
Constraint-Based Motion Planning of Deformable Robots∗

Russell Gayle Ming C. Lin Dinesh Manocha
Department of Computer Science

University of North Carolina at Chapel Hill
{rgayle,lin,dm}@cs.unc.edu

Abstract— We present a novel algorithm for motion plan-
ning of a deformable robot in a static environment. Given the
initial and final configuration of the robot, our algorithm com-
putes an approximate path using the probabilistic roadmap
method. We use “constraint-based planning” to simulate robot
deformation and make appropriate path adjustments and cor-
rections to compute a collision-free path. Our algorithm takes
into account geometric constraints like non-penetration and
physical constraints like volume preservation. We highlight
the performance of our planner on different scenarios of
varying complexity.

Index Terms— motion planning, deformable models, phys-
ical constraints, probabilistic roadmap algorithms

I. INTRODUCTION

Motion planning is a classical problem in robotics. The
basic problem is defined as follows: Given a robot and an
environment with a set of obstacles, find a collision-free
path from an initial configuration to a final configuration.
This problem has been well studied for more than three
decades. However, most of the existing work has focused
on robots that are either rigid bodies or articulated models.
There is relatively little research on motion planning of
a deformable robot. Flexible robots are becoming increas-
ingly important in industrial and medical applications. For
instance, motion planning can be used for cable placement
in large factory plants and buildings, wire routing for nano-,
micro-, to mega-scale electronic and mechanical structures,
surgical procedure planning and simulation, etc.

Some existing planning algorithms compute a path by
exploring the space of all valid configurations of a robot.
However, when the robot is flexible or can easily change
its shape, the dimensionality of its configuration space can
become extremely large. Even a simple discretized de-
formable object can have hundreds of degrees of freedom.
As a result, the algorithms for rigid robots are not directly
applicable to deformable robots.
Main Results: One of our major goals is to investigate
and develop physically-based motion planning methods for
general deformable robots. More specifically, we address
the following modified motion planning problem: Given a
robot which deforms in a physically realistic manner and
an environment with many static obstacles, find a path from

∗ This project is supported in part by ARO, AMSO, DARPA, NSF,
ONR/VIRTE, Intel Corporatin, and a DOE Fellowship.

Fig. 1. The Ball in Cup Scene: The goal is to plan a path to
move the ball into the cup. Since the cup’s rim has about the
same diameter as the ball, a deformation on the ball simplifies
the path planning. The image, generated by our planner, shows
the path of the deforming ball as it moves toward the center of
the cup.

an initial configuration to a final configuration. In addition,
we would like to design a planner to be as efficient as
possible.

Our approach is built upon constraint-based planning.
We use the probabilistic roadmap (PRM) planner for a
point robot to generate an initial trajectory and incorporate
physical constraints from model deformation to control the
motion of the robot. The initial trajectory may have colli-
sions with the obstacle. We use constraint-based dynamics
to simulate robot deformation and make appropriate path
corrections to compute a collision-free path.

It is possible to substitute any other roadmap generation
algorithm to replace PRM in our framework. Currently, we
use non-penetration and volume preservation constraints
for the deformable robot, so that the robot will deform
as it comes in close contact with the obstacles in a
physically plausible manner. In order to achieve interactive
performance, we relax the strict global volume preservation
constraint by implementing a local method that sets a
threshold on the amount of deformation (e.g. elongation
or compression) and on internal pressure fluctuation. We
demonstrate the performance of our planner on different
scenarios of varying complexity.

Organization: The rest of the paper is organized as
follows. Section 2 discusses related work. We give an
overview of our approach in Section 3. Section 4 presents
the planner in more detail and Section 5 describes the
algorithm for modeling robot deformation. In section 6, we
discuss various implementation issues and highlight some
experimental results.

II. RELATED WORK

In this section, we give a brief overview of prior work
in randomized motion planning algorithms and deformable
models.

