
AutoRVO: Local Navigation with Dynamic Constraints in Dense Heterogeneous
Traffic

Yuexin Ma1, Dinesh Manocha 2, Wenping Wang1

1 The University of Hong Kong, 2 University of North Carolina at Chapel Hill
yxma@cs.hku.hk, dm@cs.unc.edu, wenping@cs.hku.hk

Abstract
We present a novel algorithm for computing
collision-free navigation for heterogeneous road-
agents such as cars, tricycles, bicycles, and pedes-
trians in dense traffic. Our approach currently
assumes the positions, shapes, and velocities of
all vehicles and pedestrians are known and com-
putes smooth trajectories for each agent by tak-
ing into account the dynamic constraints. We de-
scribe an efficient optimization-based algorithm for
each road-agent based on reciprocal velocity obsta-
cles that takes into account kinematic and dynamic
constraints. Our algorithm uses tight fitting shape
representations based on medial axis to compute
collision-free trajectories in dense traffic situations.
We evaluate the performance of our algorithm in
real-world dense traffic scenarios and highlight the
benefits over prior reciprocal collision avoidance
schemes.

1 Introduction
Multi-agent local navigation is an important problem in
robotics, crowd simulation, and traffic modeling. At a broad
level, the goal is to compute a collision-free trajectory for
each agent in a distributed manner. Furthermore, it is impor-
tant to satisfy other constraints corresponding to kinematics,
dynamics, and smoothness.

Some of the most widely used algorithms for decentralized
multi-agent navigation are based on velocity obstacles [Fior-
ini and Shiller, 1998]. They have been extended to perform
reciprocal collision avoidance between a large number of ac-
tive agents and applied to simulate human-like crowds [Berg
et al., 2011] and multiple car-like robots [Alonso-Mora et al.,
2012]. Furthermore, they have been extended to take dy-
namic constraints into account [Wilkie et al., 2009; Bareiss
and van den Berg, 2015].

There is considerable interest in developing multi-agent
navigation algorithms for autonomous driving and simulat-
ing real-world traffic scenarios [Ziegler et al., 2014; Turri
et al., 2013; Best et al., 2017]. These algorithms consider
dynamic constraints of vehicles, environmental factors, and
traffic rules. However, current autonomous driving naviga-
tion algorithms are limited to simple scenarios with sparse

(a)

(b)

Figure 1: Dense traffic and navigation: (a) One frame of a top-
down-view dense traffic video with different vehicles and pedes-
trians from a real-world scene. We highlight different road-agents
in this dense scenario. Red curves show trajectories of road-agents
in 50 frames of the video; (b) Simulated traffic scenario with our
medial-axis-based agent representation agent representation. We
model heterogeneous road-agents corresponding to pedestrians, bi-
cycles, tricycles, and cars, as green, pink, yellow, and blue, respec-
tively. Our algorithm, AutoRVO, models the dynamics of these
agents and computes collision-free trajectories in similar time of (a)
shown as white curves. We observe high accuracy with real-world
vehicle and pedestrian trajectories.

traffic or few vehicles that are moving in lanes and simple
traffic conditions. They do not model the movement of pedes-
trians or bicycles or their close interactions with vehicles or
two-wheelers (i.e. road-agents), and instead maintain large

ar
X

iv
:1

80
4.

02
91

5v
1

 [
cs

.R
O

]
 9

 A
pr

 2
01

8

distances for safety. As a result, current autonomous driv-
ing simulators or systems cannot model dense traffic scenar-
ios with heterogeneous road-agents of varying shapes and dy-
namics.

Most prior work on reciprocal collision avoidance is lim-
ited to simple agent shapes, including circles or ellipses. They
use geometric properties of these simple shapes to design effi-
cient navigation algorithms. However, such disk-based agent
representations can be overly conservative in dense traffic
scenarios which may consist of large or small vehicles, pedes-
trians, bicycles, two-wheelers, etc. in close proximity to each
other(Fig. 2). As a result, we need more efficient and less
conservative multi-agent navigation algorithms that can sim-
ulate real-world traffic scenarios.

