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Figure 1: Benchmark Funnel: In this simulation, a cloth falls
into a funnel and pass through it under the pressure of a ball. This
model has 47K vertices, 92K triangles, and a lot of self-collisions.
Our novel GPU-based CCD algorithm takes 4.4ms and 10ms per
frame to compute all the collisions on a NVIDIA GeForce GTX 480
and a NVIDIA GeForce GTX 285, respectively.

Abstract

We present a fast GPU-based streaming algorithm to perform col-
lision queries between deformable models. Our approach is based
on hierarchical culling and reduces the computation to generating
different streams. We present a novel stream registration method
to compact the streams and efficiently compute the potentially col-
liding pairs of primitives. We also use a deferred front tracking
method to lower the memory overhead. The overall algorithm has
been implemented on different GPUs and we have evaluated its per-
formance on non-rigid and deformable simulations. We highlight
our speedups over prior CPU-based and GPU-based algorithms.
In practice, our algorithm can perform inter-object and intra-object
computations on models composed of hundreds of thousands of tri-
angles in tens of milliseconds.

1 Introduction

The problem of checking whether the primitives of two or more ob-
jects overlap with each other arises in different applications includ-
ing physics-based simulation, robot motion planning, haptic ren-
dering and virtual environments. The underlying simulator needs
to check for collisions between a pair of objects (inter-object col-
lisions) as well as self-collisions among deformable objects (intra-
object collisions). Recent work in this area has been on continuous
collision detection (CCD), which checks for collisions between two
discrete time instances by interpolating a smooth motion. More-
over, many interactive applications must perform this computation
at 30− 60Hz or higher rates.

There is extensive work on designing fast algorithms for collision

detection based on bounding volume hierarchies (BVHs). Recent
work includes development of appropriate culling techniques that
tend to reduce the number of false positives in terms of pairwise
intersection tests between the primitives. Most of the earlier al-
gorithms were serial in nature and designed for a single core or
processor. However, the recent trend in computer architecture has
been toward developing parallel commodity processors, including
multi-core CPUs and many-core GPUs. It is expected that the num-
ber of cores would increase at the rate corresponding to Moore’s
Law. Given these trends, many parallel collision detection algo-
rithms have been proposed for commodity parallel processors. In
this paper, we mainly deal with designing fast GPU-based algo-
rithms that can exploit the data and thread-level parallelism and are
flexible in terms of using various culling techniques.

Modern GPUs can be regarded as many-core stream processors
which offer higher peak throughput as compared to CPUs. How-
ever, the underlying architecture and the memory hierarchy of
GPUs imposes some constraints in terms of designing appropri-
ate algorithms. As a result, many prior GPU-based collision de-
tection algorithms exploit rasterization capabilities [Heidelberger
et al. 2003; Knott and Pai 2003; Govindaraju et al. 2003; Greß
et al. 2006; Sud et al. 2004; Morvan et al. 2008], or perform ex-
plicit balancing between the work units [Lauterbach et al. 2010] or
use hybrid combination of CPU and GPU to distribute the compu-
tation [Govindaraju et al. 2005; Kim et al. 2009; Pabst et al. 2010].
It is relatively hard to combine different culling methods or opti-
mizations along with these GPU-based algorithms. Without using
these culling methods, a lot of computation ability and memories
will be waste on redundant tests and false positives (up to 2 orders
of magnitude [Tang et al. 2009; Tang et al. 2010a]).

Our contributions: We present a novel GPU-based collision de-
tection algorithm that abstracts a GPU as a stream processor that is
good at handling stream data in parallel with kernels. Our formula-
tion is based on BVHs and reduces the computation to generating
various streams. We also present a novel stream registration method
to efficiently support variable-length data structures, which can be
updated in parallel by multiple threads. This provides us the flex-
ibility to incorporate many culling methods based on Orphan sets
[Tang et al. 2009], Representative triangles [Curtis et al. 2008] and
non-penetration filters [Tang et al. 2010a], which can improve the
overall performance of the GPU-based algorithm. We also use a
deferred front tracking scheme that reduces the memory overhead
and makes it possible to handle large complex models on GPUs.
The overall algorithm, collision-streams, maps well to current GPU
architectures and we evaluate its performance on NVIDIA GeForce
GTX GPUs and a AMD Radeon HD 5870 GPU.

