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Abstract— We present a parallel Cartesian planning algo-
rithm for redundant robot arms and manipulators. We pre-
compute a roadmap, that takes into account static obstacles
in the environment as well as singular configurations. At
runtime, multiple paths in this roadmap are computed as initial
trajectories for an optimization-based planner that tends to
satisfy various constraints corresponding to demands on the
trajectory, including end-effector constraints, collision-free, and
non-singular. We highlight and compare the performance of
our parallel planner using 7-DOF arms with other planning
algorithms. To the best of our knowledge, this is the first ap-
proach that can compute smooth and collision-free trajectories
in complex environments with dynamic obstacles.

I. INTRODUCTION

High degree of freedom (DOF) robot systems and arms
are widely used for different applications. These include
use of industrial manipulators for manufacturing and as-
sembly tasks. Over the last few decades, the advances in
human-like robots (e.g. humanoids) have resulted in many
new applications related to service robots, entertainment
and search/rescue applications. Most of these human-like
robots have very high DOFs (20-40) and this combinatorial
complexity gives rise to many challenges with respect to
realtime task and motion planning. Not only we need to deal
with the high dimensionality of the configuration space, but
also need to satisfy various constraints, including generating
collision-free and smooth trajectories as well as satisfying
kinematic and dynamic constraints.

Most humanoids consists of arms or manipulators with
redundant DOFs (i.e. each arm has more than six DOF).
Moreover, these arms are used to perform dexterous tasks,
and many of such tasks are reduced to Cartesian planning,
i.e. the end effector of the arm needs to follow a certain
trajectory. This was evident in the recent DARPA DRC
challenge where the robots had to perform many Cartesian
tasks such as drilling a hole or rotating a valve. At the same
time, the robot arm needs to avoid collisions with the static
and dynamic obstacles in the scene (i.e. collision avoidance)
and also avoid singular configurations for each arm (i.e.
singularity avoidance). In addition, we need to ensure that
the resulting trajectory in the configuration space is smooth
and satisfies other constraints corresponding to limits on joint
angles, velocities and accelerations.
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In this paper, we address the problem of Cartesian plan-
ning for such redundant arms or manipulators that can
take into account various constraints highlighted above. We
assume that there is a gripper or end-effector attached to
the robot arm and the Cartesian trajectory planning problem
is specified in terms of the position and the orientation
of the end-effector. The underlying path planning problem
is specified as a trajectory in the workspace that the end-
effector needs to follow [1]. This constrains the position or
orientation of the end-effector in the task space of the robot,
which corresponds to the Cartesian space.

There is extensive work on path planning with Carte-
sian trajectory constraints. Many approaches are based on
sampling-based planning [2], [3]. However, trajectories com-
puted from sampling-based approaches can be jerky, and may
need a post-processing step for trajectory smoothing [4].
Moreover, there are applications where the robots must
work reliably in dynamic environments with humans and
other moving objects (e.g. industrial parts). Therefore, it
is important that the robots should be able to perform the
tasks in a safe manner in dynamic environments. Current
planning algorithms for dynamic environments are mainly
limited to motion planning from an initial configuration to a
goal configuration [5], [6], [7].

Along with the Cartesian trajectory constraint, it is also
important for high-DOF manipulators to avoid kinematic
singular configurations along the computed trajectory, which
allows stable use of control approaches to handle errors
during the planned trajectory execution.
Main Results: In this paper, we present a parallel plan-
ning algorithm to compute smooth, collision-free, and non-
singular motions, while taking into account Cartesian tra-
jectory constraints of the end-effector. Our work builds on
an optimization-based framework that has been useful for
trajectory computation for human-like robots with dynamic
stability constraints [8]. We extend this framework to take
into account different constraints for high DOF manipulators
(described above) and integrate them with the Cartesian
trajectory specifications for a given task. In order to perform
reliable trajectory optimization, we precompute a roadmap
that takes into account collision-free constraints (with static
obstacles) and non-singular constraints. We use a parallel
trajectory optimization algorithm that takes into account
dynamic obstacles and optimizes the trajectory cost function
by performing parallel search. We also present techniques
for multiple path selection that increases the probability of
computing an optimal solution satisfying all constraints.

