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Abstract— We present a method for planning the motion
of arbitrarily-shaped volumetric deformable bodies or robots
through complex environments. Such robots have very high-
dimensional configuration spaces and we compute trajectories
that satisfy the dynamics constraints using a two-stage learning
method. First, we train a multitask controller parameterized
using dynamic movement primitives (DMP), which encodes
various locomotion or movement skills. Next, we train a neural-
network controller to select the DMP task to navigate the robot
through environments while avoiding obstacles. By combining
the finite element method (FEM), model reduction, and contact
invariant optimization (CIO), the DMP controller’s parameters
can be optimized efficiently using a gradient-based method,
while the neural-network’s parameters are optimized using
Deep Q-Learning (DQL). This two-stage learning algorithm also
allows us to reuse the trained DMP controller for different nav-
igation tasks, such as moving through different environmental
types and to different goal positions. Our results show that the
learned motion planner can navigate swimming and walking
deformable robots with thousands of DOFs at realtime.

I. INTRODUCTION

Motion planning for deformable bodies is an important
problem in robotics, factory automation, physically-based
modeling, and surgical simulation. This problem frequently
arises in robotic design and control, haptic rendering, med-
ical robotics, cable placement and layouts, and assembly
planning. Many of these applications tend to use complex
deformable models and can simulate their movements subject
to external and internal forces.

There is extensive work on motion planning of rigid, artic-
ulated, and deformable models. Some widely used methods
are based on sampling-based planning or optimization-based
planning. Compared with articulated or rigid bodies, motion
planning for deformable robots can be computationally more
challenging due to the very high-dimensional configuration
space of the robot. The most accurate methods for simulat-
ing deformable motion are based on FEM (finite-element
meshing) [1]. However, even for a moderately complex
object shape, we need to discretely represent the deformable
model using thousands of vertices, i.e. tens of thousands
of DOFs. To simulate deformable models using a high-
dimensional representation, a conventional FEM algorithm
has a cubic complexity in the number of vertices and an
accurate simulation can take hours on a desktop PC [2].
For example, in many assembly planning applications, the
underlying objects may undergo large deformations, which
adds to the computational complexity. Prior planning al-
gorithms for deformable robots [3], [4], [5], [6], [7] have
been designed for simpler deformable models. These models
either correspond to simple geometric shapes such as a
linear rod or may undergo small, local deformations. These
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techniques may not be practical in terms of modeling large
deformations of general volumetric deformable robots with
thousands of vertices. Other methods have been designed
for deformable body registration [8], which can be used to
manipulate passive deformable bodies [9].

A driving application for our work is the control and
planning of arbitrary deformable bodies with internal mo-
tors [10]. This problem has rich applications in biology
for modeling boneless animals [11], in computer graphics
for generating animations [12], and in robotic design and
control [13]. Compared with motion planning using external
forces such as is demonstrated in [14], our problem is
more challenging because the control forces correspond to
only internal forces and the deformable robot must move
around by interacting with the environment. Prior techniques
used for planning and control are based on differential
dynamic programming [15], reinforcement learning [16],
and sampling-based methods [17]. However, these methods
have been limited to articulated models, and are not practical
for very high-DOF deformable models.

Main Result: We present a novel planning algorithm
for high-DOF deformable bodies using a two-stage learning
algorithm, where we learn a low-level control policy in the
first stage and a high-level motion planner in the second
stage. In the first stage, we train a multitask controller param-
eterized using DMP functions [18], [19]. A DMP function
encodes a deformable body’s movement or locomotion gaits
using very few parameters, making it possible to directly
optimize these parameters (Section IV-A). We use subspace
FEM approximation and contact invariant optimization for
efficient DMP-based controller optimization. In the second
stage, we train a neural-network motion planner using deep
Q-Learning (DQL), which selects the DMP task to navigate
the deformable body to a given target position while avoiding
obstacles. This training typically requires sampling millions
of simulated deformable body states. To accelerate this
computation, we use a simplified dynamic model, which
is identified from DMP-controlled simulations and perform
DQL on the simplified model (Section IV-B).

We evaluate the performance of our planning on 3 types of
deformable models and 2 kinds of locomotion: an underwa-
ter swimming fish (6354-DOF), a virtual T-shaped walker
(9363-DOF), and a 4-legged deformable walker/swimmer
(3162-DOF) (Section V). These are two widely used lo-
comotion patterns used to move a robot around. In both
cases, our two-stage navigation planner is trained within
a day of computation on a desktop machine and can be
executed at realtime in our simulated environment. We also
show extensions to various environments, obstacle shapes,
and input features such as laser range scanner data.



