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Abstract—We present a whole-body motion planning algo-
rithm for human-like robots. The planning problem is decom-
posed into a sequence of low-dimensional sub-problems. Our
formulation is based on the fact that a human-like model is a
tightly coupled system and we use a constrained coordination
scheme to solve the sub-problems in an incremental manner.
We also present a local path refinement algorithm to compute
collision-free paths in tight spaces and satisfy the statically
stable constraint on CoM. We demonstrate the performance of
our algorithm on an articulated human-like model and generate
efficient motion strategies in complex CAD models.

I. INTRODUCTION

The problem of modeling and simulating human-like

motion arises in different applications, including humanoid

robotics, biomechanics, digital human modeling for virtual

prototyping, and character animations. One of the main goals

in this area is to develop efficient motion strategies for whole-

body planning for various tasks including navigation, sitting,

walking, running, object manipulation, etc. The entire human

body consists of over 600 muscles and over 200 bones, half

of which are found in the hands and feet. Even the simplest

human-like models represent the skeleton as an articulated

model with 30− 40 joints to model the different motions.
The underlying complexity makes it hard for a planner to

efficiently compute the motion due to the dimension of the

configuration space. In addition to collision-free constraints,

the resulting motion also needs to satisfy the posture and

dynamics constraints.

Recent research in robotics has focused on motion plan-

ning of humanoids due to the commercial availability of hu-

manoid robot hardware [11], [20]. Many earlier approaches

use a simple bounding volume (e.g. a cylinder) approxi-

mation of the entire human model [19] or the lower body

[1], [26] to compute the collision-free motions, and design

appropriate gaits or locomotion controllers to follow those

trajectories [14], [16]. Recently there has been a trend

of computing the motion for the whole body [13], [34].

However, most prior motion planning approaches are only

efficient for open or simple environments and their perfor-

mances may degrade in cluttered environments.

Besides humanoids, another driving application of human-

like robots is digital modeling of humans or mannequins for

design, assembly and maintenance in CAD/CAM and virtual

prototyping [8], [21]. The digital human models can be

inserted into a simulation or virtual environment to facilitate

the prediction of performance, safety and ergonomic analysis

of the CAD models. For example, human-like models are

used in validating vehicle or aircraft designs to ensure that

there will be sufficient clearance in the CAD model for

a human operator to remove a complex part. In order to

perform these tasks, we need to develop capabilities for

complex motion strategies (e.g. sitting, bending), handling

narrow passages, and planning in cluttered environments.

One approach to solve high DOF planning problems is

to decompose a problem into a set of lower dimensional

sub-problems [1], [2], [15]. For instance, a human-like robot

can be decomposed into the lower body and the upper

body. In order to deal with CAD/CAM applications, we

need to handle cluttered environments and model many other

motions, which cannot be efficiently generated by simple

decompositions. In addition to collision-free constraints, the

motion of human-like robots is subject to statically or dynam-

ically stable constraints. There is a general perception that

actual human motion results from simultaneously performing

multiple objectives in a hierarchical manner, and researchers

have developed similar models for dynamics control [29]. It

would also be useful to develop approaches that use hierar-

chical decompositions for planning human-like motions.

Main Results: We present a whole-body motion planning

approach for human-like robots by coordinating the motions

of different body parts. Our approach performs a hierarchical

decomposition and takes into account that a human body is

a tightly coupled system.

• We describe a new constrained coordination scheme that

uses constrained sampling and incrementally computes

the motion for different parts, satisfying collision-free

constraint.

• In order to deal with cluttered or tight scenarios, we

present a local path refinement algorithm that takes into

account the workspace distance information to control

the amount of modification on the path.

• We modify statically unstable samples by using inverse

kinematics (IK) so that the new samples are statically

stable with respect to the center of mass of the robot.

We demonstrate the performance of our algorithm on an

articulated human-like model with 40 DOF. We generate var-

ious motion strategies corresponding to bending, standing-

up, and grabbing objects in different complex scenarios. In

practice, our planner is able to compute a collision-free and

statically stable motion in tens of seconds. Within a two-

stage framework which first computes a collision-free path

then transforms the path to a dynamically stable trajectory



(Fig. 2), our approach can improve the efficiency of the first

stage.

