
Constraint-based Motion Synthesis
for Deformable Models

William Moss Ming C. Lin
Dinesh Manocha

University of North Carolina at Chapel Hill
{wmoss,lin,dm}@cs.unc.edu

http://gamma.cs.unc.edu/

Abstract
We present a fast goal-directed motion synthe-
sis technique that integrates sample-based plan-
ning methods with constraint-based dynamics
simulation using a finite element formulation
to generate collision-free paths for deformable
models. Our method allows the user to quickly
specify various constraints, including a desired
trajectory as a sparse sequence of waypoints,
and it automatically computes a physically plau-
sible path that satisfies geometric and physical
constraints. We demonstrate the performance of
our algorithm by computing animated realistic
motion of deformable characters and simulation
of a medical procedure.
Keywords: goal-directed motion, finite ele-
ment, physical based modeling

1 Introduction

Physics-based simulations are increasingly used
to create complex visual effects, including
smoke, water, cloth, hair and articulated and de-
formable bodies for animation, gaming, train-
ing, education, design and prototyping, medical
simulation, and many other applications. One of
the challenges in motion synthesis of complex
dynamic systems is control of the simulation re-
sults, as users would often like to generate cer-
tain types of motion and outcomes to exaggerate
an effect, convey an emotion, or test a hypothe-
sis. Although some recent success has been seen
in control of rigid body dynamics [1], simula-
tion of multi-body systems [2], complex particle
systems [3], and fluid animation [4], by contrast
relatively little progress has been made in goal-
directed motion synthesis of deformable agents.

1.1 Our Approach

We present an efficient method for generating
physically-plausible, goal-directed motion for
deformable models in complex, non-rigid en-
vironments. Our approach allows the anima-
tor to quickly specify the desired trajectory as a
sparse sequence of waypoints through a scene.
Given the set of waypoints, a deformable model
and the environment our algorithm automati-
cally computes a plausible path for the model
through the environment, subject to various ge-
ometric and physical constraints. The geometric
constraints may correspond to non-penetration,
collision avoidance with nearby obstacles, and
following desired trajectories to perform cer-
tain tasks (e.g. reaching a place or avoiding
predators); whereas physical constraints may
include maximum extent of allowable defor-
mation, volume preservation, and energy mini-
mization. The motion of the deformable model
is simulated as it traverses the desired trajecto-
ries using a variant of sampling-based planning
techniques in contact space [5], interacting with
the environment and obstacles, and deforming
as needed.

The main results of this work include:

• Synthesis of a finite element method
(FEM) with constraint-based dynamics for-
mulation [6] to achieve realistic physical
behavior and plausible deformations of the
deformable model, thus enabling physi-
cally plausible and stable simulation of
large deformations;

• Introduction of a physics-based simula-
tion framework with novel motion plan-
ning techniques based on new contact-
space sampling to allow animators to spec-
ify trajectory constraints and incorporate



locomotion patterns (e.g. wiggling body
motion);

• Formulation of appropriate physical and
geometric constraints for deformable solids
to properly model key characteristics of
flexible bodies moving among either rigid
or deformable obstacles.

We have implemented and applied this novel
framework to both animation of deformable
characters navigating through complex scenes
with narrow passages and medical visualiza-
tion of an automated catheter insertion proce-
dure at nearly interactive rates. To the best
of our knowledge, our approach offers the first
real-time constraint-based, goal-directed motion
synthesis technique for deformable agents using
FEM.

1.2 Outline

The rest of this paper is organized as follows.
We briefly discuss related work in section 2.
Section 3 presents our framework for automatic
motion generation for deformable models with
given constraints. We describe our approach
to modeling the dynamics of deformable bod-
ies with path planning constraints in section 4.
Finally, we highlight the performance of our al-
gorithm on multiple complex scenarios in sec-
tion 5.

2 Related Work

There has been a significant amount of previous
work on motion synthesis and control of rigid
and articulated characters, and more recently on
control of fluid motion. In contrast, our focus
in this paper is on deformable models. In this
section, we briefly review some of the previous
work in these areas.

2.1 Deformable Models

Modeling deformable bodies has been exten-
sively studied in recent years. We refer the read-
ers to [7] and [8] for a more comprehensive sur-
vey on modeling of non-rigid solids. Our work
builds upon the seminal work on constraint-
based dynamics [6] extending it by using an
FEM simulation, instead of using only point
masses and springs, to incorporate more realistic
physical constraints and simulate complex inter-
actions among heterogeneous models.

