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INTRODUCTION 1 

Traffic has become a major problem in metropolitan areas around the world. The extra cost due to 2 

traffic congestion and injuries are assessed over one trillion dollars worldwide. Therefore, to 3 

understand the complex interplay of road networks and travel conditions has been of a great 4 

interest in many contexts, including analyzing urban infrastructure (1), understanding human 5 

mobility (2), and designing better routing strategies (3). These applications highlight a need for 6 

developing a systematical framework that is capable of estimating traffic conditions with real-time 7 

sensor data. 8 

 In this work, we adopt the GPS data to estimate citywide traffic conditions and address its 9 

features such as low-sampling rate and spatial-temporal sparsity using three processes: 10 

map-matching (4,5,6,7), travel-time inference (8,9,10,11,12), and missing-value completion (5,13).  11 

While significant improvements have been achieved in these areas, they are usually executed in 12 

tandem, which result in cascading errors and deteriorated estimations. Our framework conducts 13 

the estimation by first obtaining a coarse inference through a convex optimization program. Then, 14 

it refines the inferred vehicle paths and traffic conditions via iteratively performing map-matching 15 

and travel-time inference. Next, to handle the spatial sparsity, it conducts a nested optimization: the 16 

upper level aims to derive the optimal trip distributions among different areas in a road network 17 

while the lower level satisfies the constraints imposed by the Wardrop Principles (14,15). Finally, 18 

the framework addresses the temporal sparsity using the Compressed-Sensing algorithm (5). 19 

 We evaluate our framework using a real road network that consists of 5,407 nodes and 20 

1,612 road segments, 34 heuristic network travel times corresponding to various congestion levels 21 

and times of a day, and over 10 million sampled GPS traces. The effectiveness of our approach has 22 

been compared to state-of-the-art methods, namely Hunter et al. (16) and Rahmani et al. (11), 23 

resulting in up to 96.57% relative improvements. To showcase our implementation, we conduct the 24 

field tests in Beijing and San Francisco using real-world GIS datasets, which have 128,701 nodes, 25 

148,899 road segments, and over 26 million GPS traces. The full report of this work can be found 26 

at gamma.cs.unc.edu/CityEst/. 27 

 28 

METHODOLOGY 29 

Our goal is to estimate traffic conditions of a city-scale network. We explicitly address two 30 

challenges presented by GPS data: the low-sampling rate and the spatial-temporal sparsity through 31 

three steps: coarse inference, iterative refinement, and nested estimation. Traffic is commonly 32 

assumed to be quasi-static and has a weekly period (16,17). Based on these observations, we 33 

divide an entire week into discrete time intervals and treat the traffic within each interval as static. 34 

In this section, we focus our discussion on the three steps over a single time interval. The temporal 35 

missing values over an entire traffic period are interpolated using the technique developed in (5). 36 

There are three key features of our work. First, for addressing the low-sampling-rate data, 37 

we use an iterative refinement rather than a sequential computation so that errors of the 38 

map-matching and travel-time inference processes are gradually reduced. Second, for addressing 39 

the spatial sparsity, we incorporate the sensing results generated from a large number of probe 40 

vehicles into the traffic assignment program so that we can compute travel times and flows of all 41 

road segments in a network. Third, our approach relies heavily on knowledge of transportation 42 

engineering, in which field the robust studies allow our modeling of traffic one step closer to the 43 

real-world traffic. 44 

  45 

EXPERIMENTS 46 
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In order to evaluate our approach, we use the road network from downtown San Francisco 1 

(obtained from openstreetmap.org) as the benchmark. The network contains 5,407 nodes, 1,612 2 

road segments, and 296 TAZs (obtained from data.sfgov.org). We have also generated a set of 3 

heuristic network travel times using the System Optimal (SO) model and the Timestamp model 4 

based on the Cabspotting dataset (obtained from crawdad.org) as the ground truth. 5 