We highlight the performance of our parallel algorithm



in challenging scenarios with static and dynamic obstacles,
and show the benefits of parallelism in terms of improving
the success rate. To the best of our knowledge, this is the
first approach that can compute smooth and collision-free
trajectories in complex environments with dynamic obstacles.

The rest of the paper is organized as follows. In Section II,
we give a brief overview of prior work on planning with
end-effector constraints and the trajectory optimization. We
present an overview of our planning algorithm in Section III.
We describe the details of the precomputation of trajectories
and the parallel trajectory optimization in Section IV and V,
respectively. We highlight our algorithm’s performance in
different scenarios in Section VI and highlight the benefit of
parallel optimization in Section VII.

II. RELATED WORK

In this section, we give a brief overview of prior work
in the planning with Cartesian trajectory constraints and the
trajectory optimization.

A. Motion Planning with End-effector Constraints

The problem of path planning with Cartesian constraints
can be specified with a Cartesian trajectory that the end-
effector must follow [1], [9].

There are algorithms that try to directly compute motions
in the task space of the robot. These approaches use potential
fields [10], A∗ search, cell decomposition [11], sampling-
based planning [12], or a reachable volume [13] in the task
space of the robot, which is represented using Cartesian
coordinates.

However, most of the approaches compute motion trajecto-
ries in the configuration space [14], [15]. Inverse kinematics
solvers are used to convert an end-effector pose to a cor-
responding configuration. For redundant robots, numerical
solvers can be used to find a solution [16], while robot-
specific closed-from solvers are used for improved perfor-
mance [17].

Many techniques are based on Rapidly-exploring Random
Trees (RRT) [3]. IKBiRRT [14] generates bi-directional trees
from multiple goal configurations that satisfy the end-effector
goal pose. Some approaches [15], [18], [19] use a projection
from a configuration to the nearest configuration which sat-
isfies the trajectory constraints, based on expanding the RRT
tree. The performance of RRT is improved using adaptive
sampling strategies [20] or parallel collision checking [21].

Recent planning frameworks use these algorithms to im-
plement the fully-constrained [22] or semi-constrained [23]
planning.

B. Trajectory Optimization

Optimization techniques can be used to compute a robot
trajectory that is optimal under some specific metrics (e.g.,
smoothness or length) and that also satisfies various hard
constraints (e.g., collision-free) that the robot should satisfy.
These algorithms can be used as a post-process on computed
collision-free trajectories. The simplest trajectory smoothing
algorithms use the shortcut method to smoothen the motion

trajectory. They optimize the paths between adjacent pairs
of configurations along the computed trajectory, using local
planning, to compute smooth paths [24], [4].

Many techniques based on numerical optimization have
been proposed in the literature [25]. Some recent approaches,
such as [26] and [27], use a numerical solver to directly
compute a trajectory that satisfies all the constraints (e.g.
collision-free, smoothness).

C. Our Approach

The sampling-based approaches [14], [15], [19] are able
to search the configuration space for collision-free solutions.
However, the computed trajectories from sampling-based
approaches can be jerky and may not satisfy many other
constraints. On the other hand, trajectory optimization-based
approaches [10], [28], [29] compute smooth trajectories, but
they provide no guarantees on finding a good solution and
may only compute a local optima.

Our planning algorithm tries to take the advantages of both
approaches. The precomputation step computes collision-
free and non-singular solutions even in complex environ-
ments using random search and probabilistic completeness
of sampling-based approaches. The parallel trajectory refine-
ment step optimizes these solutions to efficiently compute a
smooth trajectory which satisfies the end-effector constraints.
Furthermore, our trajectory optimization algorithm can han-
dle dynamic obstacles and can also be used to compute valid
trajectories for human-like robots with dynamic stability
constraints [8].