The rest of the paper is organized as follows. We give a

brief survey of related work in Section II and an overview

of our decomposition approach in Section III. Section IV

presents the constrained coordination algorithm as well as

local path refinement. We describe our implementation in

Section V and highlight its performance.

II. PREVIOUS WORK

There is an extensive literature on motion planning, coor-

dination and dynamic control of human-like robots. In this

section, we give a brief overview of related work on motion

planning for human-like robots, dimensionality reduction and

path replanning.

A. Motion Planning for Human-Like Robots

Sampling-based approaches have been successfully ap-

plied to human-like robots to plan various tasks. These

include efficient planning algorithms for reaching and manip-

ulation that combine motion planning and inverse kinematics

[6], [7] or computing the whole body motion [13]. The

motion strategies for human-like robots such as walking

can also be computed by using walking pattern generators

[14], [16], [18]. To plan collision-free and dynamically

stable motions, many previous approaches use a decoupled

two-stage framework (Fig. 2) [12], [20], [35]. Task-based

controllers have also been presented to plan and control the

whole-body motion [11], [29]. In the domain of computer

animation, motion capture data are often used to synthesize

natural human motion [32].

B. Dimensionality Reduction

Decomposition techniques can reduce the overall dimen-

sionality of motion planning problems and have been ap-

plied to articulated robots or multi-robot systems [2], [15].

Different coordination schemes for combining the solutions

of lower dimensional sub-problems are presented in [9],

[23], [28]. Simple decomposition schemes based on the

lower-body and upper-body can be used for planing the

motion of human-like robots [1]. Another effective scheme

for dimensionality reduction is to use reduced kinematic

models, such as using a bounding cylinder to approximate

the lower body [19], [26]. A multi-level method to adjust the

activated DOF according to the environment is presented in

[34]. Finally, PCA-based analysis or various task constraints

can also be used to guide the sampling towards the lower

dimensional space [5], [30].

C. Path Modification and Replanning

The step of path modification is often required by many

motion planning approaches. Retraction-based sampling ap-

proaches can effectively deal with narrow passages and

cluttered environments [4], [36]. By performing random

perturbation or penetration depth computation, a path with

colliding configurations can be repaired. For motion planning

among dynamic obstacles, local path modification algorithms
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Fig. 1. A human-like robot with 40 DOF and one decomposition scheme
for this model. Our approach computes the motion for the body parts

sequentially by starting from the root of the hierarchy of the decomposition.
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Fig. 2. Within the decoupled two-stage framework for planning a motion
satisfying with both collision-free and dynamically stable constraints, our

approach can improve the efficiency of the stage I: collision-free and

statically stable motion computation.

modify the portion of the path to avoid the moving obstacle

or to accommodate changes in the connectivity [27], [33].

Since global modification needs to replan for the entire

connectivity map, it is usually much more expensive [10],

[17].

III. OVERVIEW

In this section, we introduce our notation and give an

overview of our planning algorithm. Planning a path for

a human-like robot by taking into account all the DOF is

often difficult due to the underlying high dimensional search

space. Our approach represents a human-like robot by using

a set of body parts, i.e. {A0,A1, ...,An}. We decompose the
problem into multiple sub-problems of lower dimensions,

and compute the motion for the body parts in a sequential

order. A key feature of our algorithm is that planning the

path of the kth body part is coordinated with the paths of

the first k−1 body parts computed earlier. Furthermore, all
these paths can be refined using a local refinement scheme.

In this manner, the paths for the first k− 1 body parts can
possibly be updated during the planning of the kth body part.

This form of sequential planning along with path refinement

helps us treat the whole-body as a tightly coupled system.
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Fig. 3. Whole-Body Motion Planning using Constrained Coordination.

We first compute the path for A0 while ignoring all the other parts. When

planning the motion for the system {A0,A1}, the motion of A0 is constrained
on the path M00 (t) but this path can be locally refined. We refer this step as
constrained coordination (Fig. 4).