A. Randomized Motion Planning

The motion planning problem has been well studied
in robotics and computational geometry for more than
three decades [1]. The complexity of exact or complete
algorithms is exponential in the number of degrees of
freedom of the robot. As a result, most practical planners
are based on spatial subdivision of workspace or config-
uration space into cells [2], potential field methods [3] or
randomized sampling [4]. In particular, the probabilistic
roadmap planners (PRMs) have been successful in solving
many difficult instances of the motion planning problem. A
PRM planner generates samples at random in configuration
space, attempting to connect each sample by a simple C-
space path to one of the sample already found. Over time,
the graph thus produced tends to represent the connectivity
of the C-space reasonably well, and a query can be rapidly
performed by linking the search points to the graph and
then searching the graph.

Many algorithms have been proposed to improve the
performance of PRM planners in terms of developing
better sampling strategies and handling narrow passages
[5], [6], [7], [8]. Most of these approaches are limited to
rigid or articulated robots. Over the last few years, some
algorithms for motion planning of deformable models have
been proposed. Holleman et al. [9] and Lamiraux et al. [10]
presented a probabilistic planner capable of finding paths
for a flexible surface patch by modeling the patch as a low
degree Bèzier patch. Anshelevich et al. [11] presented a
path planning algorithm for simple volumes such as pipes
and cables by using a mass-spring representation. Bayazit
et al. [12] described a two-stage approach that initially
computes an approximate path and refines the path by
applying free-form deformation to the robot.

B. Deformable Models

Deformable models have been widely used in computer
graphics, computer vision, medical imaging, physically-
based modeling and related areas [13], [14]. They have
been used for shape editing and analysis, computer ani-
mation, object reconstruction, image segmentation, training
systems and simulation. Some of the simplest deformable
models do not take into account physical properties and

are based on functional deformation [15] and free-form
deformation [16].

The simplest physically-based deformable models are
based on a mass-spring system, where an object is modeled
as a collection of point masses connected by springs in
a lattice-like structure. The spring forces may be linear
or non-linear and mass-spring models are widely used
in computer animation. In practice, mass-spring systems
are easy to construct and can be simulated at interactive
rates on current commodity hardware. However, the choice
of spring constants used in the simulation can become
a major issue. Moreover, the underlying discrete model
can become a poor approximation of the actual physics.
More accurate physical models treat deformable objects
as a continuum, i.e. solid objects with mass and energy
distributed throughout and the continuum models are de-
rived from equations of continuum mechanics. One of the
most commonly used continuous model is finite element
methods (FEM). The object is decomposed into elements
joined at discrete node points and a function that solves
the equilibrium equation is computed for each element. The
computational requirements of FEM can be high and it can
be difficult to use them for real-time applications. Other
continuum models include Snakes [17] and discretized
deformation energy models [13].

III. OVERVIEW

In this section, we introduce the notation used in the rest
of the paper, and give an overview of our constraint-based
planning framework.

A. Notation and Definitions

The deformable robot, R is represented as a time depen-
dent set of masses, mi, connected by edges, ej , ∀i, 1 ≤ i ≤
N and ∀j, 1 ≤ j ≤ M , where N represents the number of
nodes and M is the number of edges describing the robot
R. Each mass has an associated state vector si = (xi, vi),
representing the current position and velocity of each
mass. The node points X(t) = [x1(t), x2(t), . . . , xN (t)]
collectively represents the robot’s shape and position at
time t.

Using this representation as a discrete form of FEM,
we can represent the state of the robot as S(t) =
[s1(t), s2(t), . . . , sN (t)] at time t. We assume that the
connectivity of the robot does not change during the
simulation, so each ei will remain the same throughout
the planning process. Each edge has an associated stress
value and threshold, stressi and δi, respectively. We use
these values to implement volume preservation for the
deformable robot.

We also define a deformation energy function E(X) of
the robot. E(X) simulates the potential energy of elastic
solids, and is a measure of the amount of deformation. The
robot can be interactively deformed as contacts occur with
the obstacles in the environment. This deformation may

change the volume V (X), as well as the energy E(X). To
simulate physically plausible deformation, we need to find
a new configuration of X , that preserves the total volume of
the deformed robot, while minimizing the the total energy
of the system.