III. PLANNING ALGORITHM

In this section, we introduce the notation and terminology
used in the rest of the paper and give an overview of our
planning algorithm.

A. Assumptions and Notations

In this paper, we restrict ourselves to computing appro-
priate trajectories for high-DOF manipulators, though it can
also be used for high-DOF human-like robots as well. For
an articulated robot with n joints, each configuration of
the robot is defined by the joint angles. The n-dimensional
vector space defined by these parameters is used to define
the configuration space C of the robot. We denote the
subset of C which is collision-free as Cfree, and the other
configurations belong to the C-obstacle space, Cobs. A pose
of the end-effector is represented as a point in the end-
effector coordinate frame, which corresponds to a SE(3)
Cartesian space, the six-dimensional space of rigid spatial
transformations in the 3D workspace W of the robot. In our
constrained planning approach, it is required that the end-
effector follows a constraint trajectory c(t) in the task space
frame T, which can be the workspace or the end-effector
coordinate frame. c(t) is defined with the all six-dimensions
of T, or with a lower-dimensional subspace of T. In this
paper, we denote a point in C using uppercase letters such
as Q, and a point in W with the task coordinate frame T as
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Fig. 1: An overview of our planning algorithm. The roadmap
precomputation takes into account static obstacles and sin-
gularity constraints. For a given planning request, M paths
P 1, ..., PM are computed using graph search. The computed
paths are converted to trajectories, and then refined using
trajectory optimization.

q. Their trajectories, which are functions of time, are denoted
as Q(t) and q(t), respectively.

We assume the robot has kinematic redundancy, which
means n = dim(C) > dim(W) = 6. Here dim() represents
the dimensionality of the space. The redundancy allows
that there are multiple robot configurations that satisfy the
Cartesian trajectory constraint.

Kinematic singularities of a manipulator correspond to
the configurations when there is a change in the number
of instantaneous degrees of freedom. In our approach, we
mainly deal with inverse singularities [30], which cause the
end-effector to lose one or more instantaneous DOFs. A robot
configuration Q has inverse singularity if the rank of the 6×n
Jacobian matrix J = ∂q

∂Q is less than 6. If a configuration is
close to a singular configuration, the corresponding Jacobian
matrix J becomes ill-conditioned, which is not a desired
configuration. We define the near-singular space Csingular+ ,
which is a subset of C that the distance to the closest singular
configuration is smaller than a value ε. We can determine a
configuration Q is near-singular if the smallest singular value
is less than a threshold ε. i.e.,

J(Q) = USVT (1)

S6,6 < ε, (2)

where USVT is a singular value decomposition of J(Q),
and U, S, and V are a n × 6 orthonormal matrix, a 6 ×
6 diagonal matrix, and a 6 × 6 matrix, respectively. S6,6

represents the value in the sixth row and the sixth column
of S, i.e., the smallest singular value.

Our goal is to find a continuous, collision-free, and non-
singular trajectory Q∗(t) that the end-effector follows the
given trajectory constraint c(t). Q∗(t) tends to be smooth,
minimizes the joint acceleration along the trajectory and sat-
isfies constraints corresponding to the joint position, velocity,
and acceleration limits.

B. High-DOF Planning Algorithm: Overview

Fig. 1 gives an overview of our planning algorithm. The
algorithm is decomposed into the roadmap precomputation
step and the runtime trajectory refinement step.

In the precomputation step, we only take into account the
static obstacles in the scene. The one-time precomputation
of a roadmap is used to make the runtime planning effi-
cient. In order to handle multiple queries, we use Proba-
bilistic Roadmap (PRM) [2]-based approach to construct a
roadmap graph G on the configuration space C. However,
the probabilistic approach of the original PRM generates
a redundant dense graph, as many paths converge to the
same solution with the trajectory optimization. Therefore,
we compute a compact, and non-redundant roadmap G on
the configuration space C using visibility checks to discard
redundant nodes and edges, and using redundancy checks
to discard redundant paths [31]. When we construct the
roadmap G, we only consider configurations that belong
to Cfree and do not belong to Csingular+ . Furthermore, we
also ensure that the edges of G satisfy these properties with
respect to the free space and the singular space. This can
be performed using discrete algorithms [32] with a certain
resolution or continuous algorithms [33], depending on the
required accuracy. Therefore, any path in the roadmap has
no near-singular configuration and provides full dexterity or
degrees-of-freedom motion for the end-effector along the
path.

