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A APPENDIX
A.1  Conversion from Travel Time to Flow

The conversion from the travel time ¢(e) to the flow f(e) of a road
segment e € & is attained by inverting the road-segment perfor-
mance function proposed by the U.S. Bureau of Public Roads:

4
t(e) = tmin(e) (1 + 1.5 (& )) s (24)
c(e)

where c(e) is the capacity computed as follows (the formula is ac-

cessible at http://www.thwa.dot.gov):

o(e) = 1700 + 10tmin () if tmin(€) < 70mph, 25)
2400 otherwise.

A.2 Evaluation of The Initial Traffic Reconstruction

We have generated abundant synthetic data for evaluating our ap-
proach. These synthetic datasets are produced via the traffic models
that have been extensively validated using real-world datasets in
transportation engineering. Many newly proposed traffic models
are evaluated using these models and real-world datasets. We have
conducted our experiments in a similar vein. In this section, we
provide details on the generation of the synthetic dataset.

A.2.1 Road Network and GPS Dataset. The road network® used
in testing is from downtown San Francisco (Figure 9), which con-
tains 5,407 nodes, 1,612 road segments, and 296 TAZs’. The GPS
dataset is obtained from the Cabspotting project [Piorkowski et al.
2009] (Figure 9 LEFT), in which the low-sampling-rate is reflected as
the average difference between consecutive timestamps is approxi-
mately 60 seconds.

A.2.2  Traffic Conditions via System Optimal Model. We establish
the first set of heuristic network travel times by solving the system
optimal (SO) model. The SO model addresses the traffic assignment
problem by minimizing the entire travel time of a road network,
and takes the following form:

minimize z(f) = Z f(e)t(e),
ecs
subject to  u,g = Z urs(k), Y(r,s) € O x D,
ke¥rs (26)
fle)= D Se(kyurs(k), Ve € &,
(r,s)€EOXD keK,
urs >0, Y(r,s) € O x D.

The solution to Equation 26 is a set of flows and travel times of all
road segments in a network. The key input is the OD pairs which
we estimate by first setting O = V and then count in-and-out
GPS traces for each TAZ. As GPS traces only represent a partial
network flow, we multiply the estimated OD pairs by 10 constants
and solve Equation 26 accordingly. As a result, we have constructed

The road network is obtained from http://openstreetmap.org/.
"The TAZ shape file is obtained from https://data.sfgov.org/.

10 network travel times in which the corresponding congestion
levels® range uniformly from 0.19 to 1.85.

A.2.3 Traffic Conditions via Timestamp Model. Heuristic net-
work travel times can also be generated based on GPS timestamps.
Using the Cabspotting dataset, we equally distribute the time dif-
ference of two consecutive GPS points to all paths that connect
them. For road segments that are covered by multiple GPS traces,
the average travel times are adopted. Using this approach, we have
produced 24 network travel times for each hour in a typical weekday.
An example can be seen at Figure 9 RIGHT. We refer to this method
of generating network travel times as the Timestamp model.

A.2.4  Synthetic GPS Traces. Using established network travel
times, we can generate synthetic GPS traces in which the true tra-
versed paths and other information are known. In order to study
the effect of the number of traces on the estimation accuracy, we
have randomly simulated 20 batches of synthetic traces from 50
to 1000 in increments of 50. Each batch contains 30 sets of GPS
traces and all set contain the same number of traces (e.g. 50). As a
result, we have generated 315,000 traces for each traffic condition
and over 10 million traces in total. A synthetic trace is created by
selecting a random source and a target in the network and planning
the route using the shortest travel time. To mimic features of the
real-world GPS dataset, the sampling rate is set to be 60 seconds,
and all coordinates are perturbed by the Gaussian noise (0,20) in
meters [Yuan et al. 2010].

A.2.5 Evaluation and Comparison. We compare our technique
with two state-of-the-art methods, namely Hunter et al. [2014] and
Rahmani et al. [2015]. The first method is equivalent to the inner loop
of our travel-time estimation process. The number of EM iterations
is set to 5 and the number of random allocations per aggregate
measurement is set to 100. These settings are reported to produce the
highest estimation accuracy in [Hunter 2014]. The second method
takes a non-parametric perspective, using a kernel-based technique
to estimate travel times. The weights used to allocate travel times to
individual road segments are set to be the ratio of free-flow travel
times among road segments [Hellinga et al. 2008].