The overall collision detection algorithm makes no assumption
about the objects or motion, can detect all inter-object and intra-
object collisions at object-space precision, and minimizes the num-
ber of elementary tests between adjacent triangles. We also ana-
lyze the performance of our algorithm as a function of number of
cores or streaming processors. In practice, collision-streams can
perform CCD computations between complex deformable models
composed of hundreds of thousands of triangles in tens of millisec-
onds. We highlight our speedups over prior CPU-based and GPU-
based algorithms and a lower memory overhead. Moreover, it is
relative easy to combine other culling techniques.



Organization: The rest of the paper is organized as follows: Sec-
tion 2 gives a brief survey of prior work. We present our stream-
ing algorithm, along with streaming registration and deferred front
tracking in Section 3. We present the implementation details and
highlight the performance in Section 4. We compare our approach
with prior algorithms in Section 5.

2 Related Work and Background

In this section, we give a brief overview of related work on colli-
sion detection and GPU-based algorithms. We also highlight many
characteristics of GPU architectures and abstract them as streaming
processors.

Continuous Collision Detection: Many techniques have been pro-
posed to accelerate the performance of collision detection algo-
rithms. These include bounding volume hierarchies (BVHs) in-
cluding AABB trees [van den Bergen 1997], OBB trees [Gottschalk
et al. 1996], k-DOP trees [Klosowski et al. 1998], etc. These hierar-
chies need to be updated for deformable models based on refitting
methods or selective restructuring [Larsson and Akenine-Möller
2006; Lauterbach et al. 2006; Zachmann and Weller 2006; Otaduy
et al. 2007]. Many techniques have been proposed to improve the
performance of CCD algorithms, including feature-based bounding
volume [Hutter and Fuhrmann 2007], non-penetration filters [Tang
et al. 2010a], continuous normal cones [Tang et al. 2009], etc. Other
techniques can significantly reduce the number of elementary tests
between the primitives based on Representative triangles [Curtis
et al. 2008] or Orphan sets [Tang et al. 2009]. In practice, these
methods can be combined with bounding volume hierarchies and
can improve the overall performance of CCD algorithms by more
than an order of magnitude for CPU-based algorithms. In this pa-
per, our goal is to develop appropriate GPU-based algorithms where
such culling techniques can be used to reduce the number of ele-
mentary tests.

Collision Detection on Commodity Parallel Processors: In order
to exploit the computational capability of commodity processors,
the recent trend has been to design parallel collision detection algo-
rithms. This includes multi-core algorithms for current CPUs [Tang
et al. 2010b] using front-based decomposition that exploit task-level
and data-level parallelism. There is extensive work on exploiting
the computational power of commodity GPUs (graphics processing
units) for fast collision and proximity computations. Some of the
earlier methods exploited the rasterization capabilities of GPUs to
perform collision and distance queries [Heidelberger et al. 2003;
Knott and Pai 2003; Govindaraju et al. 2003; Greß et al. 2006;
Sud et al. 2004; Morvan et al. 2008] at image-space resolution.
Many hybrid combinations of GPU and CPU algorithms have been
proposed to perform collision and distance queries at object-space
resolution [Govindaraju et al. 2005; Sud et al. 2006; Kim et al.
2009]. Other GPU-based methods are designed for broad-phase
culling [Grand 2007] and AABB streaming [Zhang and Kim 2007].
Some of the recent work uses GPUs as general-purpose processors
to perform fast hierarchy traversal [Lauterbach et al. 2010] or spa-
tial hashing [Pabst et al. 2010]. GPU-based parallel algorithms have
also been proposed to construct BVHs [Lauterbach et al. 2009; Pan-
taleoni and Luebke 2010] and octrees [Zhou et al. 2010].

Stream Computing Using GPUs: Current GPUs are regarded as
high-throughput processors, which have a theoretical peak perfor-
mance of a few Tera-Flops. Most of these GPUs operate on a
SIMD (single-instruction multiple data) basis and the computa-
tions are performed simultaneously by executing a large number
of threads. At a broad level, the GPUs consist of several stream-
ing multi-processors, with each of them containing a number of
streaming processors and a small shared memory unit. For exam-

ple, the latest NVIDIA GeForce GTX 480 GPU has 480 processor
cores, and the latest Radeon HD 5870 GPU from AMD has 320
processors and each of those processors have 5 ALUs. Moreover,
there is global memory that is accessible to all the streaming multi-
processors. The GPU memory system provides a higher bandwidth
as compared to the CPU memory system, but has a higher latency.
The caches used in the GPUs are relatively small as compared to
CPUs and recent GPUs can support a two-level cache hierarchy.