II. RELATED WORK

We briefly review related work on deformable model sim-
ulation, planning and manipulation of deformation objects,
trajectory optimization, and reinforcement learning.

Deformable Model Simulation: The most widely used
method for deformable simulation is FEM [1]. It has been
shown [2] that the FEM method is capable of simulating
very large, nonlinear, and complex deformations. The high
computational cost makes it difficult to develop efficient
control algorithms for these models. For example, in [12],
it is only possible to control FEM methods over a very short
horizon. In this paper, we use a subspace FEM model [20],
[21], [22] to represent complex deformable robots. These
methods provide two orders of magnitude speedup over con-
ventional FEM methods. We combine this subspace model
with efficient planning and learning techniques to provide
a complete framework for deformable body control and
planning.

Deformable Body Planning and Manipulation: There is
extensive literature on motion planning and manipulation of
deformable models, as surveyed in [4]. Most prior planning
algorithms make different assumptions about deformable
models. These assumptions include a reduced configuration
space without any dynamics properties [23] or passive
deformable models with no actuation [24], [25], [5], [26],
[6], [7]. Most such deformable models undergo deformations
based only on external forces. Other methods [14] consider
deformable bodies undergoing motion due to internal and
external forces, but they are not very efficient for very high-
DOF robots. Other planning algorithms focus on different
kinds of deformable models such as fluids [27] or ropes [28].

Trajectory Optimization: There is extensive work on
trajectory and controller optimization. Those techniques have
also been used for motion planning of deformable mod-
els [29], [30], [31], [32], [33], [34]. Our work extends these
trajectory optimization methods during the first stage of our
learning method.

Learning-based Motion Planning: Learning techniques
are increasingly used to design efficient motion planning
algorithms. In terms of deformable models, many learning-
based algorithms [35], [36] have been designed for passive
deformable models and they use imitation learning, which
requires human demonstrations. In our method, we use
a neural-network trained using DQL [37] as the motion
planner.

III. PROBLEM FORMULATION

Figure 1 illustrates our overall idea of motion planning for
deformable bodies. The input to our method is an arbitrary
volume mesh representing the shape of a deformable body.
The kinematic configuration of the body is represented
by the position of all the vertices, denoted as x, whose
dimension |x| is proportional to the number of vertices. In
practice, |x| is several thousand for a moderately complex
deformable model. In this configuration space, we discretize
the body’s potential and kinetic energy using the FEM
method [16], and denote the resulting dynamic system as

xi+1 = f(xi, ui,∆t), where f is the FEM time integrator,
∆t is the timestep size, and ui is the control input at timestep
i. f takes both internal potential forces and external forces
into consideration. In our approach, we consider two kinds
of external forces: fluid drag force for underwater swimming
bodies and frictional contact force for walking bodies. The
actual formulation of ui is application dependent. We assume
that ui corresponds to the target shape of deformation, which
means that we achieve control by adding additional energy,
‖xi+1 − ui‖2, to the dynamic system f .

The function f is computationally costly to evaluate be-
cause the cost is superlinear in |x|. This is the main challenge
for performing in the planner and controller optimizations,
where many f evaluations are required. To overcome this
complexity, we use a subspace FEM approximation [20],
[21], [22]. These methods are based on the assumption
that, in the high-dimensional configuration space, most
salient elastic deformations lie on a low-dimensional man-
ifold. Moreover, if we apply a special nonlinear coordinate
transformation on x, this manifold is mapped to a linear
space [22]. We call this the transformed rotation-strain (RS)
space and denote the transformation function as RS(x̄) = x,
where x̄ is a low-dimensional coordinate, and |x̄| < 20 in
most cases. The RS transformation can be considered as a
nonlinear dimensionality reduction computation [38], which
is used for elastic deformations. Pan et al. [22] showed that
we can construct a low-dimensional counterpart of f in RS
space, denoted as follows:

RS(x̄i+1) = f(RS(x̄i), ūi,∆t),

which can be rewritten as :
x̄i+1 = f̄(x̄i, ūi,∆t).

