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Abstract

We present a novel algorithm for fast computation of dis-
cretized distance fields using graphics hardware. Given a
set of primitives and a distance metric, our algorithm com-
putes the distance field along each slice of a uniform spatial
grid by rasterizing the distance functions. It uses bounds
on the spatial extent of Voronoi regions of each primitive as
well as spatial coherence between adjacent slices to cull the
primitives. As a result, it can significantly reduce the load
on the graphics pipeline. We have applied this technique
to compute the Voronoi regions of large models composed
of tens of thousands of primitives. For a given grid size,
the culling efficiency increases with the model complexity.
To demonstrate this technique, we compute the medial axis
transform of a polyhedral model. In practice, we are able
to obtain up to one order of magnitude improvement over
earlier algorithms that compute the distance fields using
graphics hardware.

Keywords: distance fields, graphics hardware, Voronoi re-
gions, proximity computations, fragment programs

1 Introduction

Given a set of geometric objects, a distance field is de-
fined at each point by the smallest distance from the point
to one of the objects. Distance Fields have been used in a
number of applications including implicit surface represen-
tation, proximity queries, spatial data manipulation, shape
analysis, path planning, skeletonization, pattern recognition
and local optimization. The problem of computing a dis-
tance field is closely related to the problem of computing a
Voronoi diagram. Once the voronoi diagram is computed,
the distance field can easily be computed as the distance to
the respective site. For higher order objects, such as lines
and triangles, one needs to compute a generalized voronoi
diagram.

Most practically efficient methods for computing the dis-
tance fields in2− or 3−space compute the distance field
on a discrete grid. Essentially the methods fall into 2 cat-
egories: methods based on front propagation and methods
based on Voronoi regions.

Main Contributions: In this paper we present an ap-
proach that computes discrete approximations of the 3D dis-
tance field and its application to medial axis computation
using the graphics hardware. Our contributions include:

1. A novel site culling algorithm that uses Voronoi region
properties to accelerate 3D distance field computation

2. A technique for reducing the fill per slice using con-
servative bounds on the Voronoi regions

3. Formulation of a distance field application as a SIMD
process that is efficiently computed on modern graph-
ics hardware.

The algorithm has been implemented and applied to in-
put models consisting of tens or hundreds of thousands of
triangles. The running time on a 2.5GHz PC with an nVidia
GeForce FX 5800 Ultra graphics card ranges from a second
for small models to tens of seconds for huge models. Our
approach improves on the state-of-art in following ways:

• Generality: No assumption is made with regards to in-
put set. The input models can be non-orientable, non-
manifold surfaces.

• Efficiency: We show our approach is significantly
faster than previous approaches. The culling tech-
niques provide us with a4 − 20 times speedup in dis-
tance field computation over previous approaches that
can handle generic models. The GPU based computa-
tion of the medial axis is2 − 75 times faster than the
CPU based implementation.

• Scalability: The performance gain increases as the
model size increases.



2 Related Work

The problem of computing a distance field can be
broadly classified by the type of input object representation.
The object can be given either as a data on a voxel grid, such
as a binary image or as an explicit surface representation,
such as a triangle mesh.

2.1 Voxel Data based methods

Methods to compute the distance transform of voxel data
can be approximate or exact. Approximate methods con-
sider distance transformations in a local neighborhood of
each voxel. Danielsson [4] uses a scanning approach in
2D based on the assumption that the nearest object pixels
for adjacent pixels are similar. The Fast Marching Method
(FMM)[28] propogates a contour to compute the distance
transformation from the neighbors. This provides an ap-
proximate finite difference solution to the Eikonal Equation
|∇u| = 1/f .

Repeated application of the local masks of the approx-
imate algorithms till a stable solution is reached provides
exact distance transforms. A parallel algorithm for this is
proposed in [31]. Efficient implementations of this store
a propogation front in dynamic lists [7, 25]. Propogation
methods can be augmented by storing additional informa-
tion like direction vectors to nearest voxel [22] and clos-
est features [13]. Propogating additional information along
with the FMM, leads to an exact distance transform algo-
rithm [2]. Another class of exact distance transform algo-
rithms are based on computing partial voronoi diagrams and
dimensionality reduction. A linear time algorithm for com-
puting Euclidean distance transform os a2-D binary image
is presented in [3]. This is extended to segment lists in [11]
andk-D images and further distance metrics in [21].