The GPUs can be abstracted as stream processors that are good at
handling stream data in parallel with kernels [Nickolls and Dally
2010]. In this model, the underlying program structure can be de-
scribed by streams of data passing through computation kernels.
A stream is an ordered set of data of an arbitrary (simple or com-
plex) data type and a kernel performs operations on streams or sub-
streams in parallel. In essence, the underlying kernels operate on
one or more streams as inputs and produce one or more streams as
outputs. Furthermore, the overall program can be constructed by
chaining these computations together. This formulation has been
used to design efficient GPU-based sorting and numerical compu-
tations [Owens et al. 2007]. On current GPUs, the kernels are
executed by multiple threads which are organized into a two-level
hierarchy: blocks and threads. At the top level of the hierarchy, a
grid is organized as a two dimensional array of blocks. At the bot-
tom level, all blocks of a grid are organized into an array of threads.
All the threads in the same block can access a small, high-speed
shared memory. However, threads from different blocks can only
communicate via slower global memory, and can only synchronize
via expensive atomic operations.

2.1 Stream Compaction

Stream compaction is often used on GPUs to remove unwanted el-
ements in a sparse data representation. In our streaming CCD algo-
rithm, several streams containing sparse data (e.g. potentially col-
liding triangle pairs or potentially colliding feature pairs) are used
and need to be compacted for good performance. The actual stream
data elements used is much less than O(N2) possible pairs (N is
the number of total triangles in the scene), and therefore the result-
ing data structure needs to support sparse data representations.

Many fast stream compaction [Horn 2005; Harris et al. 2007; Bil-
leter et al. 2009] and scan algorithms have been designed for current
GPUs [Sengupta et al. 2011; Merrill and Grimshaw 2009]. In order
to use these methods for generating collision streams, the resulting
algorithm would require O(N2) storage, which would limit their
application to relatively simple models.

3 Streaming Continuous Collision Detection

In this section, we introduce our notation and present our CCD al-
gorithm based on collision-streams. We assume that the scene con-
sists of multiple deformable objects. Our algorithm builds a BVH
for the entire scene and performs top-down traversal to check for
both inter-object and intra-object collisions. We make no assump-
tion about the motion or the deformation and assume that we are
given the positions of all the vertices of the mesh at each time frame.
In terms of CCD computation, the algorithm assumes linearly inter-
polating motion between the vertices and the first time of contact is
computed by performing elementary tests between the features (i.e.
vertices, edges and faces).

3.1 Algorithm Overview

Our algorithm is based on BVHs and at a broad level consists of the
following stages:
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Figure 2: The stream data: All the geometric data, such as ver-
tex coordinates, BVs, BVH, BVTT front, Orphan set, triangle pairs,
feature pairs, and colliding information are represented as GPU
streams. Different kernels operate on these streams. The thin ar-
rows refer to dependency relationship between these streams. The
current ”Front stream” is refined from the stream at previous frame
(shown as a self-reference).

1. At each frame, update the triangle positions, bounding vol-
umes, and the BVH for the whole scene using refitting algo-
rithms.

2. Traverse the BVH and perform pairwise tests between the
bounding volumes (BVs) to compute the list of potentially in-
tersecting triangles. This step can be accelerated by maintain-
ing a front of the resulting BVTT (bounding volume traversal
tree) [Tang et al. 2010b] and thereby reducing the number of
pairwise BV tests.

3. For all potentially colliding triangle pairs, elementary tests are
performed between their features (vertices, edges, and trian-
gles). The CCD test between each pair of triangles reduces
to 15 elementary tests, including 6 VF (vertex-face) and 9 EE
(edge-edge) tests. The number of elementary tests can be re-
duced based on Orphan sets [Tang et al. 2009] and Repre-
sentative triangles [Curtis et al. 2008]. Each elementary test
reduces to solving a cubic equation, and it can be accelerated
by using a non-penetration filter [Tang et al. 2010a].

In order to utilize the computation capabilities of GPUs, we map
the hierarchical traversal and intersection tests to collision-streams,
which can exploit the parallelism on current GPUs.

3.2 Collision Streams

In order to fully utilize the powerful parallel computation ability of
current GPUs, we model them as a collection of stream processors
that can perform large-scale fine-grained parallel computation on
stream data. In terms of the overall CCD algorithm, the geometric
data are represented as stream data, and the underlying functional
modules used in the algorithm (i.e. updating BVHs, pairwise tests
between BVs, elementary tests, etc.) are mapped to computation
kernels.

The stream data corresponding to the geometric data includes (Fig-
ure 2):

• Vertex stream Sv: These correspond to the geometric coor-
dinates of the vertices of the deformable objects. In order to
perform continuous collision detection between two discrete
time steps, two vertex streams Sv(t0) and Sv(t1) are used to
store the vertex coordinates corresponding to time t0 and t1,
respectively.