Main Contributions: We present a novel multi-agent sim-
ulation algorithm, AutoRVO, for local navigation with dy-
namic constraints in dense, heterogeneous scenarios. Our ap-
proach is designed for traffic-like environments, which have
different agents of varying shapes and different dynamic con-
straints. Our approach assumes that the exact positions and
velocities of all the agents are known. Our algorithm uses
the CTMAT-based agent representation [Ma et al., 2018] and
computes a new velocity for each agent based on local op-
timization. A key aspect of our approach is that it can han-
dle the non-linear dynamics of different vehicles and compute
collision-free trajectories in dense situations without making
any assumptions about their movement patterns or trajecto-
ries. We have evaluated the performance of our algorithm on
real-world traffic scenarios with vehicles that are different in
terms of size and dynamic constraints, pedestrians, and bi-
cycles. We computed their trajectories using AutoRVO and
compared them with the real-world trajectories extracted us-
ing a tracking algorithm from a video. We evaluate the ac-
curacy based on the Entropy metric and observe consider-
able improvement over prior multi-agent navigation schemes.
Overall, AutoRVO is the first algorithm that can generate
collision-free trajectories for road-agents in dense scenarios.

The rest of the paper is organized as follows. Section 2
offers an overview of related work in local navigation with
dynamic constraints. We introduce the kinematic model and
state space of vehicles and road-agents in Section 3. In Sec-
tion 4, we give a detailed description of our novel multi-
agent navigation algorithm, AutoRVO. We highlight the per-
formance of our algorithm on challenging scenarios in Sec-
tion 5 and analyze algorithm complexity in Section 6.

2 Related Work
In this section, we give a brief overview of prior work on
collision avoidance, motion planning, kinematic and dynamic
modeling, and autonomous navigation.

2.1 Multi-Agent Navigation using Velocity
Obstacles

Based on the approach of velocity obstacles (VO) [Fiorini and
Shiller, 1998], reciprocal collision avoidance ORCA [Berg
et al., 2011] allows each agent to take half of the responsi-
bility for avoiding pairwise collisions. In the ORCA algo-
rithm, each agent has the same state space and can change

(a) (b)

Figure 2: Comparison between the representation of disk (black)
and our medial-axis-based representation (CTMAT in red). Our rep-
resentation is less conservative and can accurately model such dense
traffic scenarios. On the other hand, disk-based representations are
overly conservative and unable to compute collision free trajectories.

its velocity instantaneously. Some subsequent approaches
take various dynamic constraints into consideration, such as
AVO algorithm [Berg et al., 2011], which computes free
and collision-free velocities by using velocity-space reason-
ing with acceleration constraints; CCO algorithm [Rufli et
al., 2013], which considers continuous control obstacles; and
LQR-obstacles algorithm [Bareiss and den Berg, 2013]. All
these techniques are designed for circular agents. The ORCA
algorithm has been extended to elliptical agents [Best et al.,
2016].

2.2 Kinematic and Dynamic Modeling
There are many approaches to model vehicles with kinematic
and dynamic constraints. Some of the simplest methods are
based on the linear dynamics of vehicles [LaValle, 2006], but
these may not be accurate. Other methods make use of non-
linear dynamic forces [Borrelli et al., 2005], which are more
accurate, but the resulting algorithms are more time consum-
ing. The Reeds-Shepp formulation [Reeds and Shepp, 1990]
supports the forward and backward motion of a car. Other
kinematic and dynamic models for a moving car are described
in [Margolis and Asgari, 1991].

Many velocity-obstacle-based methods have been ex-
tended to account for dynamic constraints, including
differential-drive [Alonso-Mora et al., 2013], double-
integrator [Lalish and Morgansen, 2012], arbitrary integra-
tor [Rufli et al., 2013], car-like [Alonso-Mora et al., 2012],
linear quadratic regulator (LQR) controllers [Bareiss and den
Berg, 2013], non-linear equations of motion [Bareiss and
van den Berg, 2015], etc. Some other algorithms, like NH-
ORCA [Alonso-Mora et al., 2013], transfer non-linear equa-
tions of motion into a linear formulation. Based on non-
linear velocity obstacles NLVO [Shiller et al., 2001], and
GVO [Wilkie et al., 2009], GRVO [Bareiss and van den Berg,
2015] can account for non-homogeneous agents with non-
linear equations of motion. However, all these methods are
restricted to simple disc-based representations and can be
overly conservative in terms of handling dense scenarios and
heterogeneous agents.

