the obstacle boundary, or when dealing with high DOF articulated models. This
affects overall accuracy of the planner.

2. Collision-resolution: Most planners tend to be conservative and generate a very
high number of samples, which results in a lot of discrete collision queries and
affects the running time of the planner.

Overall, it is hard to compute the optimal resolution parameter that is both fast and
can guarantee collision-free motion. In order to overcome these problems, some
local planners use exact methods such as continuous collision detection (CCD)
[18, 30] or dynamic collision checking [23]. However, these exact local planning
methods are regarded as expensive and are much slower than fixed-resolution local
planners [23]. Many well-known implementations of sampling-based planners such
as OOPSMP1 and MSL2 only use fixed-resolution local planning, though MPK3

performs exact collision checking for local planning.
Main Results: We introduce a novel proximity query, namely connection col-

lision query (CCQ), for fast and exact local planning in sampling-based motion
planners. At a high level, our CCQ algorithm can report two types of proximity
results:

• Boolean CCQ query: Given two collision-free configurations of a moving robot
in the configuration space, CCQ checks whether the configurations can be con-
nected by a given path that lies in the free space, namely Boolean CCQs query. In
addition, the CCQ query can also check whether the path lies partially inside the
obstacle region (C-obstacle) with at most ε-penetration, namely Boolean CCQp
query. In this case, the robot may overlap with some obstacles and the extent of
penetration is bounded above by ε .

• Time of violation (ToV) query: If the Boolean queries report FALSE (i.e. the
path does not exist), the CCQ query reports the first parameter or the configura-
tion along the continuous path that violates these path constraints

Moreover, our algorithm can easily check different types of continuous paths in-
cluding a linear interpolating motion in the configuration space or a screw motion.

We have integrated our CCQ algorithm into well-known sampling-based motion
planners and compared their performance with prior methods. In practice, we ob-
serve that an exact local planning algorithm based on the CCQ query can be at most
two times slower than a fixed-resolution local planning based on PRM and RRT,
though the paths computed using CCQ queries are guaranteed to be collision-free.
Finally, we also show that our CCQ algorithm outperforms prior exact local planners
by one order of magnitude.

Paper Organization: The rest of this paper is organized as follows. In Sec. 2, we
briefly survey the related work and formulate the CCQ problem in Sec. 3. Sections 4

1 http://www.kavrakilab.org/OOPSMP
2 http://msl.cs.uiuc.edu/
3 http://robotics.stanford.edu/˜mitul/mpk/
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and 5 describe the CCQ algorithms for rigid robots with separation and penetration
constraints, respectively. We describe how our CCQ algorithm can be extended to
articulated robots in Sec.6, and highlight the results for different benchmarks in Sec.
7.

2 Previous Work
Our CCQ algorithm is related to continuous collision detection. In this section, we
give a brief survey on these proximity queries and local planning.

2.1 Continuous Collision Detection
The term continuous collision detection was first introduced by Redon et al. [18] in
the context of rigid body dynamics, even though the earlier work on similar prob-
lems dates back to the late 1980s [3]. The main focus of CCD algorithms lies in find-
ing the first time of contact for a fast moving object between two discrete collision-
free configurations. Many CCD algorithms for rigid models have been proposed
[24]: these include algebraic equation solvers, swept volume formulations, adaptive
bisection approach, kinetic data structures approach, Minkowski sum-based formu-
lations and conservative advancement (CA).

For articulated models, Redon et al.[19] present a method based on continuous
OBB-tree test, and Zhang et al. [30] have extended the CA method to articulated
models. In the context of motion planning, Schwarzer et al. [23] present a dynamic
collision checking algorithm to guarantee a collision-free motion between two con-
figurations. These algorithms have been mainly used for rigid body dynamics and
their application to sampling-based planning has been limited [23]. In practice, the
performance of these exact local planning methods is considered rather slow for
motion planners. Moreover, current CCD algorithms are not optimized for report-
ing Boolean results and cannot handle penetration queries such as CCQp, that are
useful for local planners and narrow passages.

2.2 Local Planning
There are two important issues related to our work in terms of local planning: the
type of continuous interpolating path and the validity of the path in terms of colli-
sions. The former is related to motion interpolation between collision-free samples,
and the latter is related to collision checking.