This f̄ is also an FEM dynamics model, where the configura-
tion space is constrained to the low-dimensional manifold of
salient elastic deformations. Due to the reduced dimension,
function f̄ can be evaluated efficiently (e.g., more than 30Hz
on a desktop machine), which greatly accelerates controller
optimization.

After constructing the transformation RS(•) and the re-
duced dynamic simulator f̄ , the goal of our planning al-
gorithm is to optimize a controller ū = π(x̄) to navigate
the deformation body to a given goal position in the world
coordinate system, i.e. minimizing ‖COM(x̄) − T‖2 while
avoiding collisions with the obstacles. In this case, COM
refers to the deformable body’s center of mass.

IV. MOTION PLANNING WITH TWO STAGE LEARNING

In this section, we introduce our two-stage training pro-
cedure for the controller π(x̄), as illustrated in Figure 2. In
the first stage, we train a low-level controller that encodes
a deformable robot’s movement gaits, such as swimming or
walking in different directions. The controller is parameter-
ized using a multitask DMP function [18], [19]. In the second
stage, we learn a high-level motion planner parameterized
using neural-network and deep Q-Learning [37]. The goal
of our neural-network planner is to select the DMP task
for navigation. Compared with end-to-end methods such as
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Fig. 1: Our overall idea of motion planning for a deformable body: Given an arbitrarily-shaped deformable body (a), we use the FEM
method to discretize the governing dynamics equation, which is denoted as xi+1 = f(xi, ui,∆t) (b). This formulation also takes into
account various external forces. These forces include fluid drag force for swimming (c) and frictional contact force for walking (d).
Function f is costly to evaluate, so we apply the RS transformation [22] to derive a low-dimensional dynamic system that captures most
of the deformations on a low-dimensional manifold. Some examples of the deformations on this manifold are given in (e). We highlight
the path computed using our planner to navigate the deformable body to reach a target (green) while avoiding obstacles (blue) (f), where
our method can handle different obstacle shapes and input environmental features.

[39], two-stage training has two major advantages. First,
since DMP is a smooth function, we can use a gradient-
based method to optimize the DMP controller, which is
computationally more efficient than using a sampling-based
reinforcement learning algorithm, e.g., [16]. In addition,
we can reuse the trained DMP controller to accomplish
multiple navigation tasks and adapt to different environments
and obstacle shapes by only retraining the neural-network
planner.

A. Optimizing Multitask DMP Controller

In this section, we present our method to optimize the
DMP controller [18], [19], which encodes each deformable
body’s locomotion skills. DMP is a widely used open-
loop controller parameterization. Here we use the following
rhythmic multitask DMP representation:

ūji = DMPj(i∆t) ,
D∑
k

αjkexp(βjkcos(τi∆t− µk)),

where αjk, β
j
k, τ, µk are the DMP parameters to be optimized,

denoted as wdmp ,
(
αjk β

j
k τ µk

)
. Here αjk, β

j
k, µk are

vector-valued and represent activation magnitude, activation
time, and phase shift, respectively. D is the number of DMP
elements. For a multitask controller, we use different α, β
for different tasks, while keeping the period τ and the phase
shift µ the same for all tasks. We use superscript j to denote
the task id, e.g. the direction to walk or swim. This leads to
synchronized rhythmic movements of the same deformable
body performing different tasks [19].

The multitask DMP controllers are trained using gradient-
based trajectory optimization. Specifically, for a K1-task
DMP controller, we optimize K1 trajectories, each with N1

timesteps, solving the following optimization problem:
argmin
x̄j
i ,ū

j
i ,wdmp

Ephys + Eobj + Edmp + Ecio, (1)

where we simultaneously find the trajectory x̄ji , control
input ūji for task j, and DMP parameters wdmp, which
minimizes four objective terms. Ephys ,

∑K1

j

∑N1

i ‖x̄
j
i+1−

f̄(x̄ji , ū
j
i ,∆t)‖2 penalizes the violations of the dynamics

equation. Ejobj is the high-level objective function that
formulates the goal of the controller. For example, to
have a deformable body move to T j , we have Eobj ,∑K1

j ‖COM(x̄jN1
) − T j‖2. Edmp ,

∑K1

j

∑N1

i ‖ū
j
i −

DMPj(i∆t)‖2 ensures that ūji is consistent with the output
of the DMP controller. Finally, for a walking deformable
body, the frictional contact forces are optimized using CIO
cost term, Ecio, as detailed in [29]. In practice, we use an
alternating direction method to minimize the above objective
function. First, we fix wdmp and optimize x̄i, ūi using Newton
method. Next, we fix x̄i, ūi and optimize wdmp using Quasi-
Newton method.