Algorithm 1 Collision-stream algorithm for CCD Computation.

1: Construct orphan stream So, initial BVH B of the scene, and
initial BVTT front stream Sf on a CPU

2: Send So, B, Sf from CPU to GPU
3: for each simulation time step perform the following computa-

tions on the GPU do
4: Update vertex stream Sv from current vertices
5: Update BVs and BVH (Sbv and Sbvh) with Sv

6: Update the front Sf , and generate the triangle pair stream St

7: Generate feature pair stream Sg from St

8: Perform exact tests on Sg and collect result into Si

9: end for

• BV stream Sbv and BVH stream Sbvh: All the bounding
volumes for triangles, edges, and vertices are represented by
BV stream Sbv . The whole scene is enclosed by a single BVH
Sbvh. Sbv and Sbvh are updated at each simulation time step
based on Sv .

• Front stream Sf : These are the nodes corresponding to the
BVTT front, i.e., the internal nodes and leaf nodes where the
tree traversal terminated in the previous time step.

• Triangle pair stream St: During BVH traversal, all the non-
adjacent triangle pairs whose bounding volume overlap are
collected into St. These potentially colliding triangle pairs
are represented in terms of different features, including ver-
tices, edges and faces, before performing elementary tests.
We use Representative triangles [Curtis et al. 2008] to en-
sure a feature shared by multiple triangles is not replicated.
This reduces the storage overhead and number of elementary
tests.

• Feature pair stream Sg and Orphan stream So: All the non-
adjacent triangle pairs with overlapping bounding volumes
are decomposed into at most 9 EE and 6 VF feature pairs.
These feature pairs are further culled using BVs associated
with the features and deforming non-penetration filters [Tang
et al. 2010a]. All the pairs that satisfy these tests become
part of a feature-pair stream Sg . Moreover, all invalid feature
pairs along with culled feature pairs are removed by perform-
ing stream compaction on Sg . All the feature pairs related to
adjacent triangles in the mesh are represented as part of the
Orphan stream So. So is constructed at the pre-processing
stage by analyzing the topology and connectivity of the mesh
corresponding to each object.

• Intersection Stream Si: All the feature pairs in the feature
pair stream Sg and the Orphan stream So are tested for overlap
between t0 and t1 by solving a cubic equation. If a collision
is found, the feature IDs and first-time-of-contact information
is stored in the Intersection stream Si.

The pipeline of our algorithm is shown in Algorithm 1. All the
procedures are mapped to a set of computation kernels (as shown
in Figure 3). By executing these kernels, the streaming CCD algo-
rithm runs entirely on a GPU.

3.3 Updating Front Stream

In order to perform the collision detection tasks in parallel, our al-
gorithm uses a task-decomposition strategy based on parallel up-
dating of the BVTT front, i.e., by utilizing the temporal coherence
between successive time steps of the deformable simulation. [Tang
et al. 2010b].
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Figure 3: Computation kernels: The modules, such as updating
BVs, updating BVH, regenerate BVTT front, non-penetration filter,
and elementary tests, etc., are represented as computation kernels.
The kernels, stream registration and stream compaction, are ap-
plied to maintain compact stream data.

The BVTT front from the previous simulation time step is repre-
sented as a front stream Sf (t0). It is evaluated by the kernel ‘Up-
dating BVTT front’ that updates the BVTT front at the current sim-
ulation time step, i.e. compute a new front stream Sf (t1). We use
a temporary stack to store intermediate results while perform recur-
sively transverse on a BVTT front node {Da, Db}. The node pairs
with overlapping bounding volumes are stored as Sf (t1). If both
Da and Db are leaf nodes, this pair is stored in a triangle pair stream
St, as it corresponds to a potentially colliding pair. The temporary
stack is implemented by using register memory on GPU.

Our algorithm is based on front tracking, so only the BVH nodes
stored in the BVTT front need to be updated. We used refitting
scheme to update all these nodes fully in parallel by using the kernel
‘Updating BVH’.