2.2.1 Motion Interpolation
In the context of local planning, different types of motion interpolation methods
have been used such as linear motion in C-space [23], spherical motion in C-space
[11], screw motion [20], etc. These motion trajectories are rather simple to compute
and cost-effective for local planning.

More sophisticated motion interpolation techniques have been introduced to find
an effective local path by taking into account the robot/obstacle contacts [9, 5],
variational schemes [25] and distance constraints [27]. Amato et al. [1] evaluate
different distance metrics and local planners, and show that the translational distance
becomes more important than the rotational distance in cluttered scenes.
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2.2.2 Collision Checking
Given a path connecting two collision-free configurations, a conventional way of
local planning is to sample the path at discrete intervals and perform static collision
detection along the discrete path [13, 14]. Some exact collision checking methods
have been proposed for local planning such as [23, 4] using adaptive bisection.

Since collision checking can take more than 90% of the total running time in
sampling-based planners, lazy collision, lazy collision evaluation techniques have
been proposed [22, 2] to improve the overall performance of a planner. The main
idea is to defer collision evaluation along the path until it is absolutely necessary.
While these techniques help to greatly improve the performance of PRM-like algo-
rithms, but they do not improve the reliability of resolution-based collision checkers.

When narrow passages are present in the configuration space, it is hard to capture
the connectivity of the free space by using simple collision checking, since it may
report a lot of invalid local paths. However, some retraction-based planners [7, 6,
4, 28] allow slight penetration into the obstacle region based on penetration depth
computation, which makes the local planning more effective.

3 Problem Formulation
We start this section by introducing the notation that is used throughout the paper.
Next, we give a precise formulation of CCQ.

3.1 Notations and Assumptions
We use bold-faced letters to denote vector quantities (e.g. o). Many other symbols
used in the paper are given in Table 1. We assume that both the robot A and obstacle
B are rigid and defined in R3 workspace. Moreover, the robot has 6 DoFs and the
obstacle is fixed in space; thus, the C-space of A is SE(3). We briefly discuss how
to handle high DoF robots later in Sec. 6.

Notation Meaning
A,B,∂A,∂B robot, obstacle and their boundaries

C C-space of A
q,q(t) a sample in C-space and a 1D curve in C-space

A(q),A(t) placements of the robot A at q and q(t)
F ,O C-free and C-obstacle region in C (i.e. C = F ∪O)
‖·, ·‖ Euclidean distance operator

Table 1 Notations.

3.2 Local Planning in Sampling-based Motion Planner
Given the starting q0 and goal q1 configurations in F , most sampling-based ran-
domized planners compute a search graph G to explore the C-space, where the ver-
tex corresponds to a sample in F and each edge corresponds to a 1D curve in
C-space connecting two collision-free samples. More specifically, sampling-based
planners work in the following manner:

1. Sample Generation: Sample a collision-free configuration q1 in F .



CCQ: Efficient Local Planning using Connection Collision Query 5

2. Local Planning: Check whether q1 can be connected to a vertex q0 in G by some
collision-free, continuous path q(t) in C-space. If so, a new edge connecting
q0,q1 is created and added to G along with the vertex q1.

3. Graph Search: Perform graph search on G to find a path from q0 to q1. If such
a path is found, the algorithm reports the path; otherwise, go back to step 1 and
repeat.

In the local planning step, the choice of a continuous path q(t) interpolating
q0,q1 may vary depending on the topology of F . Once a specific path formulation
is chosen, the algorithm needs to check whether that path is collision-free or not.

3.3 Connection Collision Query
Now we define the CCQ proximity query, the main problem to solve in this pa-
per. Let us assume that two collision-free samples q0,q1 ∈ F in C and a time-
parameterized, continuous 1D curve q(t) in C connecting q0 and q1 for t ∈ [0,1];
i.e. q(0) = q0,q(1) = q1. Then, the CCQ with separation constraint is formally de-
fined as checking whether the following predicate CCQs is TRUE:

CCQs : ∀t ∈ [0,1]⇒ q(t) ∈F . (1)

Moreover, if CCQs is FALSE, we want to determine the maximum value of t that
satisfies CCQs. We call such t as the time of violation (ToV) with separation, τs.
More formally,

τs ≡max
t
{ ∀s ∈ [0, t] | q(s) ∈F}. (2)

The Boolean CCQs query is useful for local planning in PRM and RRT, and the ToV
CCQs query can be used for local planning or the expansion step in RRT.