At runtime, we compute trajectories for constrained plan-
ning queries by refinement of selected initial trajectories
from the precomputed roadmap G. The selection of multiple
non-redundant paths increases the coverage of the planning
algorithm. Each planning request has a workspace goal
region qgoal, which can be a single end-effector pose or a
set of poses, and the end-effector constraint c(t). The current
configuration is used as the initial configuration Qinit to
compute the trajectory. Also, there can be dynamic obstacles
which are not considered in the precomputation step, but the
robot can avoid collisions with its redundant DOFs while
satisfying the end-effector Cartesian trajectory constraint.

IV. ROADMAP PRECOMPUTATION AND MULTIPLE PATH
SELECTION

In this section, we describe the roadmap precomputation
and our novel multiple path selection algorithm.

A. Roadmap Precomputation

In the precomputation step, we build a roadmap graph
G by adding nodes, which are configurations that lie in C.
We use nodes and edges which have no collisions, and we
also want they are not near-singular configurations. Fig. 2(a)
illustrates the configuration space. Given these criteria, we
compute a roadmap G based on Path Deformation Roadmap
algorithm [31]. The algorithm first computes a compact tree-
like roadmap, then adds additional nodes and edges that
correspond for paths which are difficult to be deformed from
the existing paths in the tree-like roadmap. Fig. 2(b) shows
an example of the generated compact roadmap which is
collision-free and non-singular. The computed roadmap has
the smallest number of nodes which are necessary to keep
the coverage of the roadmap.
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Fig. 2: (a) Classification of the Configuration space. The
obstacle space Cobs consists of disconnected regions, and the
near-singular space Csingular+ is a region that the distance
to the closest singular configuration is smaller than a value ε.
(b) A roadmap graph built on Fig. 2(a) and multiple paths are
shown. The nodes and edges on the graph are collision-free
and correspond to non-singular configurations. For a path
query from an initial configuration Qinit to the goal region
qgoal (shown in dark gray region), different non-deformable
paths P1, P2, and P3 are shown in the graph.

Algorithm 1 {P 1,P 2,...,PM}=MulPath(G, Qinit, qgoal)
: Extract M non-redundant paths from a roadmap graph G

Input: roadmap graph G={V,E}, the start configuration
Qinit, the goal region qgoal

Output: M non-redundant paths P 1, ..., PM that start from
Qinit to a configuration Qgoal which corresponds to the
goal region qgoal

1: Einit = ∅, Vgoal = ∅, Egoal = ∅
2: for all node n ∈ V do
3: if visibleNode(n,Qinit) then
4: Einit.insert(n,Qinit)
5: end if
6: end for
7: E′ = E ∪Einit, V′ = V ∪Qinit, ntry = 0
8: while ntry < ntrymax do
9: Qgoal = randomIK(qgoal)

10: ntry = ntry + 1
11: // Do not add redundant nodes
12: if Vgoal.hasV isibleNode(Qgoal) then
13: continue
14: end if
15: for all node n ∈ V′ do
16: if visibleNode(n,Qgoal) then
17: if Qgoal /∈ Vgoal then Vgoal.insert(Qgoal)
18: end if
19: Egoal.insert(n,Qgoal)
20: end if
21: end for
22: end while
23: E′ = E ∪Egoal, V′ = V ∪Vgoal

24: {P 1, ..., PM} = shortestPaths(M,V′,E′,Qinit,Vgoal}

B. Multiple Path Selection

When a roadmap is used to compute a path between
the initial and goal positions, typically the shortest path in
the roadmap graph between Qinit and Qgoal is returned as
a single solution path. However, as we compute roadmap
with collision-free and non-singular constraints which are
invariant with multiple planning requests, this shortest path
in the graph may not converge to a feasible solution in terms
of trajectory optimization, due to the additional constraints.
Moreover, the goal position is specified as a workspace
goal region qgoal, rather than a single configuration Qgoal

in C-space. Therefore, we extract M different paths from
the precomputed roadmap G, which can cover different
goal configurations. Fig. 2(b) illustrates the multiple path
selection.