A. Decomposition of a Human-like Model

The simplest decomposition of a human-like robot

decomposes the whole-body into different body parts

{A0,A1, ...,An}. In this case, it is assumed that each Ai has
few DOF. Fig. 1 shows a decomposition scheme, where

a human model is decomposed into parts: a lower-body

(including legs and pelvis), torso, head, left arm and right

arm. In this decomposition, the lower body is treated as the

root of the tree. It is possible to compute another decom-

position where the root node (A0) corresponds to the torso.

Furthermore, we build a hierarchical representation based on

the inter-connection between the parts. For example, each

arm can be further decomposed into upper arm, lower arm,

hand, etc.

We use the symbol q to denote the configuration of a

human-like robot. q is composed of configurations qi for

each body part, i.e. q= (q0,q1, ...,qn), where qi corresponds
to the configuration of Ai. Since we are dealing with artic-

ulated models, the configuration qi for Ai is determined by

all of its actuated joints, including the joint through which

Ai is connected to its parent body part in the decomposition

tree. For the lower body part A0, 6 additional unactuated

DOF can be added to the system to specify the position

and orientation of the coordinate frame associated with the

pelvis For instance, The basic motion planning problem for

a human-like robot is to find a collision-free path between

the starting configuration qs = (q0s ,q
1
s , ...,q

n
s ) to the goal

configuration qg = (q0g,q
1
g, ...,q

n
g). In practice, the resulting

motion should also satisfy with statically or dynamically

stable constraints.
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Fig. 4. Constrained coordination algorithm: It includes a path computation
stage for the new part and refinement of the paths of the other parts.

B. Whole-Body Motion Planning using Constrained Coordi-

nation

A human-like model is a tightly coupled system and

the inter-connection between the body parts needs to be

maintained during planning. One possibility is to decompose

this high dimensional robot into a multi-robot planning

problem by treating each part as a separate robot. There

is rich literature on multi-robot motion planning and at a

broad level prior approaches for multi-robot planning can

be classified into centralized or decentralized methods. The

centralized methods compose all the different robots into

one large coupled system. The DOF of the coupled system

corresponds to the sum of DOF of all the robots. Such an

approach could be extremely inefficient for a human-like

robot due to the high DOF configuration space. The decen-

tralized planners compromise on the completeness by using

a decoupled approach. The decentralized planner typically

proceeds in two phases. In the first phase, a collision-free

path is computed for each robot with respect to the obstacles

and the collisions between the robots are handled in the

second phase by adjusting their velocities. Since a human-

like robot is a tightly coupled system, it would be hard using

purely decoupled methods to maintain the inter-connection

constraints between adjacent links of the robot.

We propose a hybrid coordination scheme that is based

on prior work on prioritized or incremental coordination

approaches [9], [28]. Our algorithm proceeds hierarchically

using the decomposition of the human model and computes

the path of different nodes in the tree in a breadth-first way.

The path computed for a part corresponding to a node, also

takes into the account the path of its parent node and other

paths computed so far.

We describe the main idea behind constrained coordination

by taking into account two objects, A and B. Suppose A has

m DOF and B has n DOF. By considering the two objects as

a composite system, {A,B}, a centralized planner needs to
search over a m+ n dimensional space. On the other hand,
decentralized approaches plan each object independently by

searching the m and n dimensional spaces corresponding to

each robot. We improve the decentralized planning by using

an incremental coordination strategy. A collision-free path

MA(t) for A is computed by ignoring B. Next, a collision-
free path for the system {A,B} is computed by coordinating



A and B. During the coordination, a path constraint for A

is imposed so that the configuration of A should lie on the

path MA(t). The coordination of the system {A,B} is the
n+ 1 dimensional search space, since A is constrained on
a one-dimensional path with the parameter t and A1 has n

DOF. Intuitively, this approach computes a path for B (i.e.