On the other hand, the notion of CCQ with ε-penetration is a less restrictive
version of connection query than CCQ with separation constraint, as it allows slight
penetration (quantified by ε) into the C-obstacle region for the C-space curve q(t).
Formally, we define CCQ with ε-penetration as checking whether the following
predicate CCQp is TRUE:

CCQp : ∀t ∈ [0,1]⇒{q(t) ∈F}∨
{q(t) ∈ O ∧ ∀p ∈ A(t)∩B,‖p−∂B‖ ≤ ε}. (3)

Furthermore, if CCQp is FALSE, we also determine the maximum value of t that
satisfies CCQp, called the ToV with ε-penetration, τp. More formally, τp is defined
as:

τp ≡max
t
{ ∀s ∈ [0, t] | q(s) ∈F ∨

{q(s) ∈ O ∧ ∀p ∈ A(s)∩B,‖p−∂B‖ ≤ ε}}. (4)

The CCQp query can be used for PRM and RRT when a small amount of penetration
is allowed for a robot along the local path. Moreover, retraction-based planners may
use CCQp to generate samples with slight penetration [7, 6, 4].
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4 CCQ with Separation Constraint
In this section, we present our algorithm to perform the CCQs query. We start this
section by explaining the conservative advancement (CA) technique upon which
our CCQ algorithm is based. Next, we explain the procedure to compute the ToV
information τs in Eq.2 along with CCQs. Finally, we provide a fast technique to
solve the Boolean version of CCQs (i.e. Eq.1).

4.1 Conservative Advancement
Our CCQ algorithm is based on the conservative advancement (CA) algorithm [16]
for convex objects undergoing continuous motion. In CA, the time of contact (ToC)
τ between two convex objects A and B is obtained by iteratively advancing A by
∆ ts toward B without generating collisions. Here, ∆ ts can be calculated by:

∆ ts ≤ ‖A(t),B‖
µ

(5)

where µ is the bound of motion of A(t) for t ∈ [0,1] projected onto the closest
direction from A(t) to B, known as the directional motion bound [29]. Then, the
ToC is obtained as:

τ = ∑
i

∆ t i
s (6)

where ∆ t i
s denotes the ith CA iteration. The iteration continues until ‖A(τ),B‖ ≈ 0.

This idea can be extended to non-convex models using bounding volume hierarchies
[24].

4.2 Time of Violation Query for CCQs

In case of CCQs, the time of violation (ToV) is equivalent to the time of contact
(ToC) in CA. Moreover, if the path q(t) is a linear motion in C-space, one can
employ the C2A algorithm [24] based on CA to compute τs for the robot A. We
also show that we can devise a variant of C2A algorithm that can handle the screw
motion for q(t).

The screw motion consists of rotation about an axis ω in space by an angle of θ

radians, followed by translation along the same axis by an amount of d as shown in
Fig.1. The screw motion can be represented by using four parameters (ω,θ ,a,d),

A


ω

pbo

p

A

d
a

Fig. 1 Screw Motion.

where a is any point on the axis ω . Given two configurations q0 and q1 in SE(3),
the screw parameters can be easily computed [21].
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The main challenge in computing τs under screw motion is to compute the direc-
tional motion bound µ for Eq.5. Let us assume that our robot A is convex with the
origin ob of the body attached frame. Let p be any point on A with pb representing
the same point but defined with respect to the body frame, n be the closest direc-
tion from A to the obstacle B at t = 0, p⊥ be a vector projected from p to the axis
ω . Then, an upper bound µ of the motion of any point on A under screw motion,
projected onto n is:

µ = max
p∈A

(
1∫
0

(ṗ(t) ·n)dt
)

= max
p∈A

(
1∫
0

((v+ω×p⊥(t)) ·n)dt
)

≤max(v ·n,0)+‖ω×n‖
(

max
p∈A

(
1∫
0
‖p⊥ (t)‖dt

))
≤max(dω ·n,0)+‖ω×n‖

(∥∥(ob−a
)
×ω

∥∥+max
p∈A

∥∥pb
∥∥) .