2.2 Surface Representation based methods

A family of methods determines the distance field for
models represented by polygonal surfaces. The work by
scan-converting a number of geometric primitives related to
the polygonal surface and conditionally overwriting com-
puted distance value at each voxel. Any polygonal model
can be decomposed into a collection of point (vertices), line
segments (edges) and triangular (faces) sites.

Hoff et al. [12] use graphics hardware to render a polyg-
onal approximation of the distance field and compute Gen-
eralized Voronoi Diagrams in two and three dimensions.
This approach works on any polygonal input and distance
functions. A detailed discussion of this algorithm, and its
limitations is provided in section 3.2. An efficient version
of the 2-D algorithm for point sites is presented in [5]. It

uses precomputed depth textures, and uses a quadtree to es-
timate voronoi region bounds. However, extensions of this
approach to higher-order sites and dimensions are not ex-
plained.

Another scan-conversion method to compute3-D Eu-
clidean distance fields upto a maximum distanced for mani-
fold triangle meshes is the Characteristics/Scan-Conversion
(CSC) algorithm presented by Sean Mauch [20]. It uses
the connectivity of the manifold mesh to compute polyhe-
dral bounding volumes for the Voronoi cells. The distance
function for each site is then evaluated only for the voxels
lying inside this polyhedral bounding volume. An efficient
GPU based implementation of the CSC algorithm is pre-
sented in [29]. The number of polygons sent to the graphics
pipeline is reduced by expanding some polyhedral bounding
volumes. Also the general purpose computation capability
of modern GPUs is used to compute the non-linear distance
functions using fragment programs. A more detailed com-
parison with these approaches is presnted in Section 6.2.1.

2.3 Geometric Computations on the GPU

Apart from distance fields, graphics hardware has been
increasingly utilized to accelerate a number of geometric
computations, including visualization of constructive solid
geometry models [9, 27], interferences and cross-sections
[1, 23, 26], Minkowski sums [14, 15], and applications like
cloth animation [30] and virtual surgery [18].

In recent years, the performance of graphics hardware
has increased more rapidly than that of CPUs. Moreover,
graphics hardware has evolved from a fixed-function ren-
dering pipeline to a pipeline with programmable vertex and
fragment stages with support for upto full IEEE single-
precision floating point. Programmable graphics hardware
is optimized for highly-parallel code [17]. Purcell et al.
[24] argue that current GPUs can be modeled as parallel
stream processors highly optimized for some SIMD appli-
cations. This has led to considerable research in develop-
ing algorithms for efficient general purpose computation us-
ing graphics hardware [10], including3-D level set solvers
[16].

3 Overview

In this section, we present the basic concepts important
to our approach. We give a formal definition of distance
fields, the relation to generalized voronoi diagrams and re-
view graphics hardware based computation of a discrete ap-
proximation. We then show how we may accelerate it for
large input sizes.



3.1 Distance Fields and Generalized Voronoi Dia-
grams

Given a set of input sites{S1, S2, . . . , Sk} in n dimen-
sional space, for any pointp ∈ Rn, let dist(p, Si) denote
the distance from the pointp to the siteSi. dist(p, Si) is
a scalar functionf : Rn → R. The Distance Fieldis the
minima of all distance functions representing the distance
from any pointP ∈ Rn to the closest site. The dominance
region ofSi overSj is defined by

Dom(Si, Sj) = {p | dist(p, Si) ≤ dist(p, Sj)}

For a siteSi, the Voronoi region forSi is defined by

V (Si) = ∩j 6=iDom(Si, Sj)

The partition of space into is called thegeneralized Voronoi
diagram. The boundaries of the regionsV (Si) are called
Voronoi boundaries. In other words, the Voronoi region
boundaries are the loci of points where distances from two
or more sites is the same. The Voronoi diagram can also be
treated as a minimization diagram of distance functions to
the sites [6].

