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ABSTRACT

Material property has great importance in deformable body simulation and medical robotics. The elasticity parameters,
such as Young’s modulus of the deformable bodies, are important to make realistic animations.

Further, in medical applications, the (recovered) elasticity parameters can assist surgeons to perform better pre-op
surgical planning and enable medical robots to carry out personalized surgical procedures. Previous elasticity parameters
estimation methods are limited to recover one elasticity parameter of one deformable body at a time. In this paper, we
propose a novel elasticity parameter estimation algorithm that can recover the elasticity parameters of multiple deformable
bodies or multiple regions of one deformable body simultaneously from (at least two sets of) images. We validate
our algorithm with both synthetic test cases and real patient computed tomography images. Copyright © 2015 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Material properties are important in depicting the charac-
teristics of virtual objects for realistic computer animations
of soft bodies.

In addition, virtual surgical simulation has also been
increasingly used for rapid prototyping of clinical devices,
pre-operation planning of medical procedures, virtual
training exercises for surgeons and medical personnel,
and so on. And, tissue elasticity properties are important
parameters for developing accurate and predictive surgical
simulation. Furthermore, to compute desired and accurate
force feedback for haptic display requires knowledge about
the deformation of soft tissues and organs, which are char-
acterized by patient-specific elastic parameters for different
tissues and organs.

Elastography[1] was first proposed to determine the
elasticity properties by measuring the deformation of the
tissue because of the application of the known external
forces. The known external forces are the boundary con-
dition needed to recover the exact elasticity parameter.
Originally, the deformations were measured using ultra-
sound imagery[2], but such techniques produced coarse,

two-dimensional representations of the moving tissue.
More sophisticated imaging techniques, such as magnetic
resonance imaging (MRI)[3,4] and computed tomography
(CT), produce three-dimensional images of the deform-
ing tissues, allowing a more accurate measurement of
displacement.

Toward realizing the concept of three-dimensional phys-
iological humans, we propose perhaps one of the first
elasticity parameter estimation algorithm for multiple,
heterogeneous deformable bodies simultaneously using
medical images†. Our approach is based on a multi-
dimensional optimization method that iteratively performs
deformable body simulation using a finite element (FE)
method on reconstructed organ models with the con-
tinuously refined, estimated elasticity parameters. The
geometric models of organs are reconstructed based on
low-resolution CT images.

Our objective function measures the sum of the dis-
tance between the nodes of the organ surface. In contrast to

†In this paper, we use CT images. But, the algorithm is also
applicable to MRI images.
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elastography methods [5–7], the only information we need
is the displacement of the nodes of the organ surface. We
do not need every pixel-wise displacement vector, thus, no
extra procedures need to be performed on the patient. Two
sets of (medical) images are sufficient to recover the elas-
ticity parameters using our method. Therefore, our method
can be widely applicable to different imaging technology.
It can be used for animatino of soft bodies (see supple-
mentary video) and possibly for cancer staging using only
low-resolution CT images.

2. RELATED WORK

In computer graphics, extensive research has been done
for deformable body simulation [8–11]. Researchers have
also been studying methods for designing simulation with
material properties [12–15] and for realistic bio-structure
simulation [16].

In medical applications, there are mainly two kinds of
soft tissue elasticity properties estimation methods [17]:
invasive and noninvasive techniques. The invasive meth-
ods rely on a device to measure the displacement and
force response [18–20]. These methods take organ samples
either out of the human or animal bodies and perform the
experiment in vitro (out side the body) or do the procedure
in situ (inside the body). The collected data are then used to
solve the inverse problem, which is to recover the elasticity
properties, by constructing a polynomial interpolation [21]
or by using an FE model [17,22,23].

The noninvasive methods were mostly based on image
analysis techniques to measure the displacement. In the
1980s, several methods were proposed to measure the
motion of the soft tissue, such as the one proposed by
Wilson and Robinson [24] using radio frequency M-mode
signals and the one proposed by Birnholz and Farrell [25]
using ultrasound B-scans. Researchers have also used med-
ical image analysis on 2-D ultrasound and/or MRI images
to estimate the elastic parameters of soft tissue [26–28].