(7)

Note that max
p∈A

∥∥pb
∥∥ can be calculated as preprocess, since pb is defined with respect

to the body frame. A similar bound can be obtained for other motion trajectories
such as spherical motions [11].

4.3 Boolean Version of CCQs

From the previous section, the CCQs predicate in Eq.1 can be trivially determined
by checking whether τs ≥ 1 (TRUE) or not (FALSE). However, one can devise a
more efficient way to answer the CCQs predicate without explicitly computing τs.

Given the starting q0 and goal q1 configurations, the main idea in evaluating
CCQs is to perform dual advancements from both end-configurations q0,q1 with
opposite velocities, and iterate this process until collision is found or the path turns
out to be collision-free. The dual advancement is more effective than the normal
advancement using a single end-configuration since the normal advancement is al-
ways conservative (i.e. collision will be never identified until the final ToV value is
obtained).

More specifically, as shown in Fig. 2, we perform a single CA iteration from q0
towards q1 as before and compute the first advancement time, ∆ t+0 . Similarly, we
perform another CA iteration but from q1 towards q0 with a negative velocity (e.g.
(−v,−ω)) and compute the advancement time, ∆ t−1 .

A

B

0t
 1t

1
2

t0q 1q

2

Fig. 2 A Single Step in the Boolean Query. Dual advancements are performed from q0 towards
q1 by ∆ t+0 , and from q1 towards q0 by ∆ t−1 . The collision is checked at q( 1

2 ).

If (∆ t+0 +∆ t−1 )≥ 1, then the entire path q(t) is collision-free, thus the predicate
is returned as TRUE; otherwise, we bisect the time interval at t 1

2
= t0+t1

2 and perform
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collision detection at the configuration q(t 1
2
). If collision is detected at q(t 1

2
), CCQs

is reported as FALSE and the procedure is terminated. Otherwise, the same dual CA
procedure is executed recursively on two sub-paths, {[q(∆ t+0 ),q(t 1

2
)], [q(t 1

2
),q(1−

∆ t−1 )]}. Note that the remaining path segments {[q(0),q(∆ t+0 )], [q(1−∆ t−1 ),q(1)]}
are collision-free because of conservative advance mechanism. This procedure is it-
erated until the separation condition is satisfied or a collision is detected. We provide
a pseudo-code for CCQs in Alg.1.

Algorithm 1 CCQs
Input: initial and goal configurations q0, q1, interpolating motion q(t)
Output: whether Eq. 1 is TRUE or FALSE
1: {Initialize the queue with [q(0),q(1)].}
2: while Queue 6= /0 do
3: Pop an element [q(ta),q(tb)] from the queue;
4: t 1

2
= ta+tb

2 ;
5: if q(t 1

2
) is in-collision then

6: return FALSE;
7: end if
8: Perform CA from q(ta) with a positive velocity and find the step size ∆ t+a ;
9: Perform CA from q(tb) with a negative velocity and find the step size ∆ t−b ;

10: if
(
∆ t+a +∆ t−b

)
< (tb− ta) then

11: Push [q(ta +∆ t+a ),q(t 1
2
)] and [q(t 1

2
),q(tb−∆ t−b )] onto the queue;

12: end if
13: end while
14: return TRUE;

5 CCQ with Penetration Constraints
The CCQs algorithm presented in Sec.4 strictly imposes that the interpolating path
q(t) should lie entirely inside F . However, this condition is rather restrictive since
a slight overlap between the robot and the obstacles may be useful in practice and
is used by retraction-based planners [7, 4, 28]. For instance, often the curved sur-
face model of a robot is tessellated with some surface deviation error ε and thus ε-
penetration does not necessarily imply actual interference [4]. The notion of CCQp
is that we allow slight penetration for a robot along the path as long as the penetra-
tion amount is less than some threshold, ε .

5.1 Penetration Depth
To quantify the amount of penetration for a robot A, we need a suitable metric. The
penetration depth (PD) is a proper metric to quantify the amount of overlap between
A and B. In the literature, different types of penetration depth are known [26] and
in our case, we use pointwise penetration depth [24] since it is computationally
cheaper to compute as compared to other penetration measures.