MB(t)), based on the original trajectory (MA(t)) computed
for A. However, it is possible that the original path computed

for A may not result in a feasible path for B such that {A,B}
may satisfy all the collision and dynamics constraints as

shown in Fig. 5. In the case of human-like motion, such a

hard constraint can result in either an inefficient planner or a

failure to compute a solution that satisfies all the constraints.

In order to address this issue, we use a local refinement

scheme that modifies the computed trajectory MA(t), as it
computes a collision-free path for B. In Section IV, we

present an implicit local path refinement algorithm based on

constrained sampling and interpolations.

C. Planning Stable Motions

In addition to collision-free and joint limit constraints,

the motion of human-like robots is subject to statically

or dynamically stable constraints. The computed postures

should either be statically stable, i.e. the projection of the

center of mass of the robot (CoM) lies inside the foot

support polygon, or dynamically stable, i.e. the zero moment

point (ZMP) lies inside the support polygon [31]. However,

due to the computational complexity necessary to plan the

collision-free and dynamic motion together, most previous

approaches tend to use a decoupled two-stage framework

[12], [20], [35]. For instance, a collision-free path can be first

computed. The path then is transformed into a dynamically

stable trajectory. Each of these stages is iterated until both

types of constraints are satisfied (Fig. 2). Our approach can

be extended to compute a statically stable motion. If any

sample generated by the constrained coordination algorithm

is not statically stable, we further modify the sample by

using inverse kinematics (IK) so that the CoM at the new

sample lies inside the approximate foot support polygon.

Within the two-stage framework, our approach can improve

the efficiency of the first stage on computing a collision-free

and statically stable path. Such path is further processed by

the second stage.

IV. CONSTRAINED COORDINATION

In this section, we present our constrained coordination

approach. It is primarily designed for human-like or tightly

coupled robots that have high DOF. Our approach consists

of two parts: a modified incremental coordination algorithm

and local path refinement.

A. Path Computation

Our algorithm proceeds in multiple stages, as shown in

Fig. 3. We use the symbol Mij(t) to denote the path of part

Ai computed after stage j. After stage j, the algorithm has

computed the following paths:Mij(t) for A
i, for i= 0,1, . . . , j.

As shown in Fig. 4, during this stage, the algorithm computes

d

A0

A1

M0(t) A0

A1

Fig. 5. Given an articulated robot with two links A0 and A1, a path M0(t)
for A0 is first computed. However, when A0 moves along M0(t), it comes
very close to the obstacle (shown in blue), as the separation distance d is

very small. This leads to no feasible placement for A1, as it collides. To

resolve such cases, our constrained coordination scheme locally refines the

path M0(t) by moving it upwards (shown with green arrow), while planning
the motion for A1. In practice, such a local refinement approach is more

efficient as compared to global replanning.

paths for A0, A1, . . . , A j by simultaneously searching the

C-space of A j and the 1 dimensional time space of the set

of paths (M0j−1(t),M
1
j−1(t), . . . ,M

j−1
j−1(t)), and locally refining

each of the paths M0j−1(t),M
1
j−1(t), . . . ,M

j−1
j−1(t). Later, we

show the local path refinement can be performed implicitly

within a sample-based planner. The algorithm traverses the

entire hierarchy of body parts, {A0, ...,An}, sequentially
in the breadth-first order of the tree. After stage n, the

algorithm has computed a path for all the parts that satisfy

the constraints.

B. Implicit Local Path Refinement

A key aspect of our constrained coordination algorithm is

refining the path that was computed at the previous stage.

In this section, we present a local replanning algorithm that

takes into account the decomposition of human-like robots

and the path computation algorithm highlighted above. We

observe that within an incremental coordination scheme for

two objects {A0,A1}, the motion of A0 is strictly constrained
on the path computed earlier. This can lead to the difficulty of

planning a motion for the overall robot, or the failure in terms

of finding a solution. Fig. 5 shows such an example for an

articulated robot with two links A0 and A1. When A0 moves

along the path M00(t), its distance d to the obstacle becomes
too small, which results in no feasible placement for A1. This

issue can arise when we are attempting to compute a collision

free path in a cluttered environment or in a narrow passage.