3.4 Stream Registration

For a scene containing deformable objects, the potentially collid-
ing triangles may not have a fixed or coherent pattern and can cor-
respond to arbitrary triangles in terms of their memory location,
especially when the object undergoes large deformation. In or-
der to enumerate all these possible pairs of overlapping triangles,
a large block of GPU memory of size O(N2) would be needed.
The large memory overhead needed to represent all potential pairs
of overlapping triangles or features prevents us from directly us-
ing prior stream compaction algorithms. A naive solution of this
problem is to use atomic operations (e.g., atomicAdd() in CUDA
or atom add() in OpenCL) to maintain a compact stream data.
Based on these atomic operations, multiple threads of a kernel can
mutually access an index variable of an array, and put generated
stream data tightly in GPU memory of O(M ), here M is an out-
put sensitive metric in terms of number of overlapping primitives.
However, these atomic operations can be quite expensive (take hun-
dreds of clock cycles[Supercomputing Blog 2009]) since they tend
to suspend the concurrent threads and thereby reduce the overall
throughput. Another approach is to use prefix sum, i.e., use a large
array to store all possible outcomes of collision detection, then the
array is compressed and remove pairwise combinations that do not
correspond to a collision pair. However, because the space require-
ments correspond to the total number of possible pairs O(N2), this
approach may be limited to simple scenes. In order to overcome
this issue, a 2-pass prefix sum strategy can be used. During the
first pass, the resulting algorithm records how many output ele-

Algorithm 2 Stream registration based on locking-free mechanism.

1: // Launch kernel-1:
2: for each thread thdi operating on a set of front nodes seti do
3: Record the new nodes into memory segment segi,
4: and update its private index idxi.
5: end for
6: // Launch kernel-2:
7: Merge all memory segments {segi, idxi} into
8: the destination GPU memory with Prefix Sum operator.

ments will be generated, without actually generating any output.
During the second pass, it allocates an output array based on the
size information computed during the first pass and performs the
computations to generate the actual output. However, this 2-pass
scheme has additional overhead. In order to overcome these issues,
we present stream registration, which is a lock-free variable-length
data structure that can reduce the memory overhead on GPUs.

A primary stream registration algorithm is based on segmented
locking mechanism (Figure 4). As shown in the figure, all the
threads belonging to the same block perform atomic operations to
access an index value of a private array for each block to store new
nodes into it. Next all these private arrays are compacted into con-
tinuous space by using Prefix Sum operator. Let the number of
blocks be Mb , and the number of concurrent threads in each block
be Mt. Based on segment locking mechanism, the mutual access
of a single index variable by Mb ∗ Mt threads is replaced by Mb

independent mutual access of indices by Mt threads. By reducing
the coupling degree among the threads, the performance of parallel
execution is improved in terms of data access. These private arrays
are much smaller than O(N2). In our implementation, we used a
conservative size of the array (min(0.025% × N2, 1.4M)) as the
total length of these private arrays which appears to be adequate for
our benchmarks.

This approach can be further extended to avoid using atomic oper-
ators altogether. The algorithm consists of two kernels. As shown
in Figure 5, we can allocate a private array to each thread to tem-
porarily store the newly generated node, which may correspond to
the front nodes in the BVTT or potentially colliding triangle pairs.
All the threads running the first kernel can be executed in parallel.
Since there is no data sharing between the threads, all the computa-
tions in each thread are performed independently, and no atomic op-
erators are used. It turns out if the number of new generated nodes
exceeds the size of temporary storage space, atomic operators are
used to move these new nodes to the global GPU memory. After
executing the first kernel, the new nodes are distributed in memory
segments. During the execution of the second kernel, a Prefix Sum
operator is used to store these nodes into compact space. Since we
assume that the start positions and length of the new nodes in each
memory segment are already known, we only need to compute Pre-
fix Sum of each memory segment to decide their new locations in
the destination GPU memory and move the new nodes in parallel
(Algorithm 2).

3.5 Generating Feature Pair Stream

All the potentially colliding triangle pairs in the triangle pair stream
are decomposed into at most 15 feature pairs (9 EE pairs and 6 VF
pairs). These feature pairs are culled with feature-based bounding
volumes and non-penetration filters. To ensure the compactness
of the feature pair stream, those culled feature pairs are removed
with Prefix Sum operator [Harris et al. 2007] . In practice, we ob-
serve that the length of the feature pair stream can be compressed
to 4.2%-9.8% of its original size in our benchmarks.
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Figure 4: Stream registration based on segmented locking
mechanism: A segmented locking mechanism is used to reduce the
overhead of frequent atomic operations. All the threads belonging
to the same block use atomic operators to access an index value
of a private array of the block to store new nodes into a memory
segment. All these private arrays are compacted (as shown in the
bottom row) into a continuous space by using Prefix Sum opera-
tors. The dark blue areas are collected in each private array and
the light blue areas correspond to the unused memory space.
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Figure 5: Stream registration based on locking-free mecha-
nism: By allocating a segment of space of each thread to temporar-
ily store the newly generated nodes, all the threads can be executed
in parallel. Since there is no data sharing between threads, all the
computations in each thread are performed in an independent man-
ner and no atomic operators are used.