When A and B overlap, the pointwise penetration depth is defined as the point
of deepest interpenetration of A and B. Formally, the pointwise penetration depth
(or PD for short) can be defined as:

PD≡H (A∩∂ (A∩B),B∩∂ (A∩B)) (8)
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where H (·, ·) denotes the two-sided Hausdorff distance operator between surfaces.

5.2 Boolean Version of CCQp

We first explain how to evaluate the CCQp predicate in Eq.3. The main idea of our
evaluation algorithm is to decompose the advancement step size ∆ t into two sub-
steps ∆ ts and ∆ tp (i.e. ∆ t = ∆ ts + ∆ tp) such that collision-free motion is generated
during ∆ ts while ∆ tp may induce penetration with the PD value being less than ε .
Then, we perform dual CAs from the end-configurations q0,q1 like CCQs in Sec.
4.3.

Since ∆ ts can be calculated just like in Eq. 5, computing ∆ t boils down to cal-
culating ∆ tp. In general, computing ∆ tp can be quite challenging since one needs
to search the entire C-space (both C-free and C-obstacle) where the placement of A
at q(t +∆ t) may yield either collision-free or in-collision configuration. In order to
compute a feasible solution for ∆ tp, we use a conservative approach.

The key idea is that, after the advancement of ∆ ts +∆ tp time step, want to guar-
antee that the robot still remains collision-free at q(t +∆ ts +∆ tp). Taking advantage
of this constraint, we first move the robot to A(t +∆ ts), and then calculate ∆ tp that
can bound the motion of A by less than 2ε so that the possible PD between A and
B can be less than ε , as shown in Fig. 3.

B
A

B

t

t0q

t

st

pt
Fig. 3 Decomposition of the Time Step ∆ t into ∆ ts and ∆ tp for CCQp. ∆ ts corresponds to the
collision-free time step and ∆ tp to the time step that may result in ε-penetration.

More precisely, an upper bound of the time step size ∆ tp can be computed by
observing the fact that the robot should not travel by more than 2ε; otherwise, the
penetration depth can be greater than ε . Thus, assuming that the robot and obstacles
are both convex, we have:

∆ tp ≤
2ε

µu
(9)

where µu is the maximum amount of motion that a point on A can make between
the time interval of [0,1]. Note that µu is an undirected motion bound unlike the
directed one µ in Eq.5, since no closest direction will be defined for a robot in
collision with obstacles. Essentially, µu depends on the underlying path. We present
simple formulas to compute µu for both linear (Eq.10) and screw (Eq.11) motions
as shown below. Here, p,pb,p⊥,ob have the same meanings as defined in Sec.4.2.

Linear Motion
µu = max

p∈A

(
1∫
0
‖ṗi (t)‖dt

)
= max

p∈A

(
1∫
0

∥∥v+ω×pb (t)
∥∥dt
)

≤ ‖v‖+max
p∈A

(
1∫
0

∥∥ω×pb (t)
∥∥dt
)

≤ ‖v‖+‖ω‖max
p∈A

∥∥pb
∥∥

(10)
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Screw Motion

µu = max
p∈A

(
1∫
0
‖ṗi (t)‖dt

)
= max

p∈A

(
1∫
0
‖v+ω×p⊥ (t)‖dt

)
≤ ‖v‖+max

p∈A

(
1∫
0
‖ω×p⊥ (t)‖dt

)
≤ ‖v‖+‖ω‖

(∥∥(ob−a
)
×ω

∥∥+max
p∈A

∥∥pb
∥∥)

(11)

The result of our algorithm is conservative in the sense that our algorithm does not
report a false-positive result; i.e. if the algorithm reports TRUE, it guarantees that
CCQp is indeed TRUE.

5.3 Time of Violation Query for CCQp

A simple way to compute the ToV in Eq.4 can be devised similarly to evaluating
CCQp by decomposing the ToV into the one corresponding to collision-free motion
τs (Eq.2) and one to ε-penetration ∆ t ′p: i.e.