In the area of elastography, researchers [5–7] proposed
algorithms based on the distance between two medical
images. By solving the least square problem, the elas-
ticity parameters are recovered. Van Houten et al. [4]
used elastography methods to estimate the Young’s mod-
ulus distribution of a 2D area, then later extended
to solve three-dimensional elastic parameter distribution
using MRI [29]. These methods need high-resolution dis-
placement fields to recover the elasticity parameter [27],
where the displacement field is typically obtained through
an external device using a vibration actuation mecha-
nism. For organs that are located deep-seated inside a
human body, the vibrator may need to be placed inside the
organ[30], making the procedure much more complex and
possibly uncomfortable for the patient.

Other than distance field based methods, there are also
other measurement algorithms. The modality-independent
elastography method [31] measures the elasticity parame-
ters by maximizing the image similarity based on a number

of landmarks. However, this technique does not apply to
all the soft tissues, as landmarks cannot always be found in
some of the organs such as prostate. Statistical and machine
learning algorithms have also been used to classify soft tis-
sues and estimate the parameters using multi-spectral MR
images [32].

Although the existing elastography methods can pro-
vide an estimation of the elasticity parameter distribution,
they require high-resolution magnetic resonance medi-
cal images and a device to measure the external force
exerted on the soft tissues, which is not always possible
or practical. Lee et al. proposed the first model to esti-
mate the Young’s modulus based on low-resolution CT
images, and no external force is needed to set the bound-
ary condition [33]. By optimizing the distance between
the deformed and the reference surface meshes, the elas-
tic parameter is estimated. However, this method can only
recover the elasticity parameter of one organ. In con-
trast, our work can recover the elasticity parameters of
multiple, heterogeneous soft bodies simultaneously, using
a multi-dimensional optimization method.

3. METHOD

We propose a novel method to automatically estimate elas-
ticity parameters of multiple organs using only images,
such as those from CT imaging. Our approach is based
on multi-dimensional optimization and simulation of mul-
tiple deformable bodies using FE methods. For each opti-
mization iteration, an FE method is used to assess the
deformation of the organs. The objective function is based
on distance between the initial, reference mesh, and the
deformed surface mesh. This objective function is eval-
uated and its gradient is used in the multi-dimensional
optimization algorithm to search for the optimized elas-
ticity parameters that minimize the value of the objective
function. The flow chart of the optimization process is
shown in Figure 1.

A three-dimensional reconstructed model of the organs
and the signed distance map of the deformed organs
are the input of our algorithm. The three-dimensional
model is reconstructed from the segmented CT images
using ITK-SNAP [34]. After each optimization itera-
tion, the elasticity parameters are updated and used by
the FE model. The simulation-based parameter estimation
algorithm is terminated when the optimization converges,
which usually takes only a few iterations.

3.1. Forward Simulation

The forward simulation in our method computes the dis-
placement vector u using the elasticity parameters recov-
ered in the inverse problem.

The displacement vector u is then used in the inverse
problem to evaluate the objective distance function
Equation (4). Our simulation framework uses a linear static
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Figure 1. The flow chart of the optimization iteration. The initial guess of the elasticity parameter is provided based on standard
tissue values, prior to the start of the optimization. For each optimization iteration, the tissue deformation is recomputed using a finite
element (FE) method simulation. The value of the distance objective function is also re-evaluated. At the end of each iteration, the

elasticity parameter is updated and used by the FE model to continue the simulated-based optimization process.

FE method [35] (Equation (1)). The weak formulation for
elasticity problem is given,Z
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with the first part of the equation as the internal force and
the second part of the equation as the external force.

We use linear elastic material model. For isotropic linear
elasticity, the stress–strain relation is defined as,

� D D" (3)

where � is the stress tensor, " is the strain tensor, and matrix
D is defined by the material elasticity parameters. We use
Young’s modulus E and Poisson’s ratio � for describing
material properties.
Previous elastography methods use external forces as the
boundary condition. Our method, in contrast, does not
need external forces. The initial boundary condition in our
algorithm is the known displacement vector of the sur-
face mesh. This boundary condition is applied only to the
nodes of the surface mesh. When the three-dimensional
model deformed, the force generated by the deformation
will drive the simulation.

3.2. The Inverse Problem

The inverse problem is the process of elasticity parameter
estimation. Our method is based on the multi-dimensional
optimization method. By solving the least square problem
iteratively, we recover the elasticity parameter. We then use
the distance between the initial, reference surface mesh,
and the deformed surface mesh to iteratively update the
objective function.