We assume that the set of obstacles in the environment
are rigid and they are represented as O = {o1, o2, . . .} in
the workspace, W . Our roadmap G consists of a set of
milestones, N = {n1, ..., nl}, and links, L = {l1, ..., lk},
which form a graph-like structure (i.e. G = {N,L}).
A path, P along this roadmap is a sequence of valid
milestones that are connected by valid links.
Problem Formulation: Given these definitions, we restate
our problem as: Find a sequential set of robot config-
urations X(t1), ..,X(tf) such that no X(ti) intersects
any obstacle in O and X(ti) satisfies the non-penetration
and volume preservation constraints, where X(t1) is the
initial configuration of the robot, and X(tf) is the final
configuration.

B. Constrained-Based Planning

Garber and Lin proposed to reformulate the motion
planning problem as simulating a constrained dynamical
system, called “constraint-based motion planning” [18].
This formulation is due to the close resemblance between
motion planning and the boundary value problem, where
the boundary conditions can be mapped to the initial and
goal configurations of the robot as a dynamical system.
The planning algorithm is used to compute the intermediate
states that link the two and satisfy the constraints imposed
on the dynamical system.

The key differences between this approach and existing
geometric techniques is that motion planning is no longer
treated as a purely geometric problem. With this frame-
work, we can automatically incorporate the mechanical and
physical properties of the robots and obstacles, in addition
to their geometric description. This framework is based
on constrained dynamics [19] used for physically-based
modeling, where constraints are enforced by virtual forces
imposed on the system. By combining these constraint
forces into a simulation framework, the constrained dynam-
ical system can guide the robot to follow these constraints,
such as volume preservation constraints, at each time step,
which can lead to a path toward the final configuration.
An overview of the framework and the computation of
constraint forces is shown in Fig. 2. We refer the readers
to [18] for more detail.

C. Extension to Deformable Models

In the earlier work on using constraint-based motion
planning for articulated robots in a dynamic environment,
each robot is treated as a rigid body, or a collection of rigid
bodies, and is moved subject to different types of constraint
forces [18]. In this paper, we introduce constraints designed
to guide the deformable robot through the environment

Fig. 2. Constraint-Based Motion Planning Framework: Ci are
constraints, Si are different types of constraint solvers. Each
virtual force fc is introduced to the simulation system through a
energy function E(Ci(q)) associated with the constraint Ci(q),
where q represents a configuration.

to the desired goal configuration. Using global analysis
from any roadmap algorithm (e.g. PRM) to compute a
possible path for a point robot, we define both geometric
and physical constraints that move the deformable robot
to avoid both static and moving obstacles, and also follow
an estimated path to the goal. This approach transforms
a motion planning problem into one of defining suitable
physical constraints and then simulating the deformable
body dynamics of the scene with each constraint acting
as a virtual force on the robot.
Guiding Path: Our framework allows the use of any
estimated path computed by either quick global analysis
of the environment, such random sampling [4], [8], [20] or
user guided input [21].
Constraints: To achieve the desired results without ro-
bustness problems, we further classify the constraints into
soft and hard constraints and treat them differently. Hard
Constraints are those that absolutely must be satisfied at ev-
ery time step of the simulation, such as non-penetration and
volume preservation constraints. A wide range of constraint
solvers exists to find the solutions for hard constraints [18].
Soft Constraints serve as guides to encourage or influence
the objects in the scene to behave in certain ways, such
as moving along a certain path. They are simulated using
penalty forces. The estimated path will be used as a soft
constraint to guide the planning of the deformable robot or
a rigid robot moving through a deformable environment.
Our proposed algorithm will compute the new path by
taking into consideration the interaction of the flexible
robot with the obstacles in the workspace.
Proximity Queries: We can also take advantage of
methods proposed in [22], [23] that uses graphics hardware
to quickly perform proximity queries on the workspace or
to provide dynamically updated discretized distance fields
for obstacle avoidance involving deformable models.
Discretization of Continuum: As for modeling the
deformation of the robot or the environment, there exists
many possible approaches. For example, these may in-
clude physically-based free-form deformation (FFD), mass-
spring systems, boundary element methods (BEM), and

finite element methods (FEM). For coding simplicity and
runtime performance, we chose an implementation based
on the spring-mass system to validate our basic approach.
However, we can easily incorporate any discretization
technique with this algorithmic framework.