3.6 Time-of-Contact Computation

All the feature pairs (EE pairs and VF pairs) are tested for overlap
by solving cubic equations that can also compute the first-time-of-
contact. Newton iterative method is used to solve these cubic equa-
tions on a GPU. If there is an overlap between the primitives, that
information is recorded in the Intersection stream.

3.7 Deferred Front Tracking

In order to apply our algorithm on complex models, we use a de-
ferred front tracking scheme to reduce the memory overhead. As
shown in the left-upper corner of Figure 6, a BVH is constructed
for all the objects in the scene. In order to detect both inter-object
and intra-object collisions, we use BVTTs to represent the top down
traversal. A conventional front tracking algorithm stores all the
internal nodes and leaf nodes where the traversal terminates. As
part of the collision query, we traverse all the nodes starting from
the deferred front, until the nodes of the new exact front is calcu-
lated. This involves performing additional overlap tests between
the bounding volumes. Overall, we trade off memory overhead for
additional runtime computations.

A deferred front (e.g. shown as the red thick curve in Figure 6)
stores ancestral nodes of the exact front (the blue thick curve in
Figure 6) where the distance to the ancestor is chosen based on
memory considerations. From a given ancestor, it is possible to re-
calculate the exact front by descending the tree on-demand, effec-
tively reducing the memory footprint of the front in exchange for
increased computation. The main benefits of this approach are: (1)
The memory capacity of commodity GPUs is quite limited. Storing
the exact BVTT front could exceed the capability of GPUs for com-
plex models; (2) In order to obtain higher performance on GPUs,
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Figure 6: Deferred front tracking vs. exact front tracking: The
conventional front tracking algorithm stores all the internal nodes
and leaf nodes where the traversal terminates in the BVTT(the blue
thick curve). A deferred front (the red thick curve) stores the an-
cestors of the nodes belonging to the exact front. By doing so, we
can reduce the memory requirement up to 8.8X for large, complex
models and enable CCD computation on large scene (up to 2M
triangles) on commodity GPUs.

it is recommended to use computation intensive tasks to hide data
access latency. Frequently updating the exact front of the BVTT
can be an expensive operation, even with the use of stream registra-
tion. With deferred front tracking, we can either keep an unchanged
front from the last frame or perform relative small update between
successive frames.

We base the decision of which ancestor of the actual front will be
stored in the deferred front on the memory size of the GPU. We
defer only as far up the tree as is needed to make the deferred front
fit in memory. In practice, we select the nodes of deferred front
depending on the size of the exact front and the capacity of GPU
memory. If the exact front is large (for a complex scene), higher
level nodes of the BVTT are selected to reduce the memory over-
head.

In our benchmarks, we observe 21% speedups for the Cloth bench-
mark and can reduce the memory overhead by 8.2X. For complex
scenes, e.g., deferred font tracking must be used to perform CCD
with limited GPU memory. For the Lion benchmark (Figure 8(f)),
which consists of 1.6M triangles, over 3GB of memory may be
needed to store the exact BVTT front (about 200M nodes of the ex-
act front), while our deferred front tracking only uses 340M (about
2.2M front nodes).

4 Implementation and Performance

In this section, we describe our implementation and highlight the
performance of our algorithm on several benchmarks.

4.1 Implementation

We have implemented our algorithm on three different commodity
GPUs: a NVIDIA GeForce GTX 285, a NVIDIA GeForce GTX
480, and a AMD Raedon HD 5870. Their parameters are shown in
Figure 7. For the two NVIDIA GPUs, we used CUDA toolkit 3.2 as
the development environment. For the AMD GPU, OpenCL is used
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Figure 7: GPUs: Three different commodity GPUs, a NVIDIA
GeForce GTX 285, a NVIDIA GeForce GTX 480, and a AMD Rae-
don HD 5870, are used for testing our CCD algorithm.
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Figure 8: Benchmarks: All the benchmarks have multiple simula-
tion steps. We perform CCD, including self-collisions, between dis-
crete steps of the simulation and compute the first time-of-contact.

as the programming environment. We use k-DOPs (specifically 18-
DOPs) as the bounding volumes. As compared to AABB, k-DOPs
provide higher culling rates and can be dynamically updated at low
overhead. The BVH is constructed in a top-down manner with me-
dian plane cutting along the longest axis. We use refitting methods
to update the hierarchy for deformable models.