3.2 Graphics Hardware Based Computation

A method for fast computation of a discrete approxima-
tion of distance fields is presented in [12]. It relies on the
parallel nature of interpolation-based raster graphics hard-
ware to efficiently compute the distance fields in 2D. The
distance function for each site is tessellated within given
error bounds and rendered into the depth buffer using an
orthographic projection. The distance field for all sites is
represented by the final depth buffer. In three dimensions,
the bounded volume is divided into a uniform axis-aligned
voxel grid, with a set of voxels with a constant z-value con-
stituting aslice. The complete distance field is obtained
by sweeping slices along the z-axis over the entire volume.
Note that this approach works with any type of site and dis-
tance metric as long as the distance function can be conve-
niently tessellated. The distance functions underL2 norm
for points, lines and planes in 3D are shown in Figure 1.
For edges and triangular faces, these definitions are com-
bined in a piecewise linear fashion to represent full distance
field for the site. Any arbitrary polyhedral model can then
be decomposed into a collection of these three primitives
[12].

We now present a more rigorous discussion of the com-
putational complexity of this method. Given an input model
consisting ofk sites and a grid resolution ofN × N × N .
The steps are:

1. Distance Function Meshing. This is done for each
site per slice, hence its cost isO(kN) for N slices. It

also depends on the complexity of the distance func-
tion and the desired error bound. This computation is
CPU limited.

2. Vertex transfer and transformation . Let the average
number of vertices per site distance mesh isv. Then
the total cost forN slices isO(vkN). This computa-
tion is bus bandwidth and vertex processing limited.

3. Rasterization. Distance functions that have an infinite
region of influence (such as the hyperboloid of a point)
require computing distance values for each pixel for a
slice. Thus the worst case cost forN slices ofN ×N
pixels, withk distance meshes per slice isO(kN3). In
practice this is the real bottleneck on current graphics
processors due to large fill generated.

4. Readback. The final distance field has to be read
back to the CPU. Due to low readback bandwidth and
pipeline stalls, this causes significant delays for inter-
active applications.

3.3 Our Approach

Our approach relies on two key concepts to significantly
speed up 3D distance field computation under common dis-
tance metrics:Voronoi regions are bounded and connected
andhigh distance field coherence between adjacent slices.

In Table 1, we enumerate the notations we use through-
out the paper. The distance function for a sitei may depend
on the distance of the site to the slicej, hence notations
are defined for a sitei w.r.t. slicej. These notations are
illustrated for a line site in Figure 1(b).

Notation Meaning

Si Sitei
V (Si) Voronoi region of sitei
Di,j Region of influence of sitei

on slicej
z = fi,j(x, y) Distance function of sitei

to slicej
fmin

i,j min(fi,j(x, y))∀(x, y) ∈ Di,j

fmax
i,j max(fi,j(x, y))∀(x, y) ∈ Di,j

Mini,j {(x, y) | fi,j(x, y) = fmin
i,j }

Points inDi,j wherefi,j is minimum
Maxi,j {(x, y) | fi,j(x, y) = fmax

i,j }
Points inDi,j wherefi,j is maximum

Table 1. Notation table

Monotonic Distance Functions: Under anyLk norm,
the distance function is a graph, i.e. it is minimum for a
closed, connected set of points in the region of influence of
the site, and the function increases monotonically with the
euclidean distance to this set.



(a) Linear distance function of a polygo-
nal site.

(b) Conical distance function of a line
site.

(c) Hyperbolic distance function of a
point site.

Figure 1. Distance Functions underL2 norm: The shaded region on thexy-plane represents the region of influenceD of the site
Si on the given slicej.

As shown in Figure 1, this clearly holds underL2 norm.
The distance functions increase monotonically inDi,j as
the distance toMini,j increases.

Thus the distance function will have a maximum value
fmax

i,j at one of the corner pointsMaxi,j in Di,J . This fact
is used in Section 4.3 to obtain bounds on the Voronoi re-
gion of a site in theXY plane, given a bound on the max
distancefmax

i,j .
Bounded Connected Voronoi Regions: Within a

bounded space, all voronoi regions have a bounded volume.
Additionally, under distance metrics that satisfy the trian-
gle inequality, the Voronoi region is connected. This is true
for anyLk norm. Thus, the Voronoi region for any site un-
der aLk metric within a bounded volume is connected and
bounded. Further, as the site density increases, the average
spatial bounds of a voronoi site will decrease. This concept
is used in Section 4 to perform culling of sites to reduce the
load on the graphics pipeline.