IV. ALGORITHM

Our algorithm consists of two phases: (a) off-line
roadmap generation and (b) a runtime path query phase
based constrained dynamic simulation. The planner follows
the basic steps below:

1) Roadmap Generation: Create a roadmap, G =
{M,L} of the environment with a point robot

2) Path Estimation: Find an initial path P in G from
the initial to goal configuration.

3) Path Query: While the robot is not in its final
configuration

a) Take a step in the simulation, and set t = t+h
b) If constraints are not satisfied as a result of this

simulation step

Perform a roadmap pruning step and
correct the robot’s motion

A. Roadmap Generation

As described earlier, the goal of this phase is to create
the set M of milestones and set L of links. For the sake
of simplicity and efficiency, we treat the robot as a point
robot. This strategy for simplifying the problem makes the
generation of each milestone simple and quick.

Like a standard PRM, we can set milestones to be
random samples of the configuration space. For each mi,
we first determine if it is a valid milestone by performing a
very quick check to determine if it is inside any obstacle.
Then, we can find either the nearest k milestones or all
milestones that are within some search radius of mi and
place them into a set, N , of neighboring milestones. For
each milestone mj in N , we determine if there exists a
straight-line path from mi to mj that does not intersect
any obstacle in O. If such a path exists, we add a link, lk,
from mi to mj to L. We also introduce extra milestones
for the initial and final configurations, perform link tests
on these, and add them to the roadmap. By repeating these
steps for some user-defined number of milestones, we can
quickly generate a roadmap for the point robot.

It is likely that the initial roadmap generated could
cause the resting state of the robot to be intersecting with
the environment. If the robot must reach one of thees
milestones during the simulation, it is possible that the
robot will have to deform to reach the goal configuration
subject to the physical constraint. In cases when it cannot,
the edges linking to this milestone will be pruned away
and the planner can look for another path.

One potential drawback to this method is that the result-
ing path may not be a minimal energy path. This can easily
be accomplished by computing the minimal distance from

an obstacle to the link and weighting the links accordingly.
Since the largest deformations are most likely to occur near
an obstacle, by staying farther away from obstacles, we
can reduce the energy required to perform all deformations
along a path. The main benefit of computing the roadmap
in this manner is speed and simplicity.

B. Path Query Phase

The online path query relies heavily on the constraint-
based dynamics simulation of the deformable robot. We
start by first generating an initial path P directly from the
roadmap, G, by using Dijkstra’s shortest path algorithm.
Once an estimated path is computed, we begin our simu-
lation loop with the robot at its initial configuration.

Each object is represented by some state which is
typically a tuple of attributes like position or velocity. For
rigid objects, the state can also include angular orientation
and angular velocity. By using the state representations,
we solve motion equations using various numerical meth-
ods to determine the next step. Typically, these motion
equations either include or can be augmented by adding
various forces. The forces can represent constraints, col-
lision impulses, or other external forces like gravity. By
incrementally taking simulation steps and satisfying proper
geometric, physical and mechanical constraints, we can
control and influence the motion of the object as the
simulation steps forward toward the goal configuration.

The robot itself has some built in constraints, including
a hard non-penetration constraint with obstacles and a hard
volume preservation constraint which, however, is loosely
approximated in our current implementation (see the next
section). It also maintains a soft path-following constraint
and energy minimization constraint that essentially tries to
keep the robot at its equilibrium state.

Given the set of constraints which are treated as vir-
tual forces in the system, each simulation step is then
solved using numerical methods to advance toward the
goal configuration. The following fragment shows a single
simulation step or a path query step for our planner.

For each simulation or path query step:
1) Accumulate all external forces, Fe (e.g. gravity).
2) Deform the robot R (as described in the next section)
3) Compute constraint forces, Fc.
4) Given all forces, solve the Ordinary Different Equa-

tions describing the dynamical system
5) If constraints are not satisfied,

a) Set the last valid milestone as the next destina-
tion

b) Remove the current edge in the roadmap
c) Find a new path from the last valid milestone

to the goal
d) Compute new constraint forces and solve the

ODE, using last state of the robot R and Fe

6) Set the next robot state to be the current ODE
solution and set t = t + h

Fig. 3. A simple deformable robot in resting contact with a plane.
The left is the wireframed (mass-spring) lattice of the image on
the right.