2.3 Maneuver Planning for Autonomous Driving
There is considerable work on maneuver planning of au-
tonomous vehicles, including driving corridors [Hardy and
Campbell, 2013], potential-field methods [Galceran et al.,

L

c

r

θ

Φ

pf

pr

Figure 3: Representation of vehicles and pedestrians. From left to
right are the agent representations for a car, a tricycle, a bicycle, and
a pedestrian. The blue shape is our CTMAT agent representation,
the brown rectangles denote the tires, and the black arrow on the
pedestrian indicates the forward-facing direction.

2015b], random-exploration [Kuwata et al., 2009], occu-
pancy grids methods [Kolski et al., 2006], etc. Some ap-
proaches limit the vehicles to staying in lanes to avoid col-
lisions with obstacles or other vehicles [Turri et al., 2013;
Fritz et al., 2004] or consider a driver’s behaviors [Sadigh et
al., 2016; Galceran et al., 2015a; Best et al., 2017].

3 Problem Formulation and Notation
In this section, we introduce the notation, representation of
road-agents, kinematic and dynamic models of different ve-
hicles, and their state space.

3.1 Representation and Kinematic Models
To represent different shapes corresponding to heterogeneous
vehicles in the real world, we use the CTMAT representa-
tion [Ma et al., 2018]. CTMAT is a medial-axis-based rep-
resentation that can provide a tighter fitting shape for dif-
ferent road-agents. The underlying representation consists
of circles and tangent line segments between any pair of
adjacent circles. Fig. 3 shows four examples of CTMAT
for different vehicles and pedestrians. A key issue is to
model the dynamic constraints of different agents. Therefore,
we extend the simple-car kinematic model [LaValle, 2006;
Laumond et al., 1998] to different vehicle or agent types. As
the figure indicates, if the steering wheel is turned, the vehi-
cle will rotate around the center c, which is determined by
the steering angle φ and body length L. Let’s assume that the
orientation is represented as θ and the speed is denoted as v.
The vehicle’s motion can be denoted as follows:

~̇p = (v cos(θ), v sin(θ)), θ̇ =
tan(φ)

L
v.

We give more details on computing v̇ and φ̇ in Section 4.
Pedestrians do not exhibit steering behaviors as their dynamic
constraints are different from that of vehicles. Instead, they
can change their orientation instantly and always move ac-
cording to their forward-facing direction.

3.2 State Space
The simulator state includes all the entities in the scenario,
including all obstacles and agents. We always use an n-
dimensional space to describe an agent’s physical state and

properties. Our approach is designed for different road-agents
corresponding to pedestrians, bicycles, tricycles, and cars
with different shapes. The state space of the pedestrians is
denoted asXp = {T, v, vo, θ, θo}. T records the components
of CTMAT representation, including circles and their tangent
line segments. v and θ denote current speed and orientation,
respectively. vo and θo are the preferred speed and the pre-
ferred orientation, respectively.

The bicycles, tricycles, and cars have kinematic and
dynamic constraints on their turning motion. The
state space for vehicles is represented as Xv =
{T, pf , pr, v, φ, vo, φo, ut, uφ, θ, b} (see Fig. 3). T also
stands for the CTMAT representation like that of pedestrians.
pf is the position of the front wheel for bicycles and tricycles,
or the position of the middle point between two front wheels
for cars. pr is similar to pf but for rear wheels. v and φ repre-
sent vehicles’ speed and steering, respectively. vo and φo are
preferred speed and steering, respectively. Every vehicle has
two degrees of control, throttle ut and steering uφ. We define
−1 ≤ ut ≤ 1, where−1 denotes the maximum braking effort
and 1 represents the maximum throttle. −1 ≤ uφ ≤ 1 indi-
cates the steering effort from −φmax to φmax. The boundary
values of these dynamic variables are distinctive for different
types of vehicles. θ stands for the orientation. b is a label
to record a vehicle’s current behavior (turn left or turn right,
wait, or go ahead), which is related to the choice of dynamic
constraints.

In addition, we define a label Ctype to record the road-
agent’s type, i.e. 1 for pedestrian, 2 for bicycle, so that they
are distinguishable from each other. We regard the middle
point of T as the reference point of pedestrians and pf as the
reference point of vehicles.