τp1 =

(
∑

i
∆ t i

s

)
+∆ tp′ = τs +∆ tp′ . (12)

Moreover, in order to guarantee ε-penetration, ∆ t ′p is calculated such that the motion
of A starting at t = τs should be bounded above by ε:

∆ t ′p ≤
ε

µu
. (13)

Here, the undirected motion bound µu can be calculated similarly as in the previous
section. However, there are two issues related to computing the ToV, as shown in
Eq.12:
• τp1 provides a lower bound of the ToV with ε-penetration, but this may be a loose

bound since ε is typically much smaller than µu.
• The placement of the robot at A(τp1) may correspond to an in-collision sample.

This can be problematic for most sampling-based planners where only collision-
free samples are permitted to represent the connectivity of the free C-space.

Note that the second issue is more severe than the first one in practice. We introduce
an alternative way to compute τp to overcome these issues.

The main idea is that instead of accumulating the collision-free time steps first
(i.e. τs), we intertwine collision-free and in-collision motions for every time step,
just like the Boolean query in the previous section. Thus, the new ToV τp2 is:

τp2 = ∑
i

(
∆ t i

s +∆ t i
p
)
. (14)

Here, ∆ t i
s,∆ t i

p for the ith iteration are calculated using Eq. 5 and Eq. 9, respectively.
The above iteration continues until the ith iteration yields a collision. Thus, by con-
struction, A(τp2) is collision-free. Moreover, in general, τp1 ≤ τp2; however this is



CCQ: Efficient Local Planning using Connection Collision Query 11

not always true but less likely to happen in practice since Eq. 14 continues to iterate
until collision is found unlike Eq. 12, as illustrated in Fig.4.

B
A

(0)q 2( )pτq1( )pτqptΔsτ

Fig. 4 Comparison between τp1 and τp2. In general, τp2 > τp1 since more iterations will be
performed for τp2 until collision is found at q(τp2).

6 Extension to Articulated Robots
Our CCQ algorithms for rigid robots can be extended to articulated robots. The basic
equations that support CCQ algorithms such as Eqs. 6 or 12 can be reused as long
as the directed and undirected motion bounds µ,µu can be calculated. However, this
turns out to be relatively straightforward. For instance, in the case of linear motion,
the directed motion bound µ for an articulated robot can be obtained using the same
motion bound presented by Zhang et al. [30]. Moreover, the spatial and temporal
culling techniques proposed in the paper to accelerate the query performance are
also reusable for CCQ queries between articulated models.

7 Results and Discussion
In this section, we describe the implementation results of our CCQ algorithms, and
benchmark the performance of the algorithms by plugging them into well-known,
sampling-based planners. Finally, we compare our algorithm against prior exact lo-
cal planning techniques.

7.1 Implementation Details
We have implemented our CCQ algorithm using C++ on a PC running Windows
Vista, equipped with Intel Dual CPU 2.40GHz and 5GB main memory. We have ex-
tended public-domain collision libraries such as PQP [12] and C2A. Note that these
collision libraries are designed only for static proximity computation or ToV com-
putation (similar to τs) under a linear motion. Throughout the experiments reported
in the paper, we set the penetration threshold ε for CCQp and τp as one tenth of the
radius of the smallest enclosing sphere of A.

To measure the performance of our algorithms, we have used the benchmarking
models and planning scenarios as shown in Table 2 and Fig.5 with sampling-based
motion planners including PRM and RRT. These benchmarking models consist of
1K ∼ 30K triangles, and the test scenarios have narrow passages for the solution
path. Typical query time for our CCQ algorithms takes a few milli-seconds; for
instance, the most complicated benchmark, the car seat, takes 21.2 msec and 28.3
msec for ToV and Boolean queries, respectively.
7.2 Probabilistic Roadmap with CCQ
In Sec.3.2, we have explained the basic steps of sampling-based planners. These
planners use a different local planning step (the step 2 in Sec. 3.2).
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(a) Maze (b) Alpha Puzzle (c) Car Seat (d) Pipe

Fig. 5 Benchmarking Scenes. For each benchmark scene, the starting and goal configurations of
the robot are colored in red and blue, respectively.

Benchmarks A B # of tri (A) # of tri (B)
Maze CAD piece Maze 2572 922

Alpha Puzzle Alpha Alpha 1008 1008
Car seat Seat Car Body 15197 30790

Pipe Pipe Machinery 10352 38146

Table 2 Benchmarking Model Complexities.