Distance Field Coherence:Let j andj+1 be 2 adjacent
slices in the volume at depthszj andzj+1 respectively.δz =
‖zj+1 − zj‖ is the fixed distance between 2 adjacent slices.
Then the maximum change in distance function of a sitei
from one slice to the next,∆max

i,j is

∆max
i,j = max


‖fi,j+1(x, y)− fi,j(x, y)‖
∀(x, y) ∈ {Di,j ∩Di,j+1}

‖fmax
i,j+1 − fmax

i,j ‖
‖fmin

i,j+1 − fmin
i,j ‖

(1)

Detailed analysis of∆max
i,j underL2 norm is presented

in the Appendix A.
In practice, for a high density of sites,∆max

i,j is small,
exhibiting high coherence in the distance fields, and the
bounds of Voronoi regions between two slices. This fact
is used in Section 4 to cull sites and estimate fill bounds for

each site.

4 Voronoi Region Based Site Culling

We now present our algorithm to efficiently compute 3D
distance fields. The culling is performed in two steps:

1. Culling sites based on estimated Z-bounds

2. Reducing fill region based on estimated XY-bounds

4.1 Site Classification

We can assume the sweep direction is along the positive
z direction. Letzmin andzmax denote the min and maxz
bounds of a site’s voronoi region. Given a slicej at depthzj

and the sweep direction, the set of sites can be partitioned
into 3 disjoint sets depending onzmin andzmax (shown in
Figure 2):

1. Intersecting(Ij): Sites withzmin ≤ zj ≤ zmax. The
voronoi regions intersect the current slice, and their
distance fields need to be rendered.

2. Approaching(Aj): Sites withzmin > zj . The voronoi
region of an approaching site does not intersect with
current slice, but could potentially intersect in future
slices.

3. Receding(Rj): Sites withzmax < zj . A receding
site can never becomeintersecting, hence it can be dis-
carded for all future slices.

Note that the intersecting set for next sliceIj+1 in-
cludes the intersecting set from current sliceIj , with some
approaching sites that become intersecting(Aj − Aj+1)



Figure 2. Site Classification:Shaded areas represent the
bounded, connected voronoi regions. For a slice atzj , sites
S1, S2, S3 are classified as Approaching, Intersecting and
Receding respectively. For the next slice atzj+1, S3 be-
comes Intersecting andS2 becomes Receding.

added to it, and some intersecting sites that become reced-
ing (Rj+1 −Rj) removed from it. Formally,

Ij+1 = Ij + (Aj −Aj+1)− (Rj+1 −Rj) (2)

4.2 Estimating Z-Bounds

Computing the exact set partitions is equivalent to exact
voronoi computation. Instead we compute a conservative
estimate of a set ofpotentially intersectingsitesÎj , where
Îj ⊇ Ij . The potentially intersecting setÎj is computed us-
ing the visibility of the distance function when rendered for
a given slice. We use occlusion queries commonly found in
current graphics hardware. These queries scan-convert ge-
ometric primitives sent to the GPU such as bounding boxes
to check whether the depth of any pixels changes. The algo-
rithm for estimating the set partitions for slicej+1 proceeds
as follows:

1. Refine the approaching setAj to estimateAj+1. This
is done by testing the bounding boxes of the distance
functions all sites inAj for visibility. The distance of
any siteSi ∈ Aj+1 to slice j + 1 will be less than
or equal to its distance to the slicej. Hence we use
the depth buffer from slicej as an approximate oc-
cluder representation. The sites that pass the bounding
box test are potentially intersecting. They are removed
fromAj and added tôIj+1.

2. Render the distance functions for the potentially inter-
secting set̂Ij+1 using an occlusion query counter.

3. RefineÎj+1 and estimateRj+1. Finally we read back
the occlusion query results to determine theexactinter-
secting setIj+1. This also determines the sites that can
be moved from the intersecting set to the receding set

and discarded for all future slices based on the fact that
voronoi regions are connected. However, for a discrete
grid, the voronoi regionV (Si) of siteSi need not be
connected (e.g. two lines pass through same pixel). In
such cases(Si)∪Si forms a connected region. Hence,
only those sites with occluded distance functions and
are behind current slicej+1 (zmax < zj+1) are moved
to the receding set.