The resulting our novel algorithm for computing non-
redundant multiple paths is given in Algorithm 1. We first
add edges between Qinit and visible nodes in the roadmap
G (line 4). For the given goal region qgoal, we choose a
random pose and compute a random IK solution Qgoal for
that pose (line 9). Note that the mapping from a pose to a
configuration is one to many for redundant robots. If there is
a goal configuration in the graph which is visible from Qgoal,
Qgoal is redundant and therefore not added to the graph (line
12). If there are no other goal configurations visible from
Qgoal, Qgoal is added as a node and all possible edges from
Qgoal to nodes in G are added. For the nodes and edges
in G and Qinit, Vgoal, Einit and Egoal, we compute M
shortest paths {P 1, ..., PM} from Qinit to any of the goal
configurations using graph search algorithms [34]. These
paths are used to generate multiple initial trajectories for the
trajectory refinement computation as described in Section V.

V. PARALLEL TRAJECTORY REFINEMENT

In this section, we give the details of the runtime trajectory
refinement, which include initial trajectory generation and
the trajectory optimization framework and the optimization
constraints.

A. Initial Trajectory Generation

At runtime, the planner computes M paths P 1, ..., PM

from the precomputed roadmap as described in IV-B and
generates trajectories Q1(t), ..., QM (t) from the paths.
For each P i, we discretize the path by adding N internal
waypoints, based on uniform time intervals and distances
along P i. the trajectory Qi(t) is computed using the cubic
interpolation of N + 2 (including the two end points) way-
points. The interpolation step allows the trajectory optimiza-
tion to start from a smooth trajectory. The trajectories are
used as initial trajectories in the trajectory refinement step,
and by optimizating M trajectories in parallel, we increase
the probability of success in terms of finding a feasible or
optimal solution to all the constraints.

B. Trajectory Optimization Framework

We use the covariant gradient descent approach for tra-
jectory optimization [26], which preserves the smoothness



of the trajectory during optimization. The approach refines
the positions of internal waypoints {Q1, ...,QN} of each
trajectory Qi(t) by minimizing the cost function to compute
the optimal trajectory:

Q∗(t) = arg min
Q1,...,QN

N∑
k=1

(C(Qk) + ‖Qk−1 − 2Qk + Qk+1‖2),

(3)
where the term C(Qk) represents the cost function for a
waypoint configuration Qk, and the second term ‖Qk−1 −
2Qk + Qk+1‖2 represents the smoothness of the entire tra-
jectory. The waypoint smoothness is computed based on the
finite-difference accelerations on the joint trajectories. The
two end-point configurations Qinit and Qgoal are used as
Q0 and QN+1, respectively in the smoothness computation.

As illustrated in Fig. 1, the trajectory refinement step
has a scheduler, which repeatedly triggers planning a new
trajectory Q∗(t) with the updated dynamic environment
information.

C. Cartesian Planning Constraints

We formulate the waypoint cost function C(Qk) of our
Cartesian planning problem to include the costs for the
collision constraint, the singularity constraint, and the end-
effector Cartesian trajectory constraint for a waypoint Qk.
These costs can be expressed as

C(Qk) =wCollision · CCollision(Qk)

+wSingularity · CSingularity(Qk)

+wCartesian · CCartesian(Qk),

(4)

where wi represents the weight of each cost. The weights
can be optimized to find the best values.

1) Collision cost: CCollision(Qk) represents collision cost
for both static and dynamic obstacles. A feasible
solution should satisfy CCollision(Qk) = 0 for all Qk,
which means the trajectory has no collisions. Euclidean
Distance Transform is used for static obstacles like the
previous work [26], [7]. For dynamic obstacles, we use
the squared sum of the penetration depths between the
robot and the environment obstacles.