3.2.1. Distance Based Objective Function.

As our simulation framework is based on the
low-resolution CT images, only the displacement of the
boundary of the soft tissue is known. Our objective func-
tion Equation (4) is constructed using the sum of the
distance between the nodes of initial, reference surface,
and that of the deformed surface. By minimizing the value
of the objective function, we find the optimal elasticity
parameters �.

ˆ.�m/ D
1

2
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X
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where m is the mth organ and N is the number of organs
that is in the simulation scene.

d.ul C 	ul, ur/ is the bidirectional Hausdorff distance
between deformed surface mesh Sm and the initial, refer-
ence mesh Sr. �m D Em, in which Em is the Young’s
modulus of the mth organ. Our method can be extended to
optimize more than one parameter. We could also include
the Poisson’s ratio into �m.
The � that minimizes the objective function is the opti-
mized set of elasticity parameters.
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3.2.2. Multi-Dimensional Numerical

Optimization Method.

We propose to use a multi-dimensional optimiza-
tion method to recover the elasticity parameters. Our
three-dimensional model can have a large number of nodes,
so a significant amount of memory would be needed to
store the exact Hessian matrix for the Newton’s optimiza-
tion method. Therefore, to solve the least square problem,
we choose the Limited Memory Quasi-Newton’s method.

Using this method, the approximation of the Hessian
matrix is maintained instead of the exact Hessian matrix.
For each step of this Broyden–Fletcher–Goldfarb–Shanno
method [36],

�kC1 D �k � ˛kHkrˆk (5)

where Hk is the approximated Hessian matrix, xk is the
variable to be optimized,ˆk is the objective function value,
k denotes the kth optimization iteration, and rˆ is the gra-
dient of the objective function. To compute the gradient,
the partial derivative of ˆ is with respect to the elasticity
parameter, the Young’s modulus of the mth organ.

4. EXPERIMENT

We have implemented our algorithm and performed three
sets of experiments to evaluate its accuracy under differ-
ent conditions using both two synthetic sets of models

with known parameters to validate the approach and a
reconstructed set of organs from CT images to illustrate
its robustness.

4.1. Recovering Known Values

The first experiment is designed to test the accuracy of
the algorithm, if the three organs sharing boundary. As the
number of the organs increases, the problem becomes even
more complicated.

4.1.1. Model Construction.

We used 3-concentric spheres to build the test model in
experiment I. In order to measure the elastic parameter of
sphere 1, for the area between sphere 1 and sphere 2 and
the area between sphere 2 and sphere 3, tetrahedralization
is carried out within sphere 1, the area between sphere 1
and sphere 2 and the area between sphere 2 and sphere 3.
The sliced view of the three-dimensional model is shown in
Figure 2. The following table is generated when the three
areas are all deformed by slightly less than 10%.

4.1.2. Result.

The result of this experiment is shown in Table I. In this
experiment we increase the number of “organs” to test the
accuracy of our algorithm. The result of this experiment
is affected by both the fact that the spheres are sharing

Figure 2. A sliced view of the tetrahedral mesh of experiment I. The image on the left shows only the tetrahedral mesh of the
spheres, while the image on the right shows the complete tetrahedral mesh.

Table I.

Sphere 1 Sphere 2 Sphere 3

True elasticity Initial guess Recovered Relative Recovered Relative Recovered Relative
(kPa) (kPa) value error (%) value error (%) value error (%)

50 25 49.23 1.54 49.54 0.92 49.55 0.9
70 35 66.14 5.51 67.41 3.7 67.15 4.07
90 45 89.18 0.91 89.52 0.53 89.68 0.36
110 55 107.93 1.88 108.76 1.13 109.17 0.75
130 65 112.89 13.16 118.95 8.5 124.89 3.93
150 750 132.87 11.44 138.78 7.48 145.32 3.12

The true elasticity value, the Young’s modulus is the one we provided to deform the model. Sphere 1, the area between sphere 1 and sphere 2, and the
area between sphere 2 and sphere 3 are the three “organs” that we experimented on. The recovered elasticity parameters and the relative errors are
shown in this table.
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(a) (b) (c)

Figure 3. In this experiment, we show the relative errors (in %) of our algorithm versus the amount of deformation of sphere 1 (left),
sphere 2 (middle), and sphere 3 (right). The three lines represent the experiment result with different ground truth elasticity values.

boundaries and the number of the spheres. Under these
complicated conditions, the error rate of our algorithm is
generally less than 5% (no more than 15% for the high-
est stiffness values) when the deformation is less than 10%
within each of the three regions, respectively (Figure 3).