4 AutoRVO: Our Navigation Algorithm
We assume that each road-agent has smart sensors that
can capture surrounding environmental information such as
nearby obstacles and the current speed, steering, position,
and orientation of other agents. Our approach is based on
a reciprocal collision avoidance method and uses optimiza-
tion method to compute a local trajectory. In particular, our
algorithm proceeds using three main steps: first, we compute
the preferred speed and steering (vo, φo) for vehicles and pre-
ferred speed and orientation (vo, θo) for pedestrians. Second,
we sample around (vo, φo) or (vo, θo) to get a set of solution
candidates for new speed and steering or orientation. Finally,
we use an optimization function to select the best solution for
(v, φ) or (v, θ). After that, we update the state of each road-
agent and change its trajectory for time τ . For each step, we
present the details for the vehicles, and then explain the dif-
ferences for pedestrians.

4.1 Preferred Velocity Computation
The trajectory is determined by the velocity of the road-agent.
The velocity depends on the speed and steering for vehicles,
and hinges on the speed and orientation for pedestrians. Be-
fore choosing the velocity for a road-agent, we compute pa-
rameters (vo, φo) or (vo, θo) first to guide the final velocity
selection.

w1 w2

A

pf

Φmax

-Φmax

(a)

w

Φmax

-Φmax
t

(b)

Figure 4: Search for free-space for collision-free local navigation.
The black arrow represents the orientation direction ~a, the red arrow
is the destination direction ~h, and the green arrow is the preferred
direction ~do. ~do coincides with ~h in (a). All the detected fan spaces
for the road-agent in the 2D plane are drawn in green and yellow.
The yellow fan denotes the free-space.

Preferred Steering Computation
First, we compute preferred steering φo, which is the pre-
ferred angle for turning left or right. Let ~a denote the orien-
tation direction of the road-agent. For pedestrians, ~a is the
forward-facing direction. For vehicles, ~a = pf − pr. We
define the direction to the destination as ~h and the preferred
direction as ~do. In general, ~do = ~h. However, in dense traf-
fic scenarios, it is sometimes a good strategy to find a detour
space.

The range of the steering (−φmax, φmax), the consider-
ing distance for neighbors and the set of neighbors of the
agent are used to compute a set of fan spaces for a vehicle A
(Fig. 4). These fan spaces do not contain any obstacle or other
road-agent in the detection range. The width of the fan space
can be computed by two tangent points of the neighbors and
their distance to the middle line of the space. For the green
fan space in Fig. 4(a), the width is the sum of w1 and w2. If
the side of a space is decided by −φmax or φmax, like the
yellow fan in Fig. 4(b), the tangent point can be replaced by
the vertex t of the fan. We regard a fan space as a free-space
where is uncrowded, if its width is σ times bigger than the
road-agent’s width (σ = 1.5 in our benchmarks). If there is
no feasible space or ~h is already in a free-space (Fig. 4(a)),
we set ~do = ~h. Otherwise, ~do changes to the green direction
(see Fig. 4(b)), which satisfies the requirement that w is one
half of the width of A. Next, according to the angle between
~a and ~do, we can compute φo for vehicles by a dynamic for-
mulation.

φo = f(~a, ~do), φo ∈ (−φmax, φmax) (1)
f differs for different types of vehicles and could be com-
puted using real-world data. In terms of pedestrians, they will
change their orientation to ~do directly.

Preferred Speed Computation
When φ 6= 0, vehicles will move along a circle C with radius
r and center c (see Fig. 3). According to the centripetal force
equation, we can compute the upper bound of the speed:

vmax1
=
√
gµr (2)

where g is the acceleration due to gravity and µ is the fric-
tion force coefficient. If we take the minimum distance be-
tween the road-agent and its neighbors in its current moving
direction as l. According to vehicle’s braking control, we can
compute another upper bound of speed:

l = lreact + lbraking = vmax2
t+

vmax2
2

2gµ
(3)

where lreact is the perception-reaction distance, lbraking in-
dicates the braking distance, and t is the time for increasing
braking force (t = 1.5, µ = 0.7 for common baseline value).
l reflects the minimum safe distance for a specified speed un-
der the dynamic constraint of the braking system of the ve-
hicle. Moreover, each vehicle has its own maximum speed
vmax3 . Therefore, we can get the maximum speed for the
road-agent under a specified steering φ:

vmax(φ) = min{vmax1 , vmax2 , vmax3} (4)
For pedestrians, we only need to consider vmax2

and vmax3
.

We choose vo = vmax/2 in our benchmarks.