In the basic formulation, we use open-loop controllers to
control swimming deformable bodies. However, for contact-
rich locomotion such as walking, an open-loop controller is
not robust enough to force noises and model discrepancy
during online control phase. In this case, we use an iterative
LQG algorithm [15] during the online control, using Ejobj +
Edmp as the cost function, over a control horizon of 5∆t.
In this way, we extend the DMP controller to a feedback
controller that follows the DMP output as much as possible.

B. Optimizing Neural-Network Planner
After the multitask DMP is trained, we use a neural-

network to select the DMP task for motion planning to
navigate the deformable body to a target position while
avoiding obstacles. This is a standard reinforcement learning
problem with discrete action space and continuous state
space. DQL [16] has been proven to be very effective to
solve this kind of Markov Decision Process.

As illustrated in Figure 2 (c), we use a fully connected
neural-network with 3 hidden layers, each having 64 neurons
and a BNLL activation function [40]. The input to our neural-
network is the current RS-space state x̄ of the deformable
body and the environmental information, i.e. the relative
position of obstacles with respect to COM(x̄). The output
is the expected return after applying each DMP task, from
which we pick the DMP task (i.e. superscript j) leading
to the highest return and run the selected DMP-controlled
simulation.



Co
nt
ro
l I
np
ut

DMP Task4

-100
-80
-60
-40
-20
 0
 20
 40
 60
 80
 100
 120

 0  1  2  3  4  5  6  7  8  9  10

Co
nt
ro
l I
np
ut

DMP Task3

-100

-50

 0

 50

 100

 150

 0  1  2  3  4  5  6  7  8  9  10

Co
nt
ro
l I
np
ut

DMP Task2

-200
-150
-100
-50
 0
 50
 100
 150

 0  1  2  3  4  5  6  7  8  9  10

Co
nt
ro
l I
np
ut

DMP Task1

-200
-150
-100
-50
 0
 50
 100

 0  1  2  3  4  5  6  7  8  9  10

First Stage: Trajectory Optimization Second Stage: Reinforcement Learning

(a)

T 1 T 2

T 3

T 4

(b)

(c) DQL

CNN

x̄

Laser Depth (d)

Fig. 2: An illustration of the structure of our control policy (π(x̄) in Figure 1) and its two-stage training procedure. For the 4-legged
deformable walker, our first stage simultaneously optimizes 4 walking trajectories in different directions (a), giving us a 4-task DMP
controller (b). Our second stage uses the DQL to train a 3-layer, fully connected neural-network (c) to select the DMP task for navigation.
The inputs to our neural-network are the current state of the deformable body, x̄, and the feature encoding the current environment
information (d). In our benchmarks, the environment information is represented based on the distance to the obstacles along a set of fixed
directions shown in white in (d), preprocessed by a convolutional neural-network (CNN).

Fig. 3: The DQL learning task
for the 4-legged walker (red in the
middle). We sample K2 = 12
evenly distributed distant targets
(green), and the white line indi-
cates the relative position against
the deformable body. On the way
to each target, we put 2 cylindrical
obstacles (blue circles) with ran-
dom sizes and center offsets.

In our benchmarks, we
use a more general setting
and assume that each de-
formable body is a robot
equipped with a 360◦

laser scanner. The depth
readback of each laser
beam can be used as
the environmental feature
(Figure 2 (e)). This fea-
ture is preprocessed by
a CNN block. Our CNN
has 3 convolutional lay-
ers: 16 filters of kernel
size 8, followed by 16 fil-
ters of kernel size 4, fol-
lowed by another 16 fil-
ters of kernel size 4, and
finally followed by a fully
connected layer with 32
output features. This CNN is pre-trained using supervised
learning to predict the relative obstacle position with respec-
tive to COM(x̄).

Our DQL training uses a standard algorithm [16]. For
each deformable body and environmental setting, we ran-
domly generate K2 distant navigation targets, T j , which
are distributed evenly around the body. For each target, we
put two obstacles along the straight line between the initial
COM(x̄) and T j . During each DQL iteration, we sample K2

trajectories with fixed length N2 for all the T j . This setting
is illustrated in Figure 3. At each timestep i, our reward
function is defined as:

R(x̄i, x̄i+1, ūi, T
j) = ‖COM(x̄i)− T j‖2 −

‖COM(x̄i+1)− T j‖2 − 1000coll(x̄i+1), (2)

where coll(x̄) is an indicator of whether the deformable
body in state x̄ is in collision with any obstacles.