4.2 Benchmarks

In order to test the performance of our algorithm, we used six dif-
ferent benchmarks, arising from different simulations with different
characteristics.

• Funnel: A cloth (92K triangles) falls into a funnel and folds
to fit into the funnel with many self-collisions (Figure 1).

• Flamenco: This benchmark (49K triangles) has many inter-
and intra-object collisions (Figure 8(a)).

• N-body: A scene with hundreds of balls (146K triangles) that
are colliding with each other (Figure 8(b)).

• Cloth: A cloth (92K triangles) has a high number of self-
collisions (Figure 8(c)).

• Princess: This model (40K triangles) has many inter- and
intra-object collisions (Figure 8(d)).

• BART: A set of triangles (4K triangles) move in random
directory, collide with each other and generate many inter-
object collisions (Figure 8(e)).

Benchmarks GTX 285 GTX 480 HD 5870

Cloth-ball (92K ) 42.6 18.6 40.5

Funnel (92K ) 10.0 4.4 4.9

N-body (146K ) 155.6 79.0 85.3

BART (4K ) 26.7 10.2 32.4

Flamenco (49K ) 68.7 32.7 33.6

Princess (40K ) 7.1 2.7 6.4

Lion (1.6M ) 1136.5 316.6 432.9

Figure 9: Performance results: This figure shows the average
query time (ms) of our algorithm on a NVIDIA GeForce GTX 285,
a NVIDIA GeForce GTX 480, and a AMD Raedon HD 5870, re-
spectively.
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Figure 10: Running time ratios of each kernel : The figure shows
the running time ratios of each kernel for the Funnel benchmark.
Updating of BVTT front, elementary tests (EE tests and VF tests),
and BVH refitting occupy 59.12%, 31.56%, and 7.11% of total
running time, respectively.

• Lion: A lion (1.6M triangles) is gradually collapsing with
topology changes and a high number of self-collisions (Fig-
ure 8(f)).

All these benchmarks are represented in terms of the position of
triangle vertices at discrete simulation time steps. Our algorithm
performs continuous collision detection between these simulation
time steps, and computes the first-time-of-contact.

4.3 Performance

Figure 9 highlights the performance of our algorithm on different
benchmarks. These results show that collision-streams works well
on different GPU architectures. Even though each GPU has a dif-
ferent architecture and cache hierarchy, we see direct relationship
between the number of streaming processors or cores with the run-
ning time. The relative performance of a benchmark appears to be
proportional to the number of streaming units on different GPUs.
This indicates that our approach can exploit the large-scale paral-
lel capabilities of current GPUs. NVIDIA GeForce GTX 480 ar-
chitecture and drivers provides the flexibility to the developers in
terms of choosing between larger shared memory or large L1 cache
size. In our system, we chose to use a larger L1 cache size(48KB)
and a smaller shared memory (16KB). As a result, we observed
1.97− 2.62X speedups on NVIDIA GeForce GTX 480 as compar-
ison to NVIDIA GeForce GTX 285 for our benchmarks (Figure 12).

Figure 10 shows the running time ratios of the kernels for the Fun-
nel benchmark on a NVIDIA GeForce GTX 480. The dynamic
updating of BVTT front takes about 59.12% of the total running
time. The culling and processing of feature pairs takes approxi-
mately 31.56% of the total running time. Other tasks, including
updating bounding volumes, refitting BVH, exact testing of orphans
and feature pairs, etc., take about 9.32% of the total running time.
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Figure 11: Performance comparison between different proces-
sors on several benchmarks: The figure illustrates the perfor-
mance of our algorithm on different GPUs and also compare the
performance with a 16-core PC [Tang et al. 2010b].

5 Comparison and Analysis

In this section, we compare our algorithms, collision streams, with
prior GPU-based algorithms and highlight some of the benefits.

Comparison: Most of the earlier methods for GPU-based colli-
sion checking performed the computations at image-space resolu-
tion [Heidelberger et al. 2003; Knott and Pai 2003; Govindaraju
et al. 2003; Greß et al. 2006]. In contrast, our approach provides
object-space accuracy and is quite faster as compared to these meth-
ods. Many recent methods use hybrid combinations of CPUs and
GPUs to perform these queries at object-space precision [Zhang
and Kim 2007; Kim et al. 2009; Pabst et al. 2010]. As opposed
to these methods, our algorithm is a purely GPU-based approach
and there is no communication bottleneck in terms of repeated data
transfer between CPU and GPUs.In [Pabst et al. 2010], GPU-based
spatial hashing is used for broad-phase culling. In general, spatial
hashing maps well to the parallelization capabilities of GPUs, but
it is important to choose the appropriate grid size to get optimal
performance. Moreover, our update cost based on BVTT front is
relatively low. Recently, Lauterbach et al. [2010] describe a fast
GPU-based scheme to update and traverse the hierarchies and to
perform CCD and distance queries. Their approach is based on
explicit balancing of work units coupled with very lightweight syn-
chronization between cores, and maps well to GPU architectures.
In contrast, our framework based on streams is more flexible and
makes it easy to incorporate with culling methods based on Orphan
sets and Representative Triangles. Moreover, collision-streams has
a smaller memory overhead and can handle larger models.