2) Singularity cost: CSingularity(Qk) represents the cost
for near-singular configurations. It allows the robot
to have the full dexterity of the end-effector. As we
discussed in Section III, it can be evaluated using the
singular values of the Jacobian matrix J(Qk). From
the singular value decomposition of (1),

CSingularity(Qk) = max(0,
1

S6,6
− 1

ε
)2 (5)

adds a penalty cost for near-singular configurations,
i.e., S6,6 < ε.

3) Cartesian trajectory cost: CCartesian(Qk) represents
the cost from the violation of the Cartesian trajectory
constraint, which is specified by the end-effector tra-
jectory c(t). The error ∆x is computed from the poses
of c(t) and Qk at the time of waypoint qk,

∆x(Qk) = c(tk)−Cqk, (6)

where tk represents the time at qk, and qk represents
the end-effector pose that corresponds to Qk. C is a
d × 6 selection matrix, where d = dim(c(t)) which
selects only the constrained elements of Qk. In many
problems, there is a tolerance vector tol defined in the
same dimension with c(t). Therefore the cost function
is defined as,

CCartesian(Qk) =
∑
d

max(0, |∆x(Qk)d| − told)2,

(7)
where ∆x(Qk)d and told represents the d-th element
of each vector.

The joint limit constraints can be formulated as an addi-
tional cost function. However, in our optimization formula-
tion, we use the smooth projection method to remove the
joint violations. We rescale the trajectory update of each
iteration to ensure that each joint value in the trajectory is
within the joint limits.

VI. RESULTS

In this section, we describe the implementation of our
planning algorithm and present the results for different
scenarios. We have used our algorithm for KUKA LBR4+
robot (Fig. 7). The robot has redundant DOFs (7 joints),
and each joint has minimum and maximum angle limits.
We use MoveIt [22] for both the simulation environment
and the interface to the real robot. We set the variables for
planning: the number of internal waypoints in a trajectory
N = 100, the singular value threshold ε = 10−3. The
weights for the cost functions in (4) are set as wCollision =
100.0, wSingularity = 1.0, wCartesian = 1.0. We evaluate
the performance of our planning algorithm on two sets of
static benchmarks. Timing results were generated on a PC
equipped with an Intel i7-2600 8-core CPU 3.4GHz. We
use discretized collision and singularity checking at a fixed
resolution for all experiments, but they can be replaced by
continuous checking algorithms. For static benchmarks, the
optimization terminates when one of the trajectories becomes
feasible, which means the trajectory is collision-free, non-
singular, and satisfies the end-effector constraints.

A. Benchmark 1 : Planning with Orientation Constraints

Our first benchmark (Fig. 3) corresponds to planning a
trajectory with an orientation trajectory constraint of the end-
effector. There are several static obstacles near the robot that
restrict the pose of the robot. There is a tool attached to
the robot, and the tool is only allowed to rotate along the Z-
axis during the trajectory optimization. The X- and Y- axis of
rotations of the end-effector should be less than the tolerance
= 5◦. The planning seems an easy problem, however the C-
space has many narrow passages due to the robot joint limits
and the static obstacle positions.

We compute the constrained trajectories for six planning
queries with different start and goal pairs. Table I summarizes
the planning results that each value is averaged with 10
trials. We measure the number of iterations, the planning
time, and the success rate of the planner for the number



M : Number of Trajectories
Benchmarks 1 2 4 8

Benchmark 1

Iterations 1498.35 1354.71 1023.65 1040.28
Planning

time 23.80s 20.75s 15.48s 15.02s

Success
rate 70.00% 90.00% 90.00% 100%

Benchmark 2

Iterations 1635.95 1245.84 1141.41 943.73
Planning

time 25.84s 18.02s 15.54s 14.13s

Success
rate 80.00% 90.00% 100.00% 100.00%

TABLE I: Planning results for our benchmarks. We measure
the number of iterations for the trajectory optimization;
planning time; success rate of the planning. We classify the
planner as a success if it can find a solution in the maximum
iteration limit (2000). As we increase M, the reliability of
the planner improves with respect to various constraints.