In conventional PRM-based planners, this Boolean checking is implemented
by performing fixed-resolution collision detection along the path, namely fixed-
resolution local planning (DCD). In Table 3, we show the performance of PRM
with DCD with varying resolution parameters and a linear path. Here, the resolution
parameter means the average number of collision checks performed for each local
path. We have used the OOPSMP implementation of PRM, and only the maze and
pipe benchmarks were solvable by OOPSMP within a reasonable amount of time.
The optimal performance is obtained when the resolution is 23, and as the resolu-
tion parameter becomes less than 23, the OOPSMP may not be able to compute a
collision-free path. In any case, the DCD local planner still does not guarantee the
correctness of the path in terms of collision-free motion.

Avg. Collision Resolution 23 40 47 80 128
PRM with DCD (Boolean) 12.70s 15.88s 18.76s 39.49s 44.75s

Table 3 The performance of PRM in seconds based on fixed-resolution local planning (DCD) with
different resolutions for the maze benchmark.

However, exact local planning is made possible by running the Boolean version
of our CCQ algorithm on the path. In Table 4, we highlight the performance of
CCQ-based local planning algorithms (CCQs and CCQp) with PRM, and compare
it against that of the DCD local planning method with the optimal resolution param-
eter. In case of the pipe benchmark, the PRM performance using our algorithm is
similar to that of the DCD. In case of the maze benchmark, our CCQ-based local
planner is about 1.8 times slower than DCD local planner. Even for this benchmark,
when the resolution parameter becomes higher than 80, our CCQ algorithm per-
forms faster than DCD, even though the DCD local planner still cannot guarantee
the correctness of the solution path. Also notice that CCQp takes less time than
CCQs since the former is a less restrictive query than the latter.

7.3 Rapidly-Exploring Random Tree with CCQ
Both ToV and Boolean CCQ can be employed to implement exact local planning for
RRT planer. Specifically, when the new node is to be extended along some path, if
the path is not collision-free, the path can be entirely abandoned (Boolean query) or
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Benchmark DCD Boolean Query
CCQs CCQp

Maze 12.70s 36.34s 24.09s
Pipe 8425.09s 9610.13s 8535.60s

Table 4 The performance of PRM using DCD local planner and CCQ-based local planner. The
CCQ-based local planner can guarantee collision-free motion while the other cannot give such
guarantees.

the partial collision-free segment of the path before the ToV can be still kept (ToV
query).

In Fig. 6, we show the performance of RRT planner with our CCQ algorithms
and DCD local planner with the optimal resolution parameter. Also, different types
of motion paths such as linear and screw motion have been tested. We also have
used the OOPSMP implementation of RRT for this experiment. To find the optimal
resolution parameter for DCD local planner, we test different resolution parameters
ranging between [3,15]; for instance, see Table 5 for the alpha puzzle benchmark
using the ToV query based on DCD local planner. Similar to PRM, the variation in
performance depends on the resolution parameter, but it does not show the linear
relationship between the resolution and performance unlike PRM since computing
an accurate ToV using higher resolution requires many more collision checks. Thus,
picking a right value for the resolution parameter is even more difficult in case of
RRT.

In our benchmarks, the RRT with CCQ-based local planner is roughly two times
slower than the one with DCD local planner with the optimal resolution, which
defined as the minimum resolution to find a path. However, in some cases such as
the Maze (BS), Alpha puzzle (BL) and pipe (BL) benchmarks in Fig.6, the RRT with
CCQ-based local planner is even faster than the one with DCD local planner since
the number of collision checks can be kept minimal. For the car seat benchmark, the
Boolean query with a screw motion (BS) could not find out a collision-free path in
a reasonable amount of time.

Avg. Collision Resolution 4.21 5.96 6.01 6.97
RRT with DCD (ToV) 25.60s 0.25s 2.08s 39.65s

Table 5 The performance of RRT in seconds based on fixed-resolution local planning (DCD) with
different average resolutions for the alpha puzzle benchmark. In this case, RRT uses the ToV query.
When the resolution is less than 4, RRT cannot find a path

7.4 Comparisons with Prior Approaches
We also compare the performance of our CCQ-based local planning algorithm with
the prior exact local planning algorithms such as the dynamic collision checking
method (DCC) [23] implemented in MPK. To the best of our knowledge, the dy-
namic collision checking algorithm is the only public-domain exact local planner
that has been integrated into sampling-based motion planner.