4.2. Multiple Reconstructed Organs

The second experiment is designed to test the robustness
of our algorithm with more scenes that consist of multiple,
separate organs in contact with each other. The simula-
tion scene includes multiple organs within a male’s pelvis
area. The surface meshes of the prostate, bladder, and
rectum were reconstructed from the patient’s CT images.
These reference surface meshes were used to construct the
tetrahedral mesh of the simulated scene. A slice view of
the tetrahedral mesh is shown in Figure 4. In the tetrahe-
dral mesh, the rectum was modeled hollow inside, while
the prostate and the bladder were modeled as a contin-
uum represented by tetrahedral elements. The prostate and
the bladder are two organs that we use to recover the
elasticity parameters.

The signed distance field within each organ was com-
puted using the initial, reference surface mesh and the
deformed surface mesh. The deformed surface mesh was
generated based on the displacement of the nodes on the
surface mesh. We used the initial displacement to set the
initial forces as the boundary condition. Then the bound-
ary condition was used to generate a displacement field,

which was computed by applying the boundary condition
to the three-dimensional model during each iteration of the
optimization. The model was deformed using the current
set of elasticity parameters. For the synthetic test case, we
generate the deformed surface by using the set of “ground
truth” parameters. We then run our algorithm on the result-
ing deformed surface to estimate the elasticity parameters
and compare these recovered values with the ground-truth
values, as shown in Table II.

In the experiment, we fixed the Poisson’s ratio of the
material, which only optimized the Young’s modulus of the
organs. The choice of Poisson’s ratio was taken from the
literature [37–39].

4.2.1. Model Construction.

We use patient specific medical images to reconstruct
the organ models. The CT images were segmented using
ITK-SNAP [34]. After segmentation, we reconstruct the
surface mesh of the prostate, bladder, and rectum also
using ITK-SNAP [34]. The surface meshes are shown in
Figure 5. Then, we used TetGen [40] to generate the tetra-
hedral mesh based on the surface mesh of the organs and a
bounding box, with the rectum being hollow inside shown
in Figure 6. We used the deformation of the rectum to
set the boundary condition. The deformed prostate and the
bladder surface mesh are used to compute the updated,
signed distance map.

Table II.

Prostate Bladder

True elasticity (kPa) Initial guess (kPa) Recovered value Relative error (%) Recovered value Relative error (%)

50 25 53.28 6.56 49.67 0.66
100 50 107.50 7.5 97.78 2.22
150 75 157.53 5.02 146.49 2.34
200 100 209.08 4.54 198.07 0.97
250 125 263.30 5.32 248.60 0.56
300 150 315.14 5.04 296.86 1.04

The true elasticity value, the Young’s modulus is the one we provided to deform the model. We recover the elasticity of both the prostate and the bladder.
Their recovered elasticity and the relative errors are also shown in this table.
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DOI: 10.1002/cav



Estimation of elasticity for multiple deformable bodies S. Yang and M. Lin

4.2.2. Result.

We first did a search of the initial relative Young’s
Modulus. The initial value affects the optimization result,
and several initial values are used to ensure convergence
and determine the global minima. The experimental result
is shown in Table II. In our experiment, we initially
assigned the same Young’s modulus to both organs, the
prostate, and the bladder. The three-dimensional models
are deformed based on the boundary condition we pro-
vided and the Young’s modulus we assigned to the two
organs. The boundary condition was defined according to
the two surface meshes, which were constructed using
two CT images taken from the same patient in different
times. From the table, we can observe that the relative
errors of the bladder are generally smaller than those of
the prostate. From [41], we know that the stiffness of the
cancer tissue tend to be much more than 10% of the nor-
mal tissue, while the error of our algorithm is less than
10% in all early cases. Thus, given the relative errors of
our algorithm, it can still detect cancer. This result also

shows the limitation of the linear elastic material model.
The accuracy is affected by the amount of deformation of
the organs.

4.3. Application to Cancer Staging

We use multiple sets of CT images from each of eight
patients (totaling 180 sets of images) in our real cancer cor-
relation experimental study. The simulation scene, which
includes multiple organs within a male’s pelvis area, is the
same as the second experiment.

The experiment is designed to determine the correlation
between the prostate cancer T stage and the elasticity of
prostate and the surrounding organs. The T-stage is defined
in the tumor, nodes, metastasis system[42], which is a
common cancer staging system.