The bounding boxes for point and line sites underL2 are
shown in Figure 3. Since the distance function of a triangle
is a triangle, we do not perform bounding-box queries on
triangle sites. Instead, distance functions for all approach-
ing triangle sites are rendered.

If a bound on the maximum valuefmax
j of the distance

field for a slicej is known, it can be used to perform early
CPU culling of approaching sites withfmin

i,j < fmax
j . De-

tails on computing this conservative max depth bound and
using it to reduce the fill overhead are presented in sec-
tion 4.3.

4.3 Estimating XY-Bounds

We use the monotonic nature of the distance functions
and bounds on the change of maximum value as introduced
in Section 3.3 to estimate conservative fill depth bounds in
following steps:

1. At end of each slice, determine max depth estimate
fmax

i,j for each site in current slice.

2. Update the maximum depth estimate for next slice
fmax

i,j+1, using bounds on∆max
i,j .

3. For the next slice, given max depthfmax
i,j+1, compute the

corner pointsMaxi,j+1 that give this maximum value.
These corner points give us conservative bounds on the
XY extent of a distance function.

We can readback the depth buffer at the end of each
slice and process it to compute the maximum depth value.
However, that causes costly graphics pipeline stalls and
readback delays which adversely affects interactive perfor-
mance. Also, this directly gives the absolute max depth
fmax

j for the entire slice and not the max depthfmax
i,j for

each slice. Therefore, we use multiple occlusion queries
per site to determine a bound onfmax

i,j for each site too. The
distance function is rendered in layers of increasing depth,
using an occlusion query counter. At the end of the slice,
the counter corresponding to each layer is queried and the
maximum depth of the visible layer at highest depth bounds
fmax

i,j . For a point site, the distance function of a hyper-
boloid is already rendered in layers by fanning out from the
minimum distance value. For a line site, each radial triangle
in the polygonal approximation of the elliptical cone can be



(a) Truncated rectangular pyramid bounding box of a
point site.

(b) Pyramidal Frustum bounding box of a line site.

Figure 3. Bounded Boxes of distance functions underL2 norm:The gray region on thexy-plane represents the region of influence.
The sites are shown in blue. The distance function is rendered in magenta wireframe. The bounding box is rendered in red wireframe.

treated as a separate layer. For a triangle site, the maximum
distance value is used instead of drawing it in layers. Once
fmax

i,j has been computed at the end of slicej, the maximum
depthfmax

i,j+1 for next slicej + 1 can be computed as shown
above.

5 Applications

One of the disadvantages of computing distance fields
on graphics hardware is that the results of the computation
must be read back to the CPU for further processing. This
readback is currently expensive and also stalls the graphics
pipeline. Recent advances in graphics hardware, such as
programmability and 32-bit floating point precision, have
enabled many applications on the graphics processor(GPU)
that previously required the CPU. Not only does this avoid
the penalty of readback, but it allows programs to exploit
the SIMD nature of graphics hardware. In this section we
demonstrate how to use the distance fields to compute the
medial axis of a polyhedral model.

5.1 Medial Axis

The medial axis computation, as described by [8], can be
thought of as a filter applied to the distance field. Graphics
hardware is well-suited to filtering, as each point where the
filter is applied has an independent and simple computation.
This filter removes all voxel points except for those that lie
along the skeleton of the object. The filter is a separation
criteria test, which tests the separation angle of the directed
distance vectors between two adjacent voxels. Pseudo-code

for this filter is presented in 5.1, and a detailed explanation
is in [8].

FilterMedial (Slicek, Slicek−1, AngleThreshold)
1 For each(i, j) in Slicek

2 Let A = gradient(i, j, k)

3 for eachdir = î, ĵ, k̂

4 Let B = gradient(PrevV oxel(A, dir))

5 Thres = A · B ≤ AngleThreshold

8 Tails = TailSeparation(A,B)< HeadSeparation(A,B)
9 NotZero = B does not lie on model boundary
10 Result = NotZero · Thresh · Tails

11 end for
12 if any Result is true thenA borders the medial axis
12 end for

ALGORITHM 5.1: Pseudo code for computing the medial
axis on graphics hardware.