However, running the algorithm described in [16] under
this setting is still computationally impractical, as a typical
DQL training requires millions of state samples. In our case,
each state sample requires a time integration using f̄ and a

Algorithm 1 Two-Stage Deformable Body Planner Learning
Input: An arbitrarily-shaped deformable body mesh

1: . Building subspace FEM model [22] (Section III)
2: Build RS transformation function x̄ = RS(x)
3: Build subspace FEM simulator x̄i+1 = f̄(x̄i, ūi,∆t)
4: . First Stage: train DMP controller (Section IV-A)
5: Pick K1 targets: T 1,··· ,K1 and solve Equation 1
6: . Fit simplified dynamic system (Section IV-B)
7: Initialize tuple set Sj = ∅ ∀j = 1, · · · ,K1

8: Initialize deformable state x̄
9: while ∃j, |Sj | < 1000 do

10: pick random task id j
11: x̄old ← x̄
12: for i = 1, · · · , d 2π

τ∆t
e do

13: x̄← f̄(x̄,DMPj(i∆t),∆t)
14: end for
15: T j ← Sj ∪ {(x̄old, x̄)}
16: end while
17: for j = 1, · · · ,K1 do
18: Fit rigid transformation Rj , T j from Sj using [41]
19: define f̄fit(x̄,DMPj) as rigid transformation Rj , T j

20: end for
21: . Second Stage: Train motion planner (Section IV-B)
22: Pick K2 targets: T 1,··· ,K2 around initial deformable body
23: for j = 1, · · · ,K2 do
24: Put 2 obstacles on the way to T j

25: end for
26: Run [16] on f̄fit(x̄,DMPj) to maximize cumulative reward

Equation 2 for all K2 trajectories

collision check to determine coll(x̄). We use two techniques
to accelerate training. First, we exploit the fact that the goal
of the neural-network is to select the DMP task and the
DMP output is rhythmic. As a result, we can query the
neural-network at a frequency of d 2π

τ∆te, i.e., only between
consecutive DMP control cycles. Second, it is intuitive to
expect that each DMP control cycle does not change a body’s
deformable state. It only moves the deformable body rigidly.
Therefore, we propose avoiding evaluating the actual f̄ and
run DQL using a cheap surrogate simulator f̄fit. We assume
that running one DMP control cycle essentially applies a
rigid affine transformation to the deformable body. This rigid



transformation is parameterized by a 3×3 orthogonal rotation
matrix, R, and a 3 × 1 translation, T . To find R and T
that best represent the state changes caused by DMP control
cycles, we run random DMP-controlled FEM simulations
by randomly jumping from one DMP task to another and
collecting tuples (x̄jbefore, x̄

j
after) of states before and after

running one DMP control cycle of task j. After we have
collected 1000 tuples for each j, we use an optimal rigid
transformation algorithm [41] to compute the globally op-
timal R and T . This defines our surrogate simulator f̄fit,
which is just a rigid transformation. DQL training with
f̄fit becomes much faster. We summarize our method in
Algorithm 1.

V. IMPLEMENTATION AND PERFORMANCE

In this section, we describe our implementation and high-
light the performance on complex deformable models.

Example #vertices |x̄| cost f cost f̄ K1 N1 D cost DMP cost DQL cost CNN

Fish Swimming 2118 11 2.5s 0.07s 3 200 5 1.7h 2.5h 0.7h
T-shaped Walking 3121 16 2.2s 0.13s 4 200 5 3.2h 3.3h 1.2h
4-legged Walking 1054 16 2.1s 0.11s 4 200 5 2.5h 3.3h 1.51h
4-legged Swimming 1054 16 5.2s 0.17s 5 200 5 5.2h 11.0h 9.12h

TABLE I: Computational cost of each step of our learning
method. From left to right: name of example, number of vertices in
volume mesh, dimension of identified manifold in RS space, cost of
evaluating f , cost of evaluating f̄ , number of DMP tasks, trajectory
length for DMP controller optimization, number of DMP elements,
cost of solving Equation 1 (in hours), cost of DQL training (in
hours), and cost of CNN feature learning (in hours). Note that the
simulation cost in subspace is related with number of bases, |x̄|,
instead of #vertices.

