
Dynamic Deformation Textures: GPU-accelerated Simulation of Deformable
Models in Contact

Nico Galoppo+ Miguel A. Otaduy? Paul Mecklenburg+ Markus Gross? Ming C. Lin+

+{nico,prm,lin}@cs.unc.edu, UNC Chapel Hill ?{motaduy,grossm}@inf.ethz.ch, ETH Zurich

1 Introduction

We present an efficient algorithm for simulating contacts between
deformable bodies with high-resolution surface geometry using dy-
namic deformation textures, which reformulate the 3D elastoplastic
deformation and collision handling on a 2D parametric atlas to re-
duce the extremely high number of degrees of freedom arising from
large contact regions and high-resolution geometry. Such computa-
tionally challenging dynamic contact scenarios arise when objects
with rich surface geometry are rubbed against each other while they
bounce, roll or slide through the scene, as shown in Figure 1.

We simulate real-world deformable solids that can be modeled as a
rigid core covered by a layer of deformable material [Terzopoulos
and Witkin 1988], assuming that the deformation field of the sur-
face can be expressed as a function in the parametric domain of the
rigid core. Examples include animated characters, furniture, toys,
tires, etc.

We have developed novel and efficient solutions for physically-
based simulation of dynamic deformations, as well as for collision
detection and robust contact response, by exploiting the layered rep-
resentation of the models and decoupling the degrees of freedom
between the core and the deformation layers.

Figure 1: Soft Object Interaction in a Dynamic Scene.

2 Overview

Our mathematical formulation of dynamic simulation and contact
processing, along with the use of dynamic deformation textures, is
especially well suited for realization on commodity SIMD or par-
allel architectures, such as graphics processing units (GPU), Cell
processors, and physics processing units (PPU). More in particular,
the following key concepts contribute to the mapping of our algo-
rithm to the GPU architecture, resulting in the effectiveness and
efficiency of our algorithm:

• We reformulate the 3-dimensional elastoplastic deformations
and collision processing on 2-dimensional dynamic deformation
textures. This mapping is illustrated in Figures 2 and 3, with the

T CS

g f

Figure 2: Deformable Object Representation. Deformable surface S (52K triangles)
and core C (252 triangles) of a gear, showing the patch partitioning of its parameteri-
zation. The common color coding reflects the mapping g◦ f−1 : C → S. The dynamic
deformation texture T (256×256) stores the displacement field values on the surface.
The gear contains 28K simulation nodes on the surface and 161K tetrahedra, allowing
the simulation of highly detailed deformations.

TD
S

D

Φ g

Figure 3: Texture-Based Collision Detection Process. Center: A sphere S collides
with a textured terrain. Left: Contact plane D for texture-based collision detection, and
mapping φ : D→ S. The contact plane shows the penetration depth. Right: Dynamic
deformation texture T , and mapping g : T → S. The penetration depth is projected
from D to T , and is available for collision response.

2D computational domains indicated by T and D. There is a nat-
ural mapping between the computational domains and graphics
hardware textures.

• Using a two-stage collision detection algorithm for parameter-
ized layered deformable models, our proximity queries are scal-
able and output-sensitive, i.e. the performance of the queries does
not directly depend on the complexity of the surface meshes. We
perform high resolution collision detection with an image based
collision detection algorithm, implemented on the GPU.

• By decoupling the parallel update of surface displacements and
parallel constraint-based collision response from the update of
the core DoFs, we provide fast and responsive simulations un-
der large time steps on heterogeneous materials. We have im-
plemented this parallel implicit contact resolution method on the
GPU, thereby exploiting the inherent parallellism of the GPU ar-
chitecture.

3 Algorithm and Parallel Implementation

The implicit formulation of the dynamic motion equations and col-
lision response yields linear systems of equations with dense cou-
pling between the core and elastic velocities. However, we can for-
mulate the velocity update and collision response in a highly paral-
lelizable manner [Galoppo et al.]. In Fig. 4 we outline the entire
algorithm for simulating deformable objects in contact using dy-
namic deformation textures. We refer the interested reader to [Ga-
loppo et al.] for details of the equations. Let s denote the opera-

tions that are performed on small-sized systems (i.e., computations
of core variables, and low resolution collision detection). The re-
maining operations are all executed in a parallel manner on a large
number of simulation nodes. Specifically, T refers to operations
to be executed on all simulation nodes in the dynamic deformation
texture T , D refers to operations to be executed on texels of the
contact plane D, and TD refers to operations to be executed on the
colliding nodes.