Since the robot is decomposed into many body parts, each

body part is constrained by predecessors, as given by the

breath first order of the tree. In this case, we refine the path

for A0, given as M00(t), and compute a new path M
0
1(t).

Our algorithm uses a sample-based planner to compute

a path during each stage and we design an implicit local

refinement scheme that can be integrated with any sample-

based approach. The two main steps of sample-based plan-

ning is generating samples in the free space and computing

an interpolating motion between those samples using local

planning. Instead of explicitly modifying the path computed

in the previous stage, our algorithm performs constrained

sampling and constrained interpolation so that the generated

samples or local motions are allowed to move away from the



Algorithm 1: Constrained Sampling

Input: Body parts A0 and A1;
A collision-free path M0(t), t ∈ [0,1] for A0

Output: A random configuration (q0,q1) for {A0,A1} where
q0 subjects to the path constraint M0

begin

q1 = Random configuration of A1

// Sampling the path M0

trand = Rand(0,1)
q0 =M0(trand)
// Perturbation
r = Shortest vector from any obstacle to A0

λ = A random scale factor (See Section IV.B)
∆r = λr
∆q0 = InverseKinematics(A0, q0, ∆r)
q̃0 = q0+∆q0

return (q̃0,q1)
end

constraining path up to a threshold. In this way, we achieve

the path refinement implicitly. In the following, we present

the algorithm for a composite system with two robots, which

can be generalized to a system with n robots.

1) Constrained Sampling: Our algorithm (Alg. 1) gener-

ates a configuration for the system {A0,A1} subject to the
path constraint. A configuration q1 for A1 is computed by

randomly sampling its configuration space. A configuration

of A0 is computed by randomly generating a value trand on

the path M0(t), which lies in the coordination space [0,1]. If
the composite configuration (M0(trand),q

1) is collision free
for the system {A0,A1}, it can be used by a sample-based
planner. Otherwise, we perturb the configuration as part of

the refinement step.

We determine the closest points between A0 at the con-

figuration M0(trand) and the obstacles. Let us denote the
closest point on A0 using p and let r be the vector from

the closest point of the obstacles to p. The basic idea for

perturbing the configuration M0(trand) for A
0 is to increase

the clearance between A0 and the obstacles so that we can

avoid the situations shown in Fig. 6. In order to perform

such a perturbation, we randomly choose a scale factor λ .

The desired displacement for the point p in the workspace

after the perturbation then is ∆r= λr. λ is chosen larger than

−1, which can guarantee that the point p does not collide
with obstacles when A0 moves. Furthermore, a Gaussian

distribution function is used when randomly choosing λ so

that the probability of choosing a value near to 0 is higher.

Therefore, the constrained sampling algorithm has higher

probability of generating samples near the constraint path.

Finally, we compute the amount of perturbation ∆q0 for A0

by solving the inverse kinematic problem, ∆r= J0p∆q
0, where

J0p is the Jacobian for the point p on A
0.

2) Constrained Interpolation: We address the issue of

motion interpolation during our path refinement algorithm.

Given two configurations of the system {A0,A1}, our goal is
to interpolate a motion between them that satisfies the path

constraint. The interpolation between the two configurations

of the body part A1 can be computed by a linear or other

t0 t1

M0(t)

A0

Fig. 6. Our constrained coordination approach does not strictly constrain
the motion of A0 on the path M0(t). Rather, A0 is allowed to move away
from the path locally based on refinement. The extent of perturbation is

determined by a Gaussian distribution function. Within a sample-based

planner, the local path refinement is implicitly performed by using our

constrained sampling and constrained interpolation schemes.

interpolation algorithm. Differently, when interpolating the

two configurations of A0, the resulting motion of A0 should

be constrained on the path M0(t) computed earlier. Let us
denote t0 and t1 as the parameters of the two configurations of

A0 on the path M0(t). The interpolation for A0 is constrained
on the path M0(t) and passes all the nodes along the path
between t0 and t1 as shown in Fig. 6. Together with the

interpolating motion for A1, we finally obtain a constrained

interpolating motion for the entire system {A0,A1}. If the
new interpolation for the system is not collision free, we

locally perturb these nodes by changing the configurations

for A0 using the perturbation described above. The resulting

interpolating motion is used by a sample-based planner.