This fragment is repeated until we reach the final
configuration. This simulation framework generates robot
motions that look physically plausible at a relatively fast
rate. The processing of the deformation is an important step
and also one of the most computationally expensive steps.
We will describe it next.

V. ROBOT DEFORMATION

We represent the deformable robot as a mass-spring
system. In principle, a mass-spring system is a set of point-
masses that are connected in a lattice by an underlying
spring structure (see Fig. 2). As in our deformable robot
state that is associated with each mass, mi, is the state si =
(xi, vi). By aggregating the xi’s into a vector X , we get
a 3N -dimensional system whose motion can be described
by the following second-order differential equation:

Mẍ + Cẋ + Kx = F,

where M and C are diagonal matrices, and K is a banded
matrix. The ith diagonal element of M is simply the value
of mi and similarly the ith diagonal element on C is a
dampening constant for the mass mi, which is usually
assigned by the user. K is banded since it must represent
spring forces which are functions of distance between two
masses. F is a 3N -dimensional vector which includes the
external forces acting upon each mass.

A. Deformation Energy Function

The elastic deformation energy measures the amount of
deformation. The deformation is essentially local stretches
in various directions. If the motion is simply a rigid trans-
formation, meaning that it preserves the distances between
all particles (no stretches), the energy must be zero. The
local deformation is governed by the deformation gradient.
The right Cauchy-Green tensor C = F T F measures the
length of an elementary vector after deformation, and is
insensitive to rigid body transformations.

Let E(X) be the energy density function of an elastic
solid undergoing deformation. The total energy is obtained
by integrating E(X) over the entire volume of the solid. E
can be expressed as a function of the right Cauchy-Green
tensor C for elastic materials unless zero E is allowed for
a non-rigid transformation (spurious zero-energy mode).

In fact, the simplest law uses a quadratic function of the
right Cauchy-Green tensor C [LeTal94]. Since F and C are
a linear and quadratic functions of X respectively, E is at

least a quartic function of X. We have chosen the energy
function of a spring network that connects the neighboring
nodes. The energy function can be written as:

Es(X) =
∑

j

k

2
(||dj || − Lj)

2

where j is the index of a spring and Lj is the natural length
of the spring and dj is the distance between two nodes xi

and xk connected by the spring.
Basically we would like to find X by solving

min E(x) subject to ∇V (X) ≤ ε.

Here we relax the hard volume preservation constraint
by allowing the change in volume to be less than a
given tolerance ε. This problem can be solved by using
a global constrained minimization technique. Our current
implementation uses a local method that checks whether
the internal pressure fluctuation is bounded and the defor-
mation at each edge ei does not exceed certain pre-defined
tolerance (i.e. stressi < δi) to achieve the same effects.

B. Volume Preservation

One limitation of the mass-spring system is the difficulty
to represent objects with sharp edges. A possible solution
would be to add extra angular springs. In order to achieve
a similar effect and satisfy the volume preservation con-
straint, we rely on the ideal gas law. By definition, the
force due to pressure on a surface, ~Fp, has the magnitude:

Fp = PA

where P is the total pressure inside the object, A is the
surface area and ~Fp has the same vector direction as the
face normal n̂ pointing away from the surface. To quickly
approximate the pressure inside the object, we use the ideal
gas law:

PV = nRgT

where V is the volume of the robot, n is the number of
moles of gas, Rg is the universal gas constant and T is
the temperature of the gas. For any given situation, we can
set nRgT to be a user-defined constant since it should not
vary within the simulation. The remaining unknown in this
equation is the volume of the robot.

C. Volume Computation

To compute the volume, we break the space into trian-
gular prisms. Each prism is formed as the swept volume
from the triangle to its projection onto the X − Y plane.
To find the volume of the prism, we multiply the average
height by the area of the projected triangle. Or:

V =
∑

Abaseh,

where
Abase =

1

2
((p2 − p1) × (p3 − p1))z

and
h =

(p1 + p2 + p3)

3
.

It is important to note that PV is a constant. Thus, if
P does not vary much, then V would not change much
either.