(a) The benchmark environment
and the start (green) and goal
(blue) poses

(b) The computed trajectory of the
robot

Fig. 3: Benchmark 1 computes a trajectory for end-effector
constraints for X- and Y- axis rotations. (a) The start (green)
and goal (blue) poses are shown. (b) The computed trajectory
is shown.

(a) Plot of joint values computed
using our approach

(b) Plot of joint values computed
using Moveit and RRT*

Fig. 4: Plots of joint values for the computed trajectory
of Benchmark 1. (a) All joint values in the trajectory are
smooth. (b) There are points that the joint values suddenly
change.

(a) The end-effector position tra-
jectory constraint

(b) The computed trajectory of the
robot

Fig. 5: Benchmark 2 is following a trajectory defined for end-
effector positions. (a) The environment and the constraint
trajectory (blue path) are shown. (b) The computed trajectory
is shown.

(a) Depth map images captured
using Kinect for a human obstacle

(b) 3D octomap obstacles con-
structed from the depth map

Fig. 6: Dynamic environments: (a) We capture the depth map
of a scene with a human arm approaching the arm using a
Kinect. (b) 3D octomap is constructed from the depth-map,
which is used as obstacle in the trajectory optimization.

of trajectories M = 1 to 8. We assume that a planner
fails if the number of iterations reach the max iteration
limit, set as 2000. It shows that increasing M reduces the
planning time and increases the success rate of the planner.
But when M becomes greater than 8, the maximum number
of CPU cores, the planner can take more time. Because
the parallel computations share the computational resources,
increasing the number of trajectories beyond 8 may slow
down the overall approach. Fig. 7 shows the execution of
this benchmark on a real KUKA LBR4+ robot.

Comparison with Sample-based Planners: We also
compute a solution to the same constrained planning problem
with the constraint planner available as part of MoveIt. We
use RRT and RRT* as the base planner for the constrained
planning. RRT takes 274.399 seconds to compute a solution
with the end-effector constraint. RRT* tends to spend the
maximum planning time to improve the solution after a
solution is found, and we set the maximum planning time
of RRT* as 600 seconds. Fig. 4 shows the comparison
of the the computed trajectories. RRT* computes shorter
solution than RRT, but while our approach computes a
smooth trajectory, the trajectories computed from constrained
planning of Moveit framework have discontinuous points due
to the redundant IK solutions.

B. Benchmark 2 : Planning with Position Constraints

Our second benchmark (Fig. 5) corresponds to planning a
trajectory with a position that trajectory that the end-effector
needs to follow. The orientation of the end-effector is not
constrained. We compute constrained trajectories for three
planning queries with different start and goal pairs. The
planning results are shown in Table I. Like the benchmark
1, the planning result shows 100% success rate with 8
trajectories.

C. Dynamic Environments

In order to test the planner with dynamic obstacles, we
captured depth map images of human obstacles in the scene
using the Kinect (Fig. 6(a)) and construct the 3D octomap
(see Fig. 6(b)). We use the octomap data with runtime
trajectory optimization as dynamic obstacles. In the dynamic
benchmark, the planner repeatedly updates the trajectory



M : Number of Trajectories
Benchmarks 1 2 4 8

Benchmark 1 Success
rate 20.00% 50.00% 60.00% 80.00%

Benchmark 2 Success
rate 30.00% 40.00% 80.00% 90.00%

TABLE II: Planning results for the benchmarks with dynamic
obstacles. As we increase M, the success rate of the planner
improves.

until the robot end-effector reaches the workspace goal
region. We highlight the performance of the previous two
benchmark scenes where a human moves his arms near the
robot arm at a slow pace. As shown in Table II, the success
rate of the planner increases as we increase the number of
trajectories.