COLLISION-FREE UPDATE
1. Evaluate forces T
2. Solve the sparse linear systems M̃ey = F̃e and M̃eY = M̃ec ([Galoppo

et al.]), using a Conjugate Gradient solver [Golub and Van Loan
1996]

T

3. Update core velocities v−c s
4. Update elastic velocities v−e T
5. Perform a position update q− = q(t)+∆tP+v− T

COLLISION DETECTION
6. Execute low-resolution collision detection s
7. Compute penetration depth and contact normal D
8. Map contact information to the dynamic deformation textures T

COLLISION RESPONSE
9. Invert the block-diagonalized full-rank matrix JeM̃−1

e JT
e TD

10. Solve for Lagrange-multipliers λ using the Sherman-Morrison-
Woodbury formula

TD

11. Repeat steps 3 and 4 to obtain the collision impulse δv
12. Compute friction impulse TD

13. Perform a position update q(t +∆t) = q−+∆tP+(δv) T
CONSTRAINT CORRECTION

14. Repeat collision detection steps 6 to 8
15. Apply constraint correction TD

Figure 4: Summary of Our Simulation Algorithm

As highlighted in the algorithm above, all operations to be exe-
cuted on simulation nodes can be implemented with parallelizable
computation stencils. Moreover, due to the regular meshing of the
deformable layer, the computation stencils are uniform across all
nodes. Boundaries between different texture patches, however, re-
quire special treatment in order to allow the use of uniform stencils.
We adapt a method by Stam [2003] for providing accessible data in
an 8-neighborhood to all nodes located on patch boundaries. Be-
fore every sparse matrix multiplication step in the algorithm, we fill
a
√

2-texel-width region on patch boundaries by sampling values on
the adjacent patches. Note that this sampling step removes the per-
fect symmetry of the large sparse linear systems to be solved, but
in practice we have only found a slight decrease in the convergence
of the Conjugate Gradient solver.

Due to its parallellizable nature, we were able to accelerate ma-
jor parts of the algorithm on the GPU. In particular, all parts in-
dicated by T , TD and D were implemented on the GPU. Dynamic
deformation textures map naturally to graphics memory textures,
thus the elastic displacements qe and velocities ve associated with
FEM nodes in the deformable layer are stored and updated directly
in the GPU. Similarly, we exploit the implicit FEM mesh defined
by the regular sampling of dynamic deformation textures for storing
the stiffness coefficients local to the nodes in auxiliary GPU tex-
tures. The updates of elastic displacements and velocities (marked
with T and TD in the algorithm in Fig. 4) are executed by per-
forming shader operations on fragment programs, exploiting Frame
Buffer Objects for direct computations on textures. The updates of
core velocities, on the other hand, are executed in the CPU after
gathering intermediate computations performed in parallel on all
nodes. Note that the communication between CPU and GPU is
reduced to issuing commands and small data packets whose size
is determined by the number of DoFs of the core. The efficient
GPU-implementation of gather operations and sparse matrix mul-
tiplications, also required in the solution of linear systems using
the Conjugate Gradient method, has been explored before [Kruger

and Westermann 2003]. We exploit the Multiple Render Target ex-
tension to implement the Sherman-Morrison-Woodbury update, en-
abling the output of 3×3 matrices in one pass.

For the execution of collision detection, we also exploit image-
based computations on the GPU. The computations of per-texel
penetration depth and contact normal are performed by orthonor-
mal projection of the low-resolution core geometry onto the con-
tact plane D, and by using texture mapping to map the positions
of the high-resolution surfaces to D. This projection is also used
in shadow mapping-alike technique to obtain the inverse mapping,
from the contact plane D back to the dynamic deformation texture
T for contact response.

4 Results

In Figure 1, we show a scene where deformable tires with high-
resolution features on their surfaces roll, bounce, and collide with
each other. This simulation consists of 324K tetrahedra and 62K
surface simulation nodes. Such high resolution enables the simula-
tion of rich deformations, as shown in the accompanying video. All
contacts on the surface have global effect on the entire deformable
layer, they are processed simultaneously and robustly. Without any
precomputation of dynamics or significant storage requirement, we
were able to simulate this scene, processing over 15,000 contacts
per second, on a 3.4 GHz P4 with NVidia GeForce 7800.

Our approach is considerably faster than other methods that enable
large time steps, such as those that focus on the surface deformation
and corotational methods that compute deformations within the en-
tire volume, with more stable collision response. Our approach can
also handle many more contact points than novel quasi-rigid dy-
namics algorithms using LCP [Pauly et al. 2004], while producing
richer deformations, between moving objects (Figure 5).

Acknowledgements: This work was partly funded by the following agencies: NSF,
DARPA, RDECOM, ARO and ONR.

Figure 5: Rich Deformation of Detailed Geometry. Bottom-left corner: views from
below the upper pumpkin as it collides with the bottom pumpkin and deforms.

References

GALOPPO, N., OTADUY, M. A., MECKLENBURG, P., GROSS, M., AND LIN, M. C.
Fast simulation of deformable models in contact using dynamic deformation tex-
tures. Technical Report, UNC Chapel Hill - ETH Zurich.

GOLUB, G. H., AND VAN LOAN, C. F. 1996. Matrix Computations, 3rd ed. Johns
Hopkins University Press.

KRUGER, J., AND WESTERMANN, R. 2003. Linear algebra operators for GPU im-
plementation of numerical algorithms. In Proc. of ACM SIGGRAPH.

PAULY, M., PAI, D. K., AND GUIBAS, L. J. 2004. Quasi-rigid objects in contact. In
Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer Animation.

STAM, J. 2003. Flow on surfaces of arbitrary topology. In Proc. of ACM SIGGRAPH.

TERZOPOULOS, D., AND WITKIN, A. 1988. Physically based models with rigid and
deformable components. IEEE Computer Graphics and Applications 8, 6.