Velocity Prediction
In the real world, a driver or a pedestrian always has the abil-
ity to predict the state and consider that prediction before
making further decisions. We therefore compute the state
space of the neighboring agents after a time interval κ, and
then compute the free-spaces for the road-agent once again.
If the road-agent’s ~h was not in a free-space, but after time
κ, ~h is in a free-space, it will choose to stop moving in the
next state update, because waiting in such a situation will
help the road-agent avoid unnecessary detouring behavior and
save energy. If the road-agent’s ~h was in a free-space, but af-
ter time κ, ~h is no longer in a free-space, the road-agent will
speed up within a reasonable range, because it should pass the
uncrowded space as soon as possible to avoid being locked
after time κ.

4.2 Velocity Sampling
For disc-based representation, we can use generalized veloc-
ity obstacle (GVO) [Bareiss and van den Berg, 2015] to com-
pute the new collision-free velocity for each vehicle directly.
However, such a disk representation can be too conservative.
Instead, we use the CTMAT representation, but the resulting
computation of the exact boundary of a control obstacle is too
expensive. Since we have already know the preferred speed
vo and steering φo of the vehicles, we can use a sampling ap-
proach to search for a better solution for (v, φ). The sampling
range can be defined as follows.

(vmin, vmax) = T (vo, τ),

(φmin, φmax) = S(φo, τ), (5)
where T is the dynamic function to get the speed range when
the vehicle is using the highest throttle and braking effort for
time interval τ . S is the dynamic function to compute the
steering range for next τ time. We perform even sampling in
this range. In particular, we choose the collision-free sam-
ples as candidates by using the Minkowski sum of CTMAT
between the road-agent and its neighbors. We also use Equa-
tion 2 to further filter candidates for (v, φ). We use the same
method to sample (v, θ) for pedestrians.

(a) (b) (c) (d)

Figure 5: A sequence of frames of a simulated dense traffic scenario from the input of Fig. 1. Red arrows represent designated destinations
according to the real video. AutoRVO can compute collision-free trajectories for all road-agents in such dense traffic scenarios.

4.3 Trajectory Computation
After computing a set of candidates, we use the following cost
function to select the best solution for (v, φ) or (v, θ).

minF = af1 + bf2 + cf3 + df4 + ef5, (6)

where a, b, c, d, e are coefficients that can be adjusted. They
are the weights of making trajectories smoother or safer or
faster to arrive the destination.

f1 = (v − vo)2 + (φ− φo)2, (7)
f1 indicates the distance to vo and φo. This term is used to
select a solution close to the computed preferred speed and
steering.

f2 = |v − v′|+ |φ− φ′|, (8)
f2 denotes the most recent changes to the previous speed and
steering. We use this term to control the changes of vehicles’
behaviors and results in smoother trajectories for the vehicles.
(φ, φo, φ′) are replaced by (θ, θo, θ′) for pedestrians in f1 and
f2.

f3 = −
N∑
n=1

(1 + Ctype −N(n)type) · ‖p− pn‖, (9)

where N(n)type is defined as the nth neighbor of the road-
agent. p is the vehicle’s position if current candidate for (v, φ)
or (v, θ) is adopted. pn is its nth neighbor’s position under
the assumption that they proceed at their current speed and
steering. f3 denotes an attempt to keep the vehicle away from
nearby pedestrians, vehicles, or obstacles.

f4 = −
N∑
n=1

d(Sn, origin), (10)

We compute whether the coordinate’s origin lies in the
Minkowski sum of the vehicle and each of its neighbors to
determine whether the sample (v, φ) is collision-free. The
probability of causing a collision is lower if the distance from
the origin to the S is bigger. We use f4 to reduce the risk of
collision.

f5 = d(p,Goal), (11)
f5 stands for the distance to the destination. This term is re-
lated to energy consumption. It is better to reach the destina-
tion as soon as possible to save the passenger time and to save
the vehicle electricity or fuel.

Scenario V P T AutoRVO CND ORCA
traffic-1 16 5 4 3.77 12.72 15.11
traffic-2 12 2 4 2.56 5.34 8.12
traffic-3 8 2 3 2.69 8.98 10.13
traffic-4 10 1 4 4.25 4.03 5.41
traffic-5 15 1 4 2.45 5.77 14.12
traffic-6 8 2 3 3.33 4.33 5.63

Table 1: Evaluation of different multi-agent navigation algorithms
on dense traffic scenarios shown in Fig. 6. We show the total num-
ber of vehicles in the second column and the number of pedestrians
in the third column. The number of different types of road-agents is
shown in the third column. The last three columns illustrate the En-
tropy metric (lower is better for validation) for different simulation
results by our algorithm AutoRVO, CTMAT representation with no
dynamics (CND), and ORCA algorithm with disk representation.