6 Implementation and Results

We have an OpenGL implementation the improved dis-
tance field computation algorithm running on a Pentium4
2.5GHz PC with 1GB RAM, an nVidia GeForce FX 5800
Ultra graphics card running Windows 2000. The nVidia
OpenGL extension GLNV occlusionquery, available on
GeForce 3 and higher graphics cards, is used to perform the
occlusion queries. The models are stored as a list of sites
with set and occlusion information.

The graphics pipeline can get stalled by querying the re-
sults of an occlusion query immediately after sending the



geometry for rendering. We avoid this by exploiting the
parallelism in GLNV occlusionquery and batching sev-
eral occlusion queries together. We also interleave render-
ing one set of sites and querying its visibility with the ren-
dering another set of sites. This ensures that the graphics
pipeline has finished rasterizing the geometry before we
query it for visibility, thus avoiding stalls. Additionally,
we maintain the list of sites sorted in order of increasing
distance. This allows for front-to-back traversal of sites
with respect to current slice. The front-to-back traversal
allows for early termination of max depth estimation rou-
tines and also makes most efficient use of modern graphics
hardware’s fast Z-culling techniques.

We computed the global distance field on a number of
manifold as well as non-manifold CAD models. No op-
timization techniques like interior masking or convex ver-
tex/edge removal were used. Some of the test models
are shown in Figures 4, 5. We compare the performance
of the implementation of our algorithm (called DiFi) with
HAVOC3D [12]. The timings for the distance field com-
putation for various models are presented in Table 2. The
timings for different grid resolutions for the shell model are
presented in Table 3.

Model Polys Resolution HAVOC3D DiFi
Shell 4460 128x126x126 31.69 3.38
Head 21764 79x106x128 52.47 18.60
Bunny 69451 128x126x100 212.71 36.21
Cassini 90879 94x128x96 1102.01 42.90
Dragon 217852 59x91x128 1918.50 130.34

Table 2. Times (in seconds) to compute the distance
field using HAVOC3D and DiFi

Polys Resolution Time(s)
4460 32× 32× 32 0.72
4460 64× 63× 63 1.56
4460 128× 126× 126 3.38
4460 256× 252× 252 7.04

Table 3. Times (in seconds) to compute the distance
field for the Shell model using DiFi with varying grid
resolutions

6.1 Medial Axis Application

We have a graphics hardware based implementation of
the medial axis computation. It uses OpenGL’s ARB frag-
ment program extension, and is supported by the GeForce
FX and Radeon 9500+ graphics cards. For high precision,

the input distance field is copied to a floating point texture
with 32 bits per channel. The output of the fragment pro-
gram is 1-bit per voxel indicating its presence on the medial
axis and a 32-bit distance to surface. All hardware programs
were written in nVidia’s Cg programming language[19].
The timings are shown in Table 4.

Model Software Hardware
θ = 60◦ θ = 15◦ θ = 5◦

Head 0.18 0.83 3.47 0.08
Bunny 0.68 18.5 144 0.13
Shell 3.5 19.5 65.6 0.14

Dragon 0.19 1.98 7.32 0.06
Cassini 7.59 81.7 172 0.1

Table 4. Time to compute the medial axis in software
(for an angle threshold of60◦, 15◦, and5◦), and in
hardware (independent of threshold).

The medial axis is rendered directly from the GPU with-
out any framebuffer readbacks to the CPU. For this, the out-
put of the fragment program is copied to a 3D texture, with
the color encoding the distance to surface. This volume is
then rendered using alpha blended slices. The resulting im-
ages are shown in Figure 5.

6.2 Discussion

We now present an analysis and discussion of our ap-
proach for computing distance fields, and its application to
medial axis computation.

6.2.1 Distance Field Computation

Our new algorithm for distance field computation provides
a 4 − 20 times speedup over HAVOC3D. Additionally, the
speedup is more as the model size increases. This is due
to the fact that average voronoi region size decreases. This
leads to a higher fraction of the sites being culled and larger
reduction in the fill area. The performance is also influ-
enced by the level of occlusion in the distance functions
along the swept axis. A model with high depth complex-
ity exhibits higher occlusion in the distance function. As is
evident from table 3, the distance field computation is not
entirely fill limited using DiFi. For smaller resolutions, the
mesh generation and graphics driver overhead cause the ap-
plicationi to be CPU limited also. We believe part of the
driver overhead may also be due to the fact that the cost of
adding an occlusion query during rasterisation is not negli-
gible. The associated pipeline flushes reduce the amount of
parallelism that can be achieved between the CPU and the
GPU.