D. Deformation Step

Once we solve for P , we can compute Fp for a triangle.
By computing this quantity for each mass, we obtain a
simple simulation of pressure in a soft object. The follow-
ing code fragment shows the loop involved in handling the
deformations:

1) Perform collision detection
2) Handle any collisions to enforce non-penetration

constraint
3) Accumulate the spring forces, Fs

4) Compute the volume, V of the object
5) Set P = nRgT/V
6) For each face f on the object’s geometry

a) Set Fp = PA
b) For each vertex v of f

Find the pressure forces on v by adding
Fp divided by the number of faces inci-
dental to v.

Since a collision can result in penetration, it is important
to check for contacts during the simulation. For robustness
of the implementation, we consider that the robot is col-
liding with an obstacle, if the robot is within tolerance to
an obstacle, or when the robot has actually intersected the
obstacle.

To accelerate the collision detection, we impose a uni-
form grid around the workspace. The size of grid cell is set
to be the size of the longest edge of the deformable object
in its minimal energy state. With this setting, in most cases
we only have to check eight grid cells per step. Then, we
can perform a standard collision check between the robot
and the obstacles in these cells. Collision response is then
performed based on if the collision results from edge-edge
intersection or point-face intersection.

Taking discrete time steps can occasionally lead to
situations where the object penetrates or intersects one of
the obstacles, if it is moving fast enough. We can handle
this situation by performing backtracking in time and then
applying the collision resolution step.

One of the features of this simulation-based approach
is that it maintains several of the hard constraints auto-
matically. In particular, the non-penetration constraint is
performed by collision detection and contact resolution.

VI. IMPLEMENTATION AND RESULTS

We have implemented and tested this algorithm on a
laptop with a 1.5 GHz Pentium-M processor, 512 MB of
main memory, and a 64 MB ATI Radeon 9000 Mobility
graphics card. To test the effectiveness of our algorithm,

Fig. 4. Soft-body robots with varying internal pressures. The
leftmost robot has a relatively low pressure, while the rightmost
has a fairly high pressure. The middle image has a pressure value
in between the other two.

Fig. 5. The results of a simple test environment. The robot is
shown in wireframe, and is deforming between some of the larger
spheres. Each of the larger spheres are stationary, rigid obstacles.

we applied our planner to various scenarios that evaluate
different aspects of the planner. They are as follows:

• Ball In Cup - The simplest of the scenarios, this
environment has a spherical, deformable robot which
must find its way into a cup. The cup’s rim has been
adjusted so that the ball will barely be able to fit in,
and will thus have to deform to do so. (See Fig. 1)

• Many Spheres - This is primarily a test on how
varying degrees of geometric complexity affects the
performance of the planner. The environment is com-
posed of a collection of spheres of varying positions
and radii. A spherical, deformable sphere must move
through these spheres to reach a goal in the opposite
corner of the space. (See Fig. 5)

• Walls with Holes - Based on one of the Parasol
Motion Planning benchmarks [25], this scene has a
sequence of four walls, each of which has a small
hole. In order to reach its goal, the robot must make
its way through each hole. We modified the model
to have a wide, flexible cylindrical robot that either
cannot, or barely can, fit through the holes. It is wide
enough that finding a collision free path would be very
difficult, if not impossible, if the robot was rigid. The
goal of this scenario was to fit a deformable robot
through a small space. (See Fig. 6)

• Tunnel - This is also based on a Parasol Motion
Planning benchmark [25]. The scene contains a small

Scenario Obstacle Robot Path Total Average
(tris) (tris) Est. Sim. Step

time time time
(sec) (sec) (sec)

Ball
In Cup 500 320 1 41.5 0.015
Sphere
World 3200 320 1 333.16 0.077
Holes
In Walls 216 720 48 605.958 0.037

Tunnel 72 720 575 833.24 0.068

TABLE I
This table highlights the performance of our planner running on

a laptop with 1.5GHz Pentium-4 processor. We highlight the
geometric complexity of the environment in term of the number
of triangles. We also report the high-level path generation time
and simulation time. The last column reports the average time

taken per simulation step.