5 Results
In this section, we highlight the performance of our algorithm
in local navigation with dynamic constraints in dense scenar-
ios with heterogeneous vehicles. All the traffic scenarios are
from a city traffic scene and the original traffic images (Fig.
1 and 6) were captured using a drone camera.

Fig. 5 shows a sequence of frames in our simulation of
dense traffic with different vehicles. Before we run our al-
gorithm, we select any frame in one video as the input and
then compute CTMAT representation according to the road-
agents’ contours (see Fig. 1). Because the view for a given
camera is limited, we assign goal positions for road-agents
based on the corresponding positions where they stop or dis-
appear in the video. We represent the destinations of vehicles
and pedestrians using the red arrows in Fig. 5(a). These traf-
fic scenarios are very dense and include various types of ve-
hicles and pedestrians. As we can see from the navigation
results generated by our algorithm, all the pedestrians and
vehicles move in collision-free trajectories and behave real-
istically waiting or detouring behaviors without creating any
gridlocks or congestion scenarios.

Fig. 6 shows comparisons between road-agents’ trajecto-
ries and simulated trajectories of AutoRVO, CTMAT repre-
sentation without dynamic constraints (denoted as CND) and
ORCA. We use 50 continuous frames of a video as one sam-
ple to make the comparisons. For each sample, we take the
first frame as input and use the positions of road-agents when
they disappear or their positions after 100 frames as the desti-
nations. Then, we select similar number of frames or discrete
positions of simulated video for comparison. We can see from
the simulation results by AutoRVO that, apart from exhibit-

(a) traffic-1 (b) traffic-2 (c) traffic-3

(d) traffic-4 (e) traffic-5 (f) traffic-6

Figure 6: Comparison of real trajectories of 50 continuous frames and simulated trajectories. (a)-(c) are three different moments from one
video. (d)-(f) are three moments from three different videos. Green lines indicate the real trajectories extracted from videos captured using a
drone. Trajectories generated by AutoRVO, CTMAT representation with no dynamics (CND), and ORCA with disk representation are drawn
in yellow, purple, and orange respectively. We observe higher accuracy with AutoRVO. Red points represent beginning reference positions.

ing similar trajectories, some road-agents wait during this pe-
riod as in real-world scenarios, which means our prediction
ability also works in solving congestion. In Table 1, we use
Entropy metric [Guy et al., 2012] to measure the similarity
between simulated trajectories by three algorithms and real
trajectories. The Entropy metric compares the accuracy of the
trajectories computed by different simulated algorithm with
real-world trajectories extracted from videos. A lower value
of Entropy metric indicates higher accuracy (as observed for
AutoRVO). By adding dynamic constraints, we observe con-
siderable accuracy improvement in AutoRVO over CND. The
disk representation in ORCA-based methods cannot compute
accurate trajectories in such cases. Especially for denser sce-
narios like traffic-1 and traffic-5, the Entropy Metric values
of CND and ORCA are much bigger than that of AutoRVO,
which illustrates our capability in handling dense traffic situ-
ations.

6 Runtime Analysis
We implemented the algorithm in C++ and conducted exper-
iments on a Windows 10 laptop with an Intel i7-6700 CPU
and 8GB RAM. Our algorithm can be parallelized on mul-
tiple cores, but we generate all the results on a single CPU
core. For the benchmarks shown in Fig. 5, the average num-
ber of neighbors for a vehicle is 4, and the average time for
updating the state of one road-agent is about 10ms with about
100 sampling candidates of (v, φ). With the number of neigh-
bors or the number of samples increase, the simulation time
per frame increases linearly. The run time R for updating the
state space for road-agent A is given as:

R(A) = N ·M · tsum(A) + tsearch,

whereN is the the number of neighboring obstacles and other
road-agents of A, M is the number of sampling points of
(v, φ), and tsum(A) indicates the average time of comput-
ing the Minkowski sum of a pair of CTMAT. tsearch is O(N)
for searching detour space. Therefore, R is O(NM).