C. Statically Stable Motion

Our constrained coordination algorithm can be extended

to generate a statically stable motion for a robot. In the

coordination algorithm, we modify the last stage for coordi-

nating between An and {A0,A1, . . . ,An−1}. During this stage,
we also check whether the configuration q generated from

constrained sampling is statically stable, i.e. the projection

of the center mass (CoM) point of the robot at q lies inside

the support polygon defined by the robot’s support feet (foot

for single foot support case). If the configuration q is not

statically stable, we perturb it to generate a statically stable

configuration q′ and ensure that the foot placement is not

changed. The perturbation step is reduced to an inverse

kinematic problem. The projection of CoM point is treated as

one end-effector in the IK problem. The Jacobian of this end-

effector can be easily derived according to the kinematics of

the robot and the mass of each body part. In the IK problem

formulation, this end-effector needs to be moved toward the

center of the support polygon until it is inside the polygon.

In order to maintain the foot contact constraint, we choose

three contact points from each contact foot as additional end-

effectors. Their positions are not changed. To solve the IK

problem, we use a damped least squares method [3].

The modified constrained sampling allows us to generate

statically stable samples for sample-based planners. We also

need to check whether the interpolating motion between

samples is statically stable. One simple way is to discretely

sample along the interpolating motion and check each sample

individually. If any sample is not statically stable, we can

perturb it by using our IK-based CoM perturbation technique.
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Fig. 7. The crouching robot picks the object from the ground and puts it on the table (a-e). When performing this task, the robot needs to avoid the
collision with the environment and maintain its balance. Our algorithm can efficiently compute a valid motion for the robot within 10.1s. The entire motion
is shown in (f). We highlight the center of mass (CoM) of the robot at each configuration. The projection of CoM onto the ground shows that the robot

maintains the statically stable constraint along the motion we have computed.

Fig. 8. The robot moves toward one chair and sits down. To avoid the

collision with the overhead light, the robot needs to bend itself. This scenario

has narrow passages and tight spaces, and therefore, the planner takes more

time.

V. IMPLEMENTATION AND RESULTS

In this section, we describe our implementation and the

performance of our algorithm in many complex scenarios.

We use a human-like robot with 40 DOF as shown in Fig.

1. The robot model is mobile and able to bend the torso or

head and sit. Six of the 40 DOF are unactuated and used

to specify the position and orientation of the virtual base.

The robot is modeled by 22K triangles and it is decomposed

into five body parts {A0,A1, ...,A4} in our benchmarks. The
number of DOF for each body part is specified in Fig. 1.

The underlying planner uses a sample-based path compu-

tation algorithm - bidirectional RRT [22]. We also augment

the sampling and motion interpolation components to per-

form local path refinement. When planning the motion for

the first k parts of the robots, we ignore the rest of the body

parts by temporarily deactivating those parts from motion.

Moreover, we use PQP library for collision detection and

closest distance queries with the obstacles and also among

various parts of the robot. We use a damped least squares

method for computing IK [3]. Our current implementation

is not optimized and it is possible to further improve the

running time.

Figs. 7,8,9,10 show four complex scenarios that are used

to analyze the performance of our algorithm. The resulting

algorithm computes motion strategies corresponding to bend-

ing, standing up, and grabbing objects in complex scenarios.

In Fig. 7, the robot is crouching. In order to pick the object

from the ground and put it on the table, the robot needs to

first stand up and then bend its torso. Our algorithm can

efficiently compute a collision-free motion to achieve this

task within 10.1s on a Pentium IV PC. The second scenario

shows the motion of the human-like robot in a dining room

(see Fig. 8). In this case, the robot walks from its initial

position towards the dining table and eventually sits down.

In Fig. 9, a whole-body motion for the robot is computed by

our planner. The robot is able to pass through a tight space

or a narrow passage between the two bookshelves. When

the robot passes through the narrow passage, it needs to

coordinate its arm motion as well as its lower body motion to

avoid collisions with the obstacles. The total computational

time to compute a collision-free path for this benchmark is

18.3s.