tunnel with two bends in it. Like in the Walls bench-
mark, we augment the model by having a robot that
is both long and wide. These constraints would make
it impossible for a rigid robot to find a collision-free
path. This scenario tested the planner’s ability to force
the robot to bend and deform around sharp corners.
(See Fig. 7)

Results from each of these tests can be seen in their
associated figures and are also summarized in Table I.
The first two columns of the table describe the geometric
complexity of the scene, for both the robot and the ob-
stacles. The next columns give performance results of the
planner by highlighting the time spent in various stages.
One column gives the time the planner spent in high-
level path generation, and the next gives the total time
the planner spent in simulation steps. Lastly, we give an
average step time for each simulation step.

Taking differences of systems into account, the average
step time reported here is comparable to the time to process
purely geometric deformations (based on FFD) used in
other planners for deformable objects [12]. However, our
technique also takes into account the physical constraints.

As can be seen from the table, the bulk of the time is
in the simulation steps. These steps include the force cal-
culation, collision resolution, establishing constraints, and
solving the resulting system. Our current implementation is
not optimized and the performance of each of these stages
can be further improved.

VII. ANALYSIS AND FUTURE WORK

In this paper, we have presented a new framework for
motion planning of deformable robots. We use a constraint-
based planning algorithm and impose non-penetration and
volume preserving constraints along with energy minimiza-
tion. Our approach is applicable to all robots that can be
represented as closed objects. Our framework can use any
roadmap generation algorithm, as well as any discretized

deformation model. We have applied our algorithm to four
different scenarios and the initial results are promising.

Our approach has some limitations. It currently does not
have the ability to include differential constraints on the
robot’s motion. Its motion is determined entirely by the
soft-constraint which moves it towards the goal and the
response to other external forces and collisions. Moreover,
our robot is restricted to a closed shape. Our planner
uses local techniques to compute a trajectory and cannot
guarantee a physically plausible motion and deformation
for all cases.

There are many avenues for future work. In order to
incorporate differential constraints, we would like to use
RRT algorithm [20]. Also, with the recent advances in
graphics hardware, graphics processing units (GPU) have
extra features which could be very useful for accelerating
the performance our planner. Moreover, GPU based inter-
section or visibility computations can be used to accelerate
link queries and collision detection and the planner can be
used in more complex environments [26].

Currently the coefficients used in our planner are esti-
mated empirically. We would like to obtain better coef-
ficients through physical measurements. We would like to
further compare the results of our planner with real scenar-
ios and evaluate its effectiveness. Finally, we would like to
extend the planner to environments, where the obstacles are
non-rigid or moving, as well as better modeling of friction,
sliding and rolling contacts between deformable surfaces.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their helpful comments in improving the manuscript.

REFERENCES

[1] J. Latombe, “Motion planning: A journey of robots, molecules,
digital actors, and other artifacts,” International Journal of Robotics
Research, pp. 1119–1128, 1999.

[2] R. A. Brooks and T. Lozano-Pérez, “A subdivision algorithm in
configuration space for findpath with rotation,” IEEE Trans. Syst,
vol. SMC-15, pp. 224–233, 1985.

[3] O. Khatib, “Real-time obstable avoidance for manipulators and
mobile robots,” IJRR, vol. 5, no. 1, pp. 90–98, 1986.

[4] L. Kavraki, P. Svestka, J. C. Latombe, and M. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configu-
ration spaces,” IEEE Trans. Robot. Automat., pp. 12(4):566–580,
1996.

[5] D. Hsu, L. Kavraki, J. Latombe, R. Motwani, and S. Sorkin, “On
finding narrow passages with probabilistic roadmap planners,” Proc.
of 3rd Workshop on Algorithmic Foundations of Robotics, pp. 25–32,
1998.

[6] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo,
“Obprm: An obstacle-based prm for 3d workspaces,” Proceedings
of WAFR98, pp. 197–204, 1998.

[7] S. A. Wilmarth, N. M. Amato, and P. F. Stiller, “Motion planning for
a rigid body using random networks on the medial axis of the free
space,” Proc. of the 15th Annual ACM Symposium on Computational
Geometry (SoCG’99), pp. 173–180, 1999.