(a)Cassini (90879 polygons) (b) Dragon (217852 polygons)

Figure 4. Large input models used for medial computation.

Using the occlusion query has some fill overhead. Sites
determined as potentially intersecting after the bounding-
box tests are rasterized twice: once for the bounding-
box queries and once for rendering the distance functions.
This is undesirable in an application with a significant fill-
bandwidth. It should be noted that this extra fill is per-
formed only for the slice in which the sites are first de-
termined as potentially intersecting. Moreover, our experi-
ments show that for large input sets, the fraction of poten-
tially intersecting sites to approaching sites is small, so the
extra fill overhead is small compared to cost of meshing and
transforming all approaching sites.

We now present a comparison of our approach with a
graphics hardware implementation [29] of the CSC algo-
rithm [20]. The CSC algorithm assumes the input geometry
is a well-defined manifold. It has a computation cost of
O(k + rN3), wherek is the number of sites in the model,
N3 is the grid size andr is the degree of overlap between
the bounding volumes. TheO(k) term reflects the setup
cost of determining the polyhedral bounding volumes. The
distance field is computed for a band of lengthd around the
surface. For small values ofd, r is close to unity. Thus
each pixel is written approximately once, making the algo-
rithm highly efficient for computing distance fields in nar-
row bands around the surface. For large values ofd, to
minimize the overlap costr the polyhedral bounding vol-
umes can be clipped during the setup stage. However, for
complex non-convex shapes and large values of maximum
distanced, the clipping costs can beO(k2). Also, the al-
gorithm presented is valid only for the Euclidean distance

transform.
In contrast, DiFi can take apolygon soupas input and

does not impose any connectivty constraints. There is no
setup cost, the bounding volumes of the voronoi regions are
computed dynamically. This makes it well-suited for ap-
plications requiring incremental insertion of geometry. In
worst case, each pixel may be writtenk times, making the
worst case time complexity of DiFiO(kN3). However,
for a completely random input, each pixel will be written
a constant number of times making the time complexity
O(k + N3), the O(k) term reflecting the distance mesh
generation and transform cost. Finally, the framework pre-
sented in DiFi is applicable to allLk distance metrics.

6.2.2 Medial Axis Application

The computation of the medial axis on the GPU also gives
us a2−75 times speedup. This speedup is due to the SIMD
nature of the application and the GPU being optimized for
such applications. The computation time for medial axis
computation is proportional to the size of the grid. However,
for the CPU based implementation, it also depends on the
model and size of the output medial axis. This is due to con-
ditionals in the medial axis filter and early-out tests leading
to fewer instructions being executed on the CPU. For ex-
ample, in [8], theθ-threshold is tested first, and no further
computation is performed if the test fails. Current graph-
ics hardware has limited support for conditionals; instead
of conditional execution, it is conditional assignment. Thus
our implementation executes all possible tests and assigns a
value based on these results. This means that early-out tests,



such as testing for zero-valued gradients, do not effect the
runtime of the application. Given the performance benefits,
we expect this to change in future hardware.

For many applications the medial axis must be read back
to the CPU for further computation. This requires reading
back 8-bits per voxel, which can be a large depending on
the grid resolution. However, the medial axis can be treated
as a sparse 3D matrix. Depending on the speed of readback,
it may be advantageous to perform some sort of packing to
reduce this storage. For example, each face of the medial
axis could be encoded as one bit in the RGB color chan-
nels of a texture, allowing eight slices to be packed into one
texture. Another alternative is to perform the application of
the medial axis also on the GPU and readback only the fi-
nal result set, which can be expected to be 1-dimensional or
2-dimensional.