We set parameters of our nested iterative process as follows:
retaining the same settings for the inner loop as in [Hunter 2014], we
empirically set the number of iterations for the outer loop to 10. This
setting is based on results shown in Figure 10, where the relationship
between the normalized convergence rate (%) and the number of
iterations for both types of network travel times is plotted. Each
datum in the plot is the average value computed using all network
travel times across all sets of synthetic GPS traces of either the SO
model (6,000 trials) or the Timestamp model (14,400 trials). The
measurement of each trial is the mean square error (MSE) between
arecovered and a ground-truth traffic condition (i.e. %ﬂ). As
a result, the convergence rate decreases quadratically as the number
of iterations increases and tends to flatten after 10 iterations.

8The congestion level is measured by VOCs (volume over capacity) computed as

Yees %'
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Fig. 9. LEFT: Sample GPS points from the Cabspotting dataset. MIDDLE: Road maps of downtown San Francisco overlaid with traffic analysis zones (TAZs).
RIGHT: A heuristic traffic condition established via the Timestamp model (the travel times are converted to flows).
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Fig. 10. The relationship between the normalized convergence rate (%) and
the number of iterations of the outer loop of our iterative process is shown.
The convergence rate decreases quadratically as the number of iterations
increases and tends to flat after 10 iterations.

We evaluate our technique using three metrics. The first metric
is the error rate of the aggregate travel time across the entire net-
work, computed as %,Ve e &, where f, represents an
estimated travel time and ete represents a ground-truth travel time.
The top diagram of Figure 11 LEFT shows the results by averaging
the experimental outcomes of all network travel times via the SO
model. The minimum error rate of our technique is 18%, of Rahmani
et al. [2015] is 34%, and of Hunter et al. [2014] is 48%. Experimenting
on network travel times generated via the Timestamp model, the
corresponding minimum error rates are 8%, 28%, and 37%, which
are shown in the bottom diagram of Figure 11 LEFT. As the number
of synthetic GPS traces used in estimation increases, our technique
demonstrates consistent advantages in performance over the other
two methods.

The second metric is the relative improvement of our technique
over existing methods on travel times of all road segments. We

5 5 — Ze(te_ie)z
compute this metric based on MSE = SogT o as:

MSEexisting — MSEour
MSEour
where MSE,, represents the error between a recovered traffic con-

dition using our technique and the ground-truth traffic condition,
and MSEcxis: ing represents the error computed using an existing

1))

RelativeImprovement =
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method with the same ground truth. The maximum relative improve-
ments over Hunter et al. [2014] and Rahmani et al. [2015] under the
SO model (shown in the top diagram of Figure 11 MIDDLE) are 78%
and 97%, and under the Timestamp model (shown in the bottom
diagram of Figure 11 MIDDLE) are 54% and 49%, respectively. In
general, with more synthetic GPS traces used in estimation, better
relative improvements are achieved. Such effects are more apparent
on the SO model than the Timestamp model.

The third metric evaluates the map-matching accuracy. For one
trace, we calculate the success rate as:

SR = #successfully identified road segments

28
#acutual road segments in the trace (28)

We sum all success rates generated using our method and an existing
approach, and derive the relative improvement as:

Z SRour — Z SRexisting
Z SRour

The maximum relative improvements of our method over Hunter
et al. [2014] and Rahmani et al. [2015] under the SO model are
28% and 34%, and under the Timestamp model are 19% and 25%,
correspondingly. These results are shown in Figure 11 RIGHT. Again,
as the number of GPS traces used in recovering network travel times
increases, gains in the improvements are observed.

(29)

A.2.6 Analysis of Bilevel Optimization. We have shown that our
approach outperforms existing methods on estimating travel times
of a road network. In turn, by inverting Equation 24, we can obtain
better estimations of target flows, which serve as inputs to the bilevel
optimization program.