[8] M. Foskey, M. Garber, M. Lin, and D. Manocha, “A voronoi-based
hybrid planner,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2001.

[9] C. Holleman, L. Kavraki, and J. Warren, “Planning paths for a
flexible surface patch,” IEEE Int. Conf. Robot. Autom. (ICRA), 1998.

Fig. 6. The Wall with Holes test. This scenario shows a sequence of four walls with holes in them. To reach the goal, the robot travels
through each hole. This figure highlights the various states of the deformable robot while travelling along the displayed path.

Fig. 7. The Tunnel Environment. This environment is a simple tunnel which the robot must travel through in order to reach the goal. In
this image, the striped cylinders represent the deformable robot at various states in its path through the tunnel. Note that a collision-free
would not be possible if this robot was not deformable

[10] F. Lamiraux and L. Kavraki, “Path planning for elastic objects
under manipulation constraints,” International Journal of Robotics
Research, vol. 20, no. 3, pp. 188–208, 2001.

[11] E. Anshelevich, S. Owens, F. Lamiraux, and L. Kavraki, “De-
formable volumes in path planning applications,” IEEE Int. Conf.
Robot. Autom. (ICRA), pp. 2290–2295, 2000.

[12] O. B. Bayazit, H. Lien, and N. Amato, “Probabilistic roadmap
motion planning for deformable objects,” IEEE Int. Conf. Robot.
Autom. (ICRA), 2002.

[13] S. F. Gibson and B. Mirtich, “A survey of deformable modeling in
computer graphics,” Mitsubishi Electric Research Laboratory, Tech.
Rep. Technical Report, 1997.

[14] A. Singh, D. Goldgof, and D. Terzopoulos, Eds., Deformable Models
in Medical Image Analysis. IEEE Press, 1998.

[15] A. H. Barr, “Global and local deformations of solid primitives,” in
Computer Graphics (SIGGRAPH ’84 Proceedings), vol. 18, July
1984, pp. 21–30.

[16] T. W. Sederberg and S. R. Parry, “Free-form deformation of solid
geometric models,” in Computer Graphics (SIGGRAPH ’86 Pro-
ceedings), D. C. Evans and R. J. Athay, Eds., vol. 20, no. 4, Aug.
1986, pp. 151–160.

[17] M. Kass, A. Witkin, and D. Terzopoulus, “Snakes: active contour
models,” International J. of Computer Vision, vol. 1, no. 4, pp. 321–
332, 1987.

[18] M. Garber and M. Lin, “Constraint-based motion planning using
voronoi diagrams,” Proc. Fifth International Workshop on Algorith-
mic Foundations of Robotics, 2002.

[19] A. Witkin and D. Baraff, Physically Based Modeling: Principles and
Practice. ACM Press, 1997, course Notes of ACM SIGGRAPH.

[20] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” Robotics: The Algorithmic Perspective
(Proc. of the 4th Int’l Workshop on the Algorithmic Foundations
of Robotics, 2000.

[21] O. B. Bayazit, G. Song, and N. Amato, “Enhancing randomized
motion planners: Exploring with haptic hints,” Proceedings of ICRA,
pp. 529–536, 2000.

[22] K. E. Hoff, III, T. Culver, J. Keyser, M. Lin, and D. Manocha,
“Fast computation of generalized Voronoi diagrams using graphics
hardware,” in Computer Graphics Annual Conference Series (SIG-
GRAPH ’99), 1999, pp. 277–286.

[23] N. Govindaraju, S. Redon, M. Lin, and D. Manocha, “CUL-
LIDE: Interactive collision detection between complex models in
large environments using graphics hardware,” Proc. of ACM SIG-
GRAPH/Eurographics Workshop on Graphics Hardware, pp. 25–32,
2003.

[24] M. Matyka and M. Ollila, “A pressure model for soft body simula-
tion,” Proc. of SIGRAD, pp. 325–333, 2003.

[25] P. R. Group, “Motion planning benchmarks,” 2003,
http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp.

[26] R. Gayle, P. Segars, M. Lin, and D. Manocha, “Path planning for
deformable robots in complex environments,” University of North
Carolina-Chapel Hill, Tech. Rep., 2005.