VII. BENEFITS OF PARALLELIZATION

In this section, we highlight the benefits of parallel trajec-
tory optimization.

A. Parallel Trajectory Optimization

As described in Section IV-B and V-A, our parallel tra-
jectory optimization starts with the selection of M non-
redundant paths from the roadmap. Then M initial trajecto-
ries are generated from the paths. We create M optimization
threads that each thread optimizes an initial trajectory. If one
of the threads finds a feasible solution, the optimization of
all trajectories are interrupted and the computed best solution
is returned. If the number of CPU cores is less or equal to
M , the parallel optimization can be performed with the same
time complexity of the single trajectory optimization, while
it improves the success rate of the planning.

B. Improvement of the Success Rate of Planning

The runtime optimization problem in (3) has n ·N degrees
of freedom (7 · 100 in our experiments). Extending the
analysis in [35], we can show that the use of multiple non-
redundant trajectories increases the success rate of planning
using the following theorem.

Theorem 7.1: With a precomputed roadmap which has
K different paths from Qinit to Qgoal, the parallel op-
timization of M non-redundant initial trajectories will
compute a feasible solution with the probability (1 −
K∑
i1

K∑
i2

...
K∑
iM

|Ai1 ||Ai2 |...|AiM
|

|S|M ), where S is the entire search

space, Ai is the neighborhood around a solution where the
optimization converges to unfeasible local optima, and i are
unique, i.e., ij 6= ik if j 6= k. | · | is the measurement of the
search space.

Proof: In our planner, initial trajectories lie in the
neighborhoods of different local optima and do not converge
to the same solution, as they are chosen from the non-
redundant roadmap. The probability that one of M trajecto-
ries lies in the neighborhood of a feasible solution is 1− (the
probability that all M trajectories lie in the neighborhood of
unfeasible solutions).

The probability that a trajectory lies in the neighborhood

of K unfeasible local optima is
K∑
i1

|Ai1 |
|S| , where Ai1 is the

neighborhood of i1-th local optimum. We choose a path
different from the previous one for the second trajectory,
and the probability that it is also lie in the neighborhood

of unfeasible solutions is
K∑
i1

K∑
i2

|Ai1 ||Ai2 |
|S|2 , i1 6= i2. Similarly,

(
K∑
i1

K∑
i2

...
K∑
iM

|Ai1
||Ai2

|...|AiM
|

|S|M , ij 6= ik if j 6= k) measures the

probability that M trajectories lie in the neighborhood of
each unfeasible local optima Ai1 , Ai2 , ..., AiM . If the number
of unfeasible local optima is less than M , the probability
becomes 0 as one of the non-redundant trajectories should
be in a neighborhood of feasible local optima.
It is not possible to measure the exact value of each |Ai| in
the configuration space C, but it can be expected that |Ai|
will be smaller as the environment becomes more complex.
Since |Ai|

|S| is always less than 1, the increasing number of
optimized trajectories M increases the probability that the
planner computes a feasible solution.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we present a parallel constrained planning
algorithm for end-effector trajectory constraints. We use
a two step approach : the precomputation step and the
trajectory refinement step. In the precomputation step, we
compute multiple trajectories that satisfy the collision-free
and non-singular constraints from static obstacles. The tra-
jectories are used as initial trajectories for the trajectory
refinement step. Our planner optimizes the trajectories in the
dynamic environment, using cost functions of the constraints.
Therefore, our parallel planning algorithm tends to compute
the trajectories that are smooth, collision-free, non-singular,
and follow the given Cartesian trajectory of the end-effector.
We validate our algorithm with several benchmark scenarios
using a redundant KUKA manipulator. The results have been
tested on the robot hardware (Fig. 7).

The current work has been used for high-DOF manipu-
lators. Our next goal is to combine with human-like robots
and demonstrate an integrated system that can be used for
trajectory planning for humanoids and performing Cartesian
tasks using these high-DOF arms. Furthermore, we would
like to develop a parallel version of our Cartesian planner
for many-core GPUs, which can considerably improve the
responsiveness and performance of the planner.
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