Computational Cost: We validate our method using 2
deformable body shapes performing 3 kinds of locomotion
tasks: a fish swimming, a 4-legged body walking, and a 4-
legged body swimming. Table I summarizes the parameters
of these deformable bodies and the training setup. The
original FEM model has 6354-DOF for the fish, 9363-DOF
for the T-shaped body, and 3162-DOF for the 4-legged
body. After the RS transformation, the low-dimensional
configuration spaces have 11-DOF for the fish and 16-
DOF for the 4-legged body and T-shaped body. However,
simulating these relatively small dynamic systems is still
quite computationally costly. Each evaluation of f̄ takes
0.1 seconds on an 8-core CPU. Even using our reduced
dynamics, the DQL learning still takes more hours than DMP
controller optimization.

Multitask DMP Controller Performance: To optimize
the multitask DMP controller, we have to manually design
Eobj for all 1 ≤ j ≤ K1. For our 4 examples illustrated in
Figure 4, we design objectives so that different navigation
skills are needed by the neural-network planner. For the
swimming fish, we choose K1 = 3 and set T 1,2,3 at the
west, north-west, and south-west corners, respectively, so
that the fish must turn in different directions while swim-
ming forward. For the 4-legged walking body and T-shaped
walking body, we choose K1 = 4 and set T 1,2,3,4 at the
east, west, south, and north corners, respectively. Finally, for
the 4-legged swimming body, we choose K1 = 5 and set

T 5 at the east corner. However, we set all other targets to be
zero (i.e., T 1,2,3,4 = 0) so that the 4-legged body does not
move. In addition, we require that the orientation of the 4-
legged swimmer changes to different directions by using an
additional objective energy term Eobj = ‖Rj(x̄N )y − yj‖2,
where y =

(
0 1 0

)
is the +y direction in the deformable

body’s local coordinate of reference, and yj is the target
orientation set to y1,2,3,4 =

(
±1 0±1

)
. Unfortunately, the

reward is non-zero only for task 1, and zero otherwise, so that
DQL suffers from the well-known “distal reward problem”.
Note that in all these examples, the deformable body is a
non-holonomic robot because they can only navigate along
a set of discrete directions dictated by the DMP controller,
insteading of all possible directions. As a result, our neural-
net is a non-holonomic motion planner.

Example K2 N2 memSize d 2π
τ∆t

e #f̄ #f̄fit

Fish Swimming 10 200d 2π
τ∆t

e 20k 11 22k 2k
T-shaped Walking 10 400d 2π

τ∆t
e 40k 23 92k 4k

4-legged Walking 10 400d 2π
τ∆t

e 40k 23 92k 4k
4-legged Swimming 30 800d 2π

τ∆t
e 240k 9 216k 24k

TABLE II: Parameters of DQL training in the 4 examples. From
left to right, name of example, number of trajectories, trajectory
length measured by number of DMP control cycles, equivalent
memory bank size (K2 × N2 × 10), number of timesteps in each
DMP control cycle, expected number of calls to f̄ in each DQL
iteration using accurate FEM dynamics (K2×N2), number of call to
f̄fit in each DQL iteration using fitted dynamics (K2×N2/d 2π

τ∆t
e).

Neural-Network Planner Performance: For each DQL
training, we run 104 iterations of [16]. In each iteration,
we sample K2 trajectories of length N2 and then update
neural-network parameters by running RMPProp iterations
with memory bank size (K2 × N2 × 10/d 2π

τ∆te) and batch
size 32, i.e., the state samples of the most recent 10 DQL
iterations are stored in the memory bank. The parameters
of DQL training for the three examples are summarized in
Table II. We pick our targets very carefully. Each T j is
located 20 meters away from the initial COM(x̄j0), where the
average body size is 1 meter. In addition, we pick our targets
so that they evenly cover all possible moving directions. The
fish swimming and the 4-legged/T-shaped walking examples
are essentially 2D motion planning problems where we can
use evenly distributed targets, as illustrated in Figure 3. The
4-legged swimming is a 3D motion planning problem, for
which we use more targets (K2 = 30) to cover all possible
3D directions. These directions are selected using spherical
Poisson disk sampling. Moreover, since the 4-legged body
cannot move during orientation adjustment, we use a longer
trajectory size (N2 = 800d 2π

τ∆te). This is why DQL training
for 4-legged swimming is more costly in Table I. The
convergence history of DQL is plotted in Figure 5.