7 Conclusions and Future Work

We have presented a method for fast computation of dis-
cretized distance fields using graphics hardware. We have
presented techniques to estimate bounds on the voronoi re-
gion of each primitive and use the spatial coherence be-
tween adjacent slices. We have derived the bounds for the
Euclidean distance field with point, line and triangle sites.
Finally, we formulate an applicatioin of the distance field
in streaming SIMD framwork and show how it can be ef-
ficiently performed on modern GPUs with programmable
fragment processors. Such a framework minimizes read-
back delays associated with methods that compute distance
fields on the graphics hardware.

In the future, we would like to apply this work to var-
ious applications, including dynamic simulation and path
planning. We would also like to apply more acceleration
techniques to time-varying distance fields. We would also
like to explore techniques for reducing the CPU limitation
of current implementation.
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A Appendix

Determining∆max
i,j , as defined in eqn. 1 for Point, Line

and Triangle sites underL2 norm. For simplicity of nota-
tion, fj ≡ fi,j , ∆j ≡ ∆i,j below. Letj andj + 1 be two
adjacent slice atzj andzj+1 respectively. Distance between
the slices,δ =| zj+1 − zj |.

A.1 Point Site

Figure 6. Point Distance Function:Cross-section of the
distance function of a point site to two adjacent slicesj and
j + 1.

Let a point siteSi = (xi, yi, zi) be at distancesdj and
dj+1 to two adjacent slices, shown in Figure 6.

δ =| dj+1 − dj |

fj(x, y) =
√

(∆x)2 + (∆y)2 + d2
j

fj+1(x, y) =
√

(∆x)2 + (∆y)2 + d2
j+1

∆j(x, y) =
√

(∆x)2 + (∆y)2 + (dj + δ)2

−
√

(∆x)2 + (∆y)2 + d2
j

where∆x = (x− xi),∆y = (y − yi)

∆j is maximum at∆x = 0,∆y = 0
=⇒ ∆max

i,j = δ.

A.2 Line Site

Using suitable rigid transformations, any line can be
transformed to lie in theXZ plane, and passe through ori-
gin. This does not change the shape of the distance func-
tion (or the change in distance function between 2 adjacent
slices). For a line inxz plane with slopem = tan(θ), the
distance function is given by

fj(x, y) =
√

(xc)2 + y2, c =
√

1 + m2

m
=

1
sin θ

For a line-segment with end pointsp1 andp2, the domain
of influenceDj is the strip

p1x + (p1z − zj) tan θ ≤ x ≤ p2x + (p2z − zj) tan θ

The shape of the distance function depends only on the
slope of the line, but the domain of influenceDj depends
on the distance of the line to the slice. Figure 7 shows the
strip domains[xm

j , xM
j ] and[xm

j+1, x
M
j+1] for 2 consecutive

slices, moving away from the line segment, with change
in bounds =xM

j+1 − xM
j = δ tan θ. Note that change is

bounded by the slice limits, even ifθ → 90◦.

Figure 7. Region of Influence of a Line Site:Cross-
section of the region of influence of a line site to two ad-
jacent slicesj andj + 1.

Sincefj is monotonically increasing inDj , xM
j+1 > xM

j ,

∆max
j = max

(
(fmax

j+1 − fmax
j ), (fmin

j+1 − fmin
j )

)
.



Let the regions of influence for slicesj andj+1 be the strips
Dj , Dj+1 on the rotated slice of theXY plane. fj , fj+1

are evaluated at the corner points ofDj , Dj+1 to give
(fmax

j , fmax
j+1 ) and(fmin

j , fmin
j+1 ). The maximum difference

between the pairs gives∆max
j .

A.3 Triangle Site

The analysis is similar to that of a line site, with the
angleθ = cos−1(N̂ · ẑ), N̂ = normalized triangle nor-
mal. The domain of influenceDj is the intersection of a
projected triangle with the slice, as shown in Figure 1(a).
The corner points ofDj , Dj+1 are computed to give
(fmax

j , fmax
j+1 ), (fmin

j , fmin
j+1 ) and∆max

j .



(a)Shell Charge (4460 polygons)θ = 30◦ (b) Triceratops (5660 polygons)θ = 60◦

(c) Head (21764 polygons)θ = 30◦ (d) Bunny (69451 polygons)θ = 45◦

Figure 5. Medial Axis: The original model surface is shown in wireframe. The medial axis voxels are drawn using alpha-blended
quads. The HSV color of a voxel represents the distance from the surface, with red denoting minimum distance.