As comparison to multi-core CPU-based algorithms [Tang et al.
2010b] (Figure 11), our collision-streaming algorithm is mainly de-
signed for high-throughput GPU architectures. As shown in Fig-
ure 11, our GPU algorithm is faster on almost all the benchmarks.
For the Princess benchmark, a speedup of 2.16X is achieved.
Compare to recent GPU-based algorithm [Lauterbach et al. 2010]
which uses OBB trees for CCD computation, for the Cloth-ball
benchmark, a speedup of 2.04X is achieved. Compare to recent
CPU/GPU hybrid algorithm [Pabst et al. 2010] (using a single
GPU), for the Funnel benchmark, a speedup of 1.34X is observed.

Analysis: The collision-stream algorithm maps well to the current
GPUs and we have evaluated its performance on three different
GPUs with different architectures and number of streaming pro-
cessors. Furthermore, it is relatively simple to combine different
culling methods and optimizations into the streaming framework.
This makes it possible to develop a more flexible GPU-based frame-
work for collision and proximity queries. Other benefits of our ap-
proach include:

• By mapping the geometric and acceleration data structures
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Figure 12: Performance data with smaller/larger L1 cache:
This figure shows the ratios between running times with smaller
(16KB)/larger(48KB) L1 Cache for several benchmarks. For the
Cloth benchmark, the running time is reduced by 25% as large L1
Cache is used. For the Lion benchmark, this number is 37%.

and functional modules to streaming data and computation
kernels, respectively, the CCD algorithm between deformable
objects can exploit the parallelism on current GPUs.

• We use front tracking to perform fine-grained task decomposi-
tion, parallelize the computation by generating a large number
of sub-tasks and they are performed in parallel by distributing
them among stream processors.

• The recent GPUs offer two level cache hierarchy and ability
to vary the relative size of shared memory and L1 cache. Our
stream registration algorithm can exploit this feature to ob-
tain higher performance. Overall, our approach offers more
flexibility in terms of mapping to current and future GPU ar-
chitectures. By setting the preference of larger L1 cache size,
considerable speedups achieved on Fermi cards. For the Cloth
benchmark, the running time is reduced by 25% as large L1
Cache is used. For the Lion benchmark, we observe 37%
improvement in performance. Figure 12 shows the ratios be-
tween running times with smaller (16KB)/larger(48KB) L1
Cache for several benchmarks.

• With deferred front tracking, we are able to perform CCD on
complex scenes on GPUs with limited global memory size,
makes it possible to use such algorithms on complex scenes.

5.1 Limitations

Our approach has some limitations. First, even with deferred front
tracking, storing the BVTT front on a GPU can require high amount
of memory space. As a result, our approach is only practical for
models when the BVTT front can fit into the GPU memory. Sec-
ondly, while our stream registration algorithm can support variable-
length data structures, it may frequently access global memory and
this can slow down the computation. Thirdly, for small models,
other GPU-based algorithms that only use shared memory to col-
lect tasks could be faster than collision-streams.

6 Conclusion and Future Work

We present a streaming CCD algorithm for deformable objects that
performs hierarchy update, traversal and intersection computations
on a GPU. Our approach is flexible as it abstracts the data and accel-
eration structures in terms of appropriate streams and can incorpo-
rate different culling schemes by formulating appropriate kernels.
We present a novel parallel stream registration algorithm and use
it to efficiently support variable-length data structures on the GPU.
Moreover, our approach is flexible and maps well to current GPUs



in terms of memory hierarchy and varying size of shared memory.
In practice, our algorithm can improve the performance of CCD al-
gorithms on current GPU architectures. We observe speedups over
CPU-based multi-core algorithm and prior GPU-based algorithms.

There are many avenues for future work. We believe that we can
further improve the performance of our algorithm by improved
mapping to GPU architectures. Our variable length data structure
can be used for other GPU-based algorithms. Finally, we will like
to extend the approach to perform other proximity queries, includ-
ing distance and separation queries.
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