In Fig. 10, we show a scenario arising in CAD application.

The human-like robot’s right hand is grabbing a tool. The

human-like robot needs to move his body inside the car

to fix some parts using the tool. The CAD model of the

car has 244k triangles and the algorithm needs to check

for collisions with the car seat, roof and other parts. Our

algorithm can efficiently compute a collision-free motion for

this benchmark in 25.1s.



Fig. 9. The robot passes through a narrow passage between two bookshelves.

Bookshelves Dinning Room Car Crouching
Stage Time (s) Nodes Time (s) Nodes Time (s) Nodes Time (s) Nodes

A0 4.719 269 24.328 559 0.407 51 0.100 102

A0, A1 2.180 115 5.719 134 0.563 100 1.063 104

A0, A1, A2 2.165 126 6.000 132 1.719 237 1.234 105

A0, A1, A2, A3 5.201 89 6.796 74 16.891 1,436 4.266 183

A0, A1, A2, A3, A4 3.504 80 14.641 168 5.453 257 3.375 109

Overall Planning 18.328(s) 56.809(s) 25.078(s) 10.117(s)

TABLE I

Performance of our approach on various benchmarks. We show the timing and the nodes in the resulting RRT at each stage of our constrained

coordination. We also highlight the total timing for each benchmark. Our approach computes a collision-free path for the human-like robot with up to

tens of seconds on various scenarios.

Bookshelves Dinning Room Car Crouching

Decomposition as Fig. 1 (s) 18.3 56.8 25.0 10.1

Decomposition of lower and upper bodies (s) 84.3 63.8 69.6 19.7

Centralized approach (s) 191.6 73.0 113.3 73.4

TABLE II

Comparison of the performance between our approaches based on different decomposition schemes and the centralized approach.

In table I, we show the timing and nodes corresponding

to each stage of the constrained coordination algorithm. In

these examples, the locomotion such as walking, sitting and

standing up are currently generated using kinematic pattern

generators (e.g. a walking cycle generator).

We compared the performance of our approach based

on the decomposition in Fig. 1, our approach based on

the lower-body and upper body decomposition, and the

centralized planner applied to the entire robot. Table II shows

that our approach can achieve up to 10 times speedup in the

performance over the centralized approach. Our approach of-

ten achieves more speedups in more cluttered environments.

Limitations. Our approach has some limitations. The under-

lying planner is not complete and its performance can vary

with the scenario and the start or goal configurations. The

performance depends considerably on the quality of specific

paths computed for the previous stages. In the subsequent

stages, we only use local refinement techniques to perform

local modifications to the path. Secondly, due to randomized

sampling, the motion computed by our planner can be

unnatural, especially when the robot is in open environment.

Recently, by combining the motion computed by our planner

with motion capture data, we can synthesize more natural

motion [25].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an algorithm to compute

whole-body motion for human-like robots. Our approach can

handle high-DOF robots and uses decomposition strategies

to reduce the problem to a sequence of low-dimensional

problems. We use a constrained coordination approach that

solves each sub-problem incrementally, and performs local

refinement to satisfy collision-free and statically stable con-

straints on CoM. We have demonstrated the performance on a

40-DOF robot in complex scenarios and generated collision-

free motion paths corresponding to walking, sitting, bending

in complex scenes with tight spaces and narrow passages.

There are many avenues for future work. It is interesting to

extend our approach for the situations when the kinematic

model of the robot forms single or multiple closed loops.

For such situations, inverse kinematic methods can be used

to obtain closed loops. We would also like to compute

dynamically stable motions. Finally, we are interested in

experimenting on more complex scenarios [24] with more

DOF and difficult narrow passages that arise in virtual

prototyping and applying our approach to digital human

modeling and ergonomic analysis.
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Fig. 10. The robot’s right hand is grabbing a tool. The robot needs to move its upper-body inside a car to fix some parts with the tool. Our algorithm
can efficiently compute a collision-free motion for the robot in 25.1s.
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