Since DCC supports only a Boolean query with a linear motion and separa-
tion constraints, we compare the performance of the Boolean version of our CCQs
against DCC by plugging CCQs into the MPK planner, as shown in Table 6. For
benchmarks, we use the same pipe model in Fig.5-(d), but shrink the robot a little
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Fig. 6 The Performance of RRT using DCD and CCQ-based Local Planner. The x-axis rep-
resents different benchmarking scenes with different queries such as BL (Boolean query with a
linear motion), BS (Boolean query with a screw motion), TL (ToV query with a linear motion),
and TS (ToV query with a screw motion) for each benchmark. The y-axis denotes the planning
time in seconds for the maze and pipe benchmark, in tens of seconds for the alpha puzzle, and in
hundreds of seconds for the car seat. The blue, red and green bars denote the planning time using
DCD, CCQs-based, and CCQp-based local planners, respectively.

to enable MPK to find a solution path. We also use another benchmark model as
shown in Fig. 7, the alpha-shape with two holes. In this case, we plan a path for
an alpha-shape tunnelling through two holes, and measure the average performance
of DCC and CCQs-based local planner. We also compare the CCQs algorithm with
C2A-based local planning algorithm [24] in two benchmarks, as shown in Table. 6

Benchmarks # of triangles CCQs DCC C2A
Pipe 48K 0.29s 1.82s 1.78s

Alpha-shape with two Holes 1K 4.5s 63.8s 17.9s

Table 6 Performance Comparisons between dynamic collision checking (DCC), CCQs and C2A
-based local planner. The timings are the total collision checking time in seconds used for local
planning.

Fig. 7 Alpha-Shape Through Two Holes. The red and blue alpha shapes represent the starting
and goal configurations, respectively.

In our experiments, CCQs-based local planner is about an order of magnitude
faster than DCC local planner mainly because CCQ uses a tighter, directional mo-
tion bound than DCC relying on undirectional motion bound. A similar explanation
was also provided in [29] why the directional bound is superior to the undirectional
one. Another reason is because of the dual advancement mechanism in CCQ-based
local planner. Moreover, CCQs is about 5 times faster than C2A in our experiment,
because of the dual advancement mechanism.

The ToV version of our CCQs algorithm has a similar objective as continuous
collision detection algorithms. Since our algorithm is based on the known fastest
CCD algorithm C2A [24], it shows a similar performance of that of C2A. However,
C2A is not optimized for a Boolean query and does not support CCQ with pene-
tration constraints. Ferre and Laumond’s work [4] supports a penetration query, but
their work is not available freely and is essentially similar to DCC [23].
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8 Conclusions
We have presented a novel proximity query, CCQ, with separation and penetration
constraints. It can be used for efficient and exact local planning in sampling-based
planner. In practice, we have shown that the CCQ-based local planner is only two
times slower or sometimes even faster than the fixed-resolution local planner. More-
over, CCQ-based local planners outperform the state-of-the-art exact local planners
by almost an order of magnitude. Our CCQ algorithm can be also extended to a
more general type of motion as long as its bound can be conservatively obtained.

There are a few limitations in our CCQ algorithm. Both CCQs and CCQp algo-
rithms are sensitive to threshold values; e.g. the termination condition threshold for
CA or CCQs and penetration threshold ε for CCQp. The motion bound calculation
such as µ or µu depends on the underlying path. When the robot moves with a very
high rotational velocity, many CA iterations might be required to converge.

For future work, it may be possible for a planner to try different types of paths
and automatically choose the suitable or optimal one. We would like to extend our
CCQ framework to deformable robots. We are also interested in applying our CCQ
technique to other applications such as dynamics simulation where the ToV compu-
tation is required. In particular, the use of CCQp may also provide a direction for
contact dynamics where slight penetration is allowed (e.g. penalty-based method).
Finally, we would like to design parallel GPU-based extension of CCQ and use it
for real-time planning [17].
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