From the last two columns of Table II, we can see that
using f̄fit instead of f̄ leads to at least two orders of magni-
tude speedup, because the number of samples is reduced by
an order of magnitude and each evaluation of f̄fit is more
than 10 times faster than f̄ . However, it is still unclear
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Fig. 4: For each of the K1 tasks in our 4
examples, we plot the multitask DMP control
commands on the deformable body (each con-
trol command has |x̄| DOFs shown as different
curves in the plot). We also show the controlled
trajectory of the center of mass (green curve).
(a): a fish controlled by a 3-task DMP to swim
left, right, and forward (from top to bottom).
(b): a T-shaped walker controlled by a 4-task
DMP to walk forward, back, left, and right. (c):
a 4-legged walker controlled by a 4-task DMP
to walk forward, back, left, and right. (d): a 4-
legged swimmer controlled by a 5-task DMP
to turn to the front, back, left, and right, and to
swim forward. Its swimming gaits are similar
to those of a real-life jellyfish. In this case,
only the last task changes COM(x̄), leading
to a “distal reward problem” in reinforcement
learning. From these examples, we can see
that both the control command and controlled
trajectory are periodic. This motivates us to use
proxy dynamics fitted from each cycle of the
DMP controller to accelerate DQL training.

(a) (b)

(c) (d)

Fig. 5: The reward (Equation 2) of the K2 trajectories plotted
against DQL iteration numbers for fish swimming (a), 4-legged
walking (b), T-shaped walking (c), and 4-legged swimming (d)
examples. (Gray: minimum, maximum reward. Red: mean reward.)
During DQL training, most of the negative rewards (gray region)
are due to collisions and most efforts of DQL are spent on learning
to avoid collisions (convergence of gray region). At the final stage
of training where collisions rarely happen, most efforts of DQL
are spent on moving towards goals, leading to a gain in positive
rewards (convergence of the red region).

how well f̄fit approximates one cycle of DMP controlled
trajectory. To measure this approximation quality, we notice
that f̄fit is just an affine transformation fitted from sampled
data Sj in Algorithm 1. Therefore, we summarize the mean
and standard deviation of Sj in Table III. We can see that
either the standard deviations are very small compared with
mean value or they are both small. This means that an affine
transformation is a very good approximation of the controlled
trajectory. Therefore, we only take the mean value and run
DQL on deterministic dynamics f̄fit. When the standard
deviations are large, one can consider more sophisticated
methods such as stochastic f̄fit using GMM, such as in [16].
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Fig. 6: Top: The number of successful planning trajectories under
different dynamic obstacle moving speeds (in m/s). Bottom: The
trajectory (green) generated using our neural-network planner to
reach the target (red dot) in realtime. Note that the first two
examples are 2D so that the obstacles are cylindrical while the last
example is 3D so that obstacles are spherical ((a): fish swimming
with K2 = 10, (b): 4-legged walking with K2 = 10, and (c):
4-legged swimming with K2 = 30).

Applications and Extensions: After two-stage training,
we test our planner using accurate FEM dynamics f̄ . Due to
the subspace FEM approximations and fast neural-network
evaluation, the online performance of our method is always
in realtime. We first test the planner on the K2 trajectories
used during DQL training, and all 4 policies achieve a
100% rate of success, i.e. reaching each T j without touching
obstacles. Next, we run the tests using the novel target
positions. In addition, we add 10 obstacles on the way to
each T j , instead of the 2 obstacles in DQL training. Figure 6
illustrates the resulting trajectory of the 4 examples.

Since our training only takes static obstacles, our planner
has limited capability to handle dynamic obstacles. To mea-
sure this ability, we pick a random direction for each obstacle
to move in each of the K2 trajectories. Next, we generate
the K2 trajectories for each example using different obstacle
moving speeds. In the top figure in Figure 6, we plotted the
number of successful trajectories under different speeds.