 We compare our work to Hunter et al. (16) and Rahmani et al. (11) using three 6 

measurements. The first metric is the performance gain of our technique over existing methods on 7 

travel times by considering all road segments of a network. The second metric is the error rate of 8 

the aggregate travel time of the entire network. The third metric regards the map-matching 9 

accuracy. The results are shown in Figure 1. Our method achieves as low as 8% error rate and as 10 

high as 97% relative improvement compared to the other two techniques. 11 

 12 

 13 
 14 

FIGURE 1 From LEFT to RIGHT, LEFT diagrams show results via the System Optimal 15 

(SO) model, while RIGHT diagrams show results via the Timestamp model. TOP: The 16 

performance gain (%) of network travel times measured in Mean Squared Error (MSE). 17 

MIDDLE: The error rates (%) of all three methods on aggregate network travel times. 18 

BOTTOM: The performance gain (%) of map-matching accuracy measured using all sets of 19 

synthetic GPS traces. In summary, our technique achieves consistent improvements over the 20 

other two methods. 21 

 22 

FIELD TESTS 23 
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We conduct field tests on two diverse cities in two continents, namely Beijing and San Francisco. 1 

The GPS datasets used in the field tests are from the Cabspotting project and T-drive project (18), 2 

respectively.  3 

 4 

 5 
FIGURE 2 The estimated traffic conditions measured in average volume over capacity 6 

(VOC) throughout the two cities, San Francisco and Beijing, for various types of roads. Our 7 

technique successfully recovers the periodic phenomena in all cases.  8 

 9 

 The results shown in Figure 2 demonstrate the estimated traffic conditions measured in 10 

average volume over capacity (VOC) throughout the two cities. From the result, we can see that 11 

the recovered traffic patterns show clearly periodic phenomena over the course of a week – this 12 

feature is considered as one of the hallmarks of traffic (17) – for both overall roads and 13 

decomposed road types. In addition, in San Francisco, we observe saddle shapes corresponding to 14 

mid-day traffic relief over several days of a week. Such phenomena are more evident on major 15 

roads of San Francisco (i.e., motorway and truck), but not on the rest types of roads – on which the 16 

traffic patterns are similar indicating their similar usage as transportation infrastructure. In 17 

comparison, in Beijing, we don't observe such saddle shapes appearing in the middle of a day 18 

which suggests that congestion remains severe throughout the day time. Moreover, all types of 19 

roads of Beijing share similar traffic patterns indicating their similar usage in traffic. 20 

 21 

 22 
 23 

FIGURE 3 Field tests in Beijing. Different colors represent different ranges of volume over 24 

capacity (VOC). Four time periods, namely Sunday 9AM, Tuesday 9AM, Thursday Noon, 25 

and Friday 7PM are displayed as examples to illustrate weekend vs. weekday and morning 26 

vs. evening traffic. 27 

 28 
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 In Figure 3, we show detailed estimation results over four time intervals in Beijing: 1 

Sunday 9AM representing weekend morning traffic, Tuesday 9AM representing weekday morning 2 

traffic, Thursday Noon representing weekday mid-day traffic, and Friday 7PM representing 3 

weekday evening traffic. First, the Sunday morning's congestion tends to be the least severe and the 4 

Friday night's congestion tends to be the most severe. Second, the congestion situation of Thursday 5 

Noon is slightly better than Tuesday 9AM, especially considering the traffic between the 4th and 6 

the 5th ring roads, where more residential units are found than the region inside the 4th ring road.  7 

 8 

CONCLUSION AND FUTURE WORK 9 

We have presented a novel framework for estimating urban traffic conditions using traffic flow 10 

theory and GPS traces. Our approach has been evaluated using a real road network resulting in 11 

consistent and notable improvements over state-of-the-art methods. In order to understand urban 12 

traffic patterns, two large-scale field tests were conducted in Beijing and San Francisco. Our 13 

estimated results can further enable traffic simulations and animations. Examples can be found in 14 

(19). 15 

 There are several possible future directions. First of all, the coordination of probe vehicles 16 

in estimation can be explicitly taken into account. Second, with estimated traffic conditions, a 17 

real-time probabilistic mapping technique for GPS traces can be developed. Lastly, by fusing 18 

estimated results from historical data with accurate traffic simulations, it is possible to derive even 19 

more accurate forecasting of citywide traffic. 20 

 21 
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