7 Conclusion and limitations

We present a novel algorithm, AutoRVO, for local naviga-
tion of heterogeneous vehicles and pedestrians in dense traf-
fic situations with kinematic and dynamic constraints. Our
formulation is based on a tight-fitting media-axis-based agent
representation and we present an efficient algorithm to han-
dle kinematic and dynamic constraints of different vehicles
and pedestrians. We use an optimization-based local plan-
ning method to help road-agents choose a velocity that would
result in smooth trajectories.. We have demonstrated the per-
formance of our algorithm in the simulation of dense traffic
scenarios and compared its performance with the trajectories
of real-world road-agents and other algorithms.

Our approach has some limitations. We assume perfect
sensing abilities in terms of the exact position and velocity
of all road-agents. In terms of dynamic constraints, we make
use of empirical values for some parameters in our equations
corresponding to the motion computation, which may differ-
ent from the real-world data in the videos. In the future, we
would like to consider sensor errors and extend our algorithm
to handling noisy perception data. Furthermore, we will col-
lect data from different types of vehicles and environmental
information to make the dynamic constraints of road-agents
closer to real conditions.

References
[Alonso-Mora et al., 2012] J. Alonso-Mora, A. Breiten-

moser, M. Rufli, P. Beardsley, and R. Siegwart. Reciprocal
collision avoidance for multiple car-like robots. In ICRA,
2012 IEEE International Conference on, pages 360–366.
IEEE, 2012.

[Alonso-Mora et al., 2013] J. Alonso-Mora, A. Breiten-
moser, M. Rufli, P. Beardsley, and R. Siegwart. Optimal
reciprocal collision avoidance for multiple non-holonomic
robots. In Distributed Autonomous Robotic Systems, pages
203–216. Springer, 2013.

[Bareiss and den Berg, 2013] D. Bareiss and J. Van den
Berg. Reciprocal collision avoidance for robots with linear
dynamics using lqr-obstacles. In ICRA, 2013 IEEE Inter-
national Conference on, pages 3847–3853. IEEE, 2013.

[Bareiss and van den Berg, 2015] D. Bareiss and J. van den
Berg. Generalized reciprocal collision avoidance. IJRR,
34(12):1501–1514, 2015.

[Berg et al., 2011] J. Van Den Berg, J. Snape, S.J. Guy,
and D. Manocha. Reciprocal collision avoidance with
acceleration-velocity obstacles. In ICRA, 2011 IEEE In-
ternational Conference on, pages 3475–3482. IEEE, 2011.

[Best et al., 2016] A. Best, S. Narang, and D. Manocha.
Real-time reciprocal collision avoidance with elliptical
agents. In ICRA, 2016 IEEE International Conference on,
pages 298–305. IEEE, 2016.

[Best et al., 2017] A. Best, S. Narang, L. Pasqualin, D. Bar-
ber, and D. Manocha. Autonovi: Autonomous vehicle
planning with dynamic maneuvers and traffic constraints.
arXiv preprint arXiv:1703.08561, 2017.

[Borrelli et al., 2005] F. Borrelli, P. Falcone, T. Keviczky,
J. Asgari, and D. Hrovat. Mpc-based approach to ac-
tive steering for autonomous vehicle systems. IJVAS, 3(2-
4):265–291, 2005.

[Fiorini and Shiller, 1998] P. Fiorini and Z. Shiller. Motion
planning in dynamic environments using velocity obsta-
cles. IJRR, 17(7):760–772, 1998.

[Fritz et al., 2004] H. Fritz, A. Gern, H. Schiemenz, and
C. Bonnet. Chauffeur assistant: a driver assistance sys-
tem for commercial vehicles based on fusion of advanced
acc and lane keeping. In IV, 2004 IEEE, pages 495–500.
IEEE, 2004.

[Galceran et al., 2015a] E. Galceran, A.G. Cunningham,
R.M. Eustice, and E. Olson. Multipolicy decision-making
for autonomous driving via changepoint-based behavior
prediction. In RSS, 2015.

[Galceran et al., 2015b] E. Galceran, R.M. Eustice, and
E. Olson. Toward integrated motion planning and control
using potential fields and torque-based steering actuation
for autonomous driving. In IV, 2015 IEEE, pages 304–309.
IEEE, 2015.

[Guy et al., 2012] S.J. Guy, J. Van Den Berg, W.X. Liu,
R. Lau, M.C. Lin, and D. Manocha. A statistical similarity
measure for aggregate crowd dynamics. TOG, 31(6):190,
2012.