The result of our experiment is shown in Figures 7
and 8. Using the box plot, we can observe that the mean
of both the prostate’s and the bladder’s Young’s increases
with the cancer staging (the resulting Young’s modulus

Figure 4. A sliced view of the tetrahedral mesh.

Figure 5. (a) Reference surface mesh, (b) deformed surface mesh using the elasticity parameter we provided, and (c) deformation
from reference meshes to the deformed meshes.
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(a) (b) (c) (d)

Figure 6. (a) The reconstructed three-dimensional tetrahedral mesh; (b), (c), and (d) present the segmentation result of the CT image
of the pelvis area in which the red, green and yellow circles show the prostate, bladder, and rectum.

is the average value of the entire organ). We further ana-
lyze the statistical significance of this correlation between
the T-stages and the elasticity of prostate and bladder.
The resulting Pearson correlation coefficient for prostate’s
Young’s modulus and T-stage is 0.658 and the p-value
for two-tailed probability is 0.0000316, which indicate a

strong correlation between the Young’s modulus of the
prostate and the cancer T-stage. The resulting Pearson
correlation coefficient for bladder Young’s modulus and
T-stage is 0.481 and the p-value for two tailed probability
is 0.00460. This result indicates that the Young’s modulus
of the bladder increases with the stages of prostate cancer,

Figure 7. Box plot of the estimated Young’s Modulus of the prostate of the eight patients.

Figure 8. Box plot of the estimated Young’s Modulus of the bladder of the eight patients.
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but they are not strongly correlated. Our findings reconfirm
the studies [43] that prostate cancer increases the proba-
bility of bladder cancer. As cancer continues to advance to
higher stages, it spreads to neighboring tissues.

4.4. Discussion

We have used a range of deformation that is larger than
the normal tissue deformation to stress test our algorithm
and to analyze the relationship between the degree of accu-
racy versus the amount of deformation. This analysis helps
us understand when nonlinear models should be used.
Additional sensitive analysis with respect to segmentation,
simulation resolution (i.e. the size of mesh), and use of
nonlinear FEM model can also be performed to provide
additional information to the users. We “jumpstart” the
iterative optimization process with some range of default
values and the algorithm usually converges quickly within
less than 10 iterations in practice.

Our implementation currently addressed the possibility
of multiple solutions by using multiple (3–5) initial val-
ues sampled over a wide range (50–300) of possible values
(say 50, 150, 250) and use multiple sets of the image
data from few different days to compute the average val-
ues, after eliminating possible “outliner value(s)”. With
this approach, our algorithm is able to find the elasticity
parameters that are very close to the “ground truth” values
in practice.

5. CONCLUSION AND
FUTURE WORK

In this paper, we presented a novel multi-body elastic-
ity parameter estimation method using low-resolution CT
images. As our method do not require any external forces
to be measured and only the deformation of the organ sur-
face is needed, it can be applied to organs that are located
deep-seated in the human body. There are limitations, how-
ever. The amount of deformation of the soft tissue can
affect the accuracy of the algorithm. The larger the defor-
mation, the higher the relative error is from the estimation.
This is because of the fact that we have adopted a lin-
ear, static FE method and linear elastic material model.
Linear models are generally considered accurate and suf-
ficient when the deformation is small and within a certain
range where linearity assumption is applicable. Our exper-
imental results support this observation. The linear elastic
material model is not suitable for the simulation of human
organs when they undergo a large deformation. In the
future, we plan to adopt a more complex, nonlinear elas-
tic material model for soft tissue simulation, such as the
Mooney Rivlin model. The accuracy may likely be higher
when the amount of deformation is significant, although
we expect the computation cost to increase as well.

The algorithm we proposed in this paper is based on
a multi-dimensional optimization method, which can also
be used to estimate multiple elasticity parameters of a

single organ of multiple, heterogeneous tissue properties
for different regions of a (human) body. Because of the
importance of Young’s modulus in noninvasive cancer
detection, we choose to estimate this parameter for mul-
tiple organs simultaneously. However, Poisson’s ratio has
also been suggested as a significant indicator for breast
cancer. Therefore, in the future, we plan to further study
the accuracy of multi-dimensional optimization method
and hope to use it to estimate multiple elasticity parame-
ters of a single organ for more accurate cancer screening
and grading.
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