An advantage of two-stage training is that we can retrain
the neural-network for new navigation tasks with different



Example AV G(Rj) SD(Rj) AV G(tj) SD(tj)

Fish Swimming 0.833/0.969/0.131 0.085/0.048/0.044 1.409/1.424/1.484 0.096/0.087/0.058
T-shaped Walking 0.009/0.012/0.001/0.02 0.0/0.0/0.03/0.001 0.672/0.643/0.522/0.541 0.007/0.012/0.031/0.016
4-legged Walking 0.083/0.132/0.071/0.129 0.104/0.107/0.107/0.105 1.963/0.67/0.93/1.64 0.269/0.127/0.165/0.305
4-legged Swimming 0.184/0.206/0.229/0.211/0.971 0.129/0.121/0.118/0.122/0.274 0.09/0.087/0.089/0.089/0.426 0.076/0.073/0.05/0.066/0.055

TABLE III: The original RS dynamics model, f̄ , is still too costly for DQL training, so we use fitted dynamics, the affine transformation
f̄fit. We measure how well f̄fit approximates f̄ by measuring the mean (AVG) and standard deviation (SD) in training data Sj (global
rotation Rj and translation tj of the deformable body for task j over one DMP control cycle). We can see that the standard deviations are
all very small, so f̄fit is a very good approximation and we can run DQL on f̄fit as a deterministic dynamic model without introducing
any state uncertainty, unlike in [16].

environment features and obstacle shapes. In Figure 7, we
show such an example where the fish is swimming through
a tunnel. The fish starts at one end and the T is at the other
end. We again use depth data as the environmental feature,
but the CNN is not pre-trained in this case. It is combined
with the 3-layer neural-network to perform end-to-end DQL
training. This result verifies that we can handle multiple
motion planning tasks by just replacing the motion planner,
without changing the set of movement gaits. A similar idea
is presented in [42] for articulated robots.

Analysis and Comparisons: We notice that there are
many concurrent works on controller optimization [30],
reinforcement learning [43], and reinforcement learning for
motion planning [44]. These methods mainly deal with
the robustness and versatility of learning algorithms for
articulated robots. Instead, our focus is on the efficiency of
handling very high-dimensional configuration spaces corre-
sponding to deformable robots, and the design of efficient
algorithms for planning controller optimization. As a result,
we decompose the pipeline of optimization into two learning
stages, so that each stage can be accomplished in several
hours on a desktop machine. If we do not use f̄fit and
directly run DQL on f̄ , then the training takes more than
48 hours for all 4 examples. Finally, the two-stage algorithm
provides us with additional benefit that the control becomes
modular and we can replace only the motion planner to
extend our method to different environments and obstacle
shapes, without retraining the DMP controller.

VI. LIMITATIONS AND CONCLUSION

We present a learning-based algorithm for planning high-
DOF deformable bodies. The computationally costly FEM
dynamics is first reduced using subspace FEM approxima-
tions. Then, a two-stage learning is used to parameterize the
control policy. This allows efficient learning algorithms to be
used in each stage, and efficient retraining for new planning
tasks. We have shown that the method can plan deformable
bodies with thousands of DOFs, in less than a day of training
on a desktop machine.

Our method still has several limitations. During first stage,
our method uses DMP as our underlying controller so that
we inherit some of its limitations. DMP is an open-loop
controller and we could use a general feedback controller,
such as neural-networks, to provide better robustness. And
the number of DMP tasks K1 and the type of these tasks must
be manually selected. Moreover, our fast DQL training relies
on the fact that we use rhythmic DMP controller. Although
locomotion gaits used for navigation are mostly rhythmic,
it is worth extending our method to non-rhythmic cases so

that the method can be used for more general tasks than
navigation.

During second stage, we currently use static obstacles and
simple obstacle shapes for training the planner. Although our
method is much faster than a conventional sampling-based
motion planner such as RRT used in [34], our planner makes
its decision based only on local environmental informations.
Without global information, our deformable body sometimes
get stuck by moving back and forth without approaching
the target. This artifact is more obvious when we introduce
more obstacles. It is worth exploring ways to take global
information into consideration, as is done in [45]. A finally
limitation with our planner is that it selects navigation
direction only in-between DMP-cycles. Therefore, it cannot
avoid obstacles within one DMP cycle.

Promising future work includes using a single unified
deep neural-network for control and motion planning as
in [44]. However, we expect such training to be much more
time consuming. Although the subspace FEM model [22]
provides much better simulation performance, subspace FEM
simulation is still slower than articulated body simulation
[46]. So that further acceleration and algorithm optimization
for deformation body simulation is very useful tool for more
complex controller optimization problems.
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