[Hardy and Campbell, 2013] J. Hardy and M. Campbell.
Contingency planning over probabilistic obstacle predic-
tions for autonomous road vehicles. IEEE Transactions on
Robotics, 29(4):913–929, 2013.

[Kolski et al., 2006] S. Kolski, D. Ferguson, M. Bellino, and
R. Siegwart. Autonomous driving in structured and un-
structured environments. In IV, 2006 IEEE, pages 558–
563. IEEE, 2006.

[Kuwata et al., 2009] Y. Kuwata, J. Teo, G. Fiore, S. Kara-
man, E. Frazzoli, and J.P. How. Real-time motion plan-
ning with applications to autonomous urban driving. IEEE
Transactions on Control Systems Technology, 17(5):1105–
1118, 2009.

[Lalish and Morgansen, 2012] E. Lalish and K.A. Mor-
gansen. Distributed reactive collision avoidance. Au-
tonomous Robots, 32(3):207–226, 2012.

[Laumond et al., 1998] Jean-Paul Laumond, S Sekhavat, and
F Lamiraux. Guidelines in nonholonomic motion planning
for mobile robots. Robot motion planning and control,
pages 1–53, 1998.

[LaValle, 2006] Steven M LaValle. Planning algorithms.
Cambridge university press, 2006.

[Ma et al., 2018] Y. Ma, D. Manocha, and W. Wang. Ef-
ficient reciprocal collision avoidance between heteroge-
neous agents using ctmat. http://mayuexin.me/
zxg_css/AAMAS_Final.pdf, 2018.

[Margolis and Asgari, 1991] D.L. Margolis and J. Asgari.
Multipurpose models of vehicle dynamics for controller
design. Technical report, SAE Technical Paper, 1991.

[Reeds and Shepp, 1990] J. Reeds and L. Shepp. Optimal
paths for a car that goes both forwards and backwards. Pa-
cific journal of mathematics, 145(2):367–393, 1990.

[Rufli et al., 2013] M. Rufli, J. Alonso-Mora, and R. Sieg-
wart. Reciprocal collision avoidance with motion continu-
ity constraints. T-RO, 29(4):899–912, 2013.

[Sadigh et al., 2016] D. Sadigh, S. Sastry, S.A. Seshia, and
A.D. Dragan. Planning for autonomous cars that leverage
effects on human actions. In RSS, 2016.

[Shiller et al., 2001] Z. Shiller, F. Large, and S. Sekhavat.
Motion planning in dynamic environments: Obstacles
moving along arbitrary trajectories. In ICRA. IEEE In-
ternational Conference on, volume 4, pages 3716–3721.
IEEE, 2001.

[Turri et al., 2013] V. Turri, A. Carvalho, H.E. Tseng, K.H.
Johansson, and F. Borrelli. Linear model predictive control
for lane keeping and obstacle avoidance on low curvature
roads. In ITSC, 2013 16th International IEEE Conference
on, pages 378–383. IEEE, 2013.

[Wilkie et al., 2009] D. Wilkie, J. Van Den Berg, and
D. Manocha. Generalized velocity obstacles. In
IROS 2009. IEEE/RSJ International Conference on, pages
5573–5578. IEEE, 2009.

[Ziegler et al., 2014] J. Ziegler, P. Bender, M. Schreiber,
H. Lategahn, T. Strauss, C. Stiller, T. Dang, U. Franke,

http://mayuexin.me/zxg_css/AAMAS_Final.pdf
http://mayuexin.me/zxg_css/AAMAS_Final.pdf

N. Appenrodt, C.G. Keller, et al. Making bertha drive—an
autonomous journey on a historic route. ITSM, 6(2):8–20,
2014.

	1 Introduction
	2 Related Work
	2.1 Multi-Agent Navigation using Velocity Obstacles
	2.2 Kinematic and Dynamic Modeling
	2.3 Maneuver Planning for Autonomous Driving

	3 Problem Formulation and Notation
	3.1 Representation and Kinematic Models
	3.2 State Space

	4 AutoRVO: Our Navigation Algorithm
	4.1 Preferred Velocity Computation
	4.2 Velocity Sampling
	4.3 Trajectory Computation

	5 Results
	6 Runtime Analysis
	7 Conclusion and limitations