The factors affecting the program are the weighting factor 7,
the noisy level of target OD pairs @, and the noisy level of target
road-segment flows f. The noises of @ and f are assumed to have
zero mean and diagonal variance-covariance matrices [Cascetta and
Nguyen 1988]. In reality, the noisy level of a is difficult to assess
because not only @ usually comes from existing data but also the
true values of @ are seldom. Due to these reasons, in the analysis of
n and the noisy level of f, we set the normalized noisy level of @ to
50%. Subsequently, the normalized noisy levels of f (%) computed
based on MSE of estimated travel times to ground truth are shown
in Figure 12 LEFT and MIDDLE. In general, our technique produces
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Fig. 11. This figure is copied from the main text for convenience. From LEFT to RIGHT, the top diagrams show results generated using network travel times
via the system optimal (SO) model, while the bottom diagrams show corresponding results of network travel times via the Timestamp model. LEFT: The error
rates (%) of various methods of aggregating travel time across the network. MIDDLE: The relative improvements (%) of travel times of all road segments
measured in MSE. RIGHT: The relative improvements (%) of map-matching accuracy measured using successfully identification rates of road segments. In
summary, our technique achieves consistent improvements over other methods as the number of GPS traces used in recovering network travel times increases.
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Fig. 12. LEFT and MIDDLE: The normalized noisy levels (%) of target road-segment flows f computed according to MSE of estimated network travel times to
ground truth. In general, for both models, our technique produces lower noisy levels than other two techniques. RIGHT: The normalized MSE of target OD
pairs @ (%) under different values of the weighting factor 5 and various noisy levels of f (%). When 7 is small, the error is more sensitive to perturbations on f.
Overall, the error increases as the noisy level of f increases. For all studies, the normalized noisy level of target OD pairs @ has been set to 50%. Our method
has achieved consistently lower error rates compared to other methods.

lower noisy levels of f than other two techniques, especially under the embedded white noise, it doesn’t consider other types of noise in
the SO model which is considered to be a better approximation to the data. This is illustrated in the top panel of Figure 13(c): the most
real-world traffic than the Timestamp model [Sheffi 1985]. significant frequency component is captured while other harmonics
In order to evaluate how # and the noisy level of f affect the are reduced to various degrees.

estimation accuracy of @ (i.e. the estimated OD pairs), we compute Considering time-domain only methods, a naive approach is to
the normalized MSE of G (%) under different n and various noisy get the average signal, transform it to the frequency domain, and
levels of f (%). The results are shown in Figure 12 RIGHT. When analyze its frequency components. Though this is a straightforward
n takes a small value (e.g. 0.1), the impact of @ is restricted, thus way in dealing with univariate and multivariate data, the resulting
the MSE of i reacts actively to perturbations on f. As we gradually signal could be a poor summary of original signals both in the time
increase the value of 7, the impact of f attenuates. Nevertheless, the domain (Figure 13(a)) and in the frequency domain (Figure 13(c)
MSE of 1 increases as the noisy level of f progresses. middle panel). The reason is that this approach does not take the

phase variability into account. Due to these reasons, we align signals
A3 Filter Design in the time domain, calculate the average signal, transform it to the

frequency domain, and extract its major frequencies (see Figure 13(b)
and Figure 13(c) bottom panel). As a result, we obtain both important
frequency components and their corresponding magnitudes in the
right ratio. The frequency-domain version of this signal then serves
as our filter.

Traffic exhibits periodic patterns. This phenomenon can be seen
from the example loop-detector data in Figure 6 in the main text.
Referring to the weekly data from a loop detector as a loop-detector
signal, we have observed that such a signal can be approximated
by a small set of Fourier coefficients while the energy and peri-
odic structure are largely retained. This observation inspired us to
develop a frequency domain filter that consists of most dominant
frequency components.

One way of constructing such a filter is to transform all loop-
detector signals to the frequency domain and take the average of all
frequency components. While this approach can expect to reduce
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Fig. 13. (a) Several loop-detector signals are plotted showing phase shifts among them (top panel); the average signal of phase varied loop-detector signals
(bottom panel). (b) Aligned loop-detector signals according to their phase responses (top panel); the average signal of aligned loop-detector signals (bottom
panel). (c) Averaged frequency of phase varied loop-detector signals showing several frequencies are getting degraded (top panel); frequency of the averaged

but phase varied loop-detector signals showing incorrect magnitude ratios (center panel); frequency of the averaged aligned signals with prominent frequencies
and corresponding magnitude ratios (bottom panel).
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