2.2 Motion Planning for Flexible Robots
Several techniques have been proposed in robot
motion planning to compute collision-free paths
for deformable robots. These include sample-
based planners for flexible surface patches that
formulate the surface as a low degree Bèzier
patch and use an approximate energy function
to model deformation of the part [9, 10]. Such
computations can be further accelerated by gen-
erating samples near the medial axis of the
workspace [11]. Bayazit et al. [12] describe
a two-stage approach that initially computes an
approximate path and then refines the path by
applying geometric-based free-form deforma-
tion to the robot. Path planning algorithms based
on a mass-spring representation have been pro-
posed for simple volumes such as pipes and ca-
bles [13] and complex environments [14, 15].
Path planning in fully deformable environments
using an RRT is suggested by Rodriguez, et al.
[16]. This method differs from other standard
RRTs in that the roadmap is generated in force
space, not C-space, however, this method does
not run in real time and provides no bounds on
the amount of deformation incurred by a robot
while moving to the goal.

Augmenting sample-based techniques in
robot motion planning, our work presents the
first constraint-based motion synthesis method
using FEM to automatically generate large-scale
path planning through complex and possibly
non-rigid environments with narrow passages.

3 Overview
The objective of this work is to provide the an-
imator with sufficient control to create an ani-
mation that meets his or her artistic intentions
while minimizing the efforts required to synthe-
size physically realistic motion subject to vari-
ous constraints for a high degree-of-freedom de-
formable character. We allow the animator to in-
dicate a desired trajectory for the non-rigid agent
by specifying a sparse sequence of waypoints
through the scene, enabling the animator vary-
ing levels of control depending on the scene re-
quirements. This process can be as simple as
giving the deformable body an initial location
and a final position, or setting very specific way-
points to closely guide the control of the model.

Our approach consists of two essential stages:

1. Estimated Path Generation (offline)
2. Motion Synthesis by Constrained Dynam-

ics (online)

An estimated path is precomputed during
Stage 1 to guide the motion of the deformable



model. It is then refined using our constraint-
based dynamics formulation to generate physi-
cally plausible motion for the deformable body
on the fly. Fig. 3 provides a full overview of our
system.

3.1 Path Generation

The animator first specifies the desired trajec-
tory using a sparse set of waypoints and various
constraints.
Sampling: The waypoints are connected by
randomly sampling the space within the scene.
Our algorithm checks whether the samples are
collision-free and connect them to form a graph
or a roadmap [17]. If the animator prefers a path
that maximizes the clearance between the agent
and the nearby obstacles, then the algorithm
samples along the medial axis of the workspace
to bias the sampling. On the other hand, if the
animator prefers the computed trajectory to lie
in a certain region, say on the ground plane or in
close proximity to certain objects, then sampling
in the contact space can be used [5].
Constraints: An animator can specify either
soft constraints, that can be loosely satisfied us-
ing ”constraint forces” (see next section), or
hard constraints, that must be explicitly en-
forced. In our system, the hard constraints
include non-penetration and deformation con-
straints; both are strictly satisfied at every simu-
lation step. Our soft constraints include a user-
defined smoothness of the path, such that no two
segments of the path form an angle larger than
a specified bound. A user can also specify a
functional deviation from the path to automat-
ically generate certain locomotion patterns or
motion style. Although this cannot exactly sim-
ulate many motion patterns, it provides the ani-
mator a quick and effective way to approximate
many standard motion patterns found in anima-
tion. For example, in one of the benchmarks de-
scribed in section 5.1, we specify a sinusoidal
deviation from the path to simulate the slither-
ing motion of a snake. We found this increased
the realism of the simulated motion dramatically
without the need for an explicit dynamics con-
troller.

3.2 Motion Synthesis

Once an estimated path is computed, the de-
formable model must move along this path to
reach its final position. Using the constraint-
based dynamics framework [6], we transform
geometric constraints, such as non-penetration,
path following and goal seeking, into constraint
forces imposed on the deformable body. We
then simulate the dynamics of the deformable

agent using a finite element method to automat-
ically generate physically plausible motion.

In order to control the motion of the de-
formable agent, the animator specifies whether
each node will follow the path individually, or
whether all the nodes will move along the path
uniformly. If the animator selects uniform mo-
tion, he/she must specify a group of control
nodes, Nc = {nc1, nc2, . . . , ncn}, and option-
ally a goal node, ng. If not specified, the goal
node defaults to the node closest to the center of
mass of Nc. During simulation, all the nodes in
Nc feel an identical force calculated to move the
body such that ng will pass through the specified
waypoints.

The animator can also specify a distance
threshold, εd, that defines how closely the model
must follow the desired path. If the model is
outside this threshold, it will be subject to a
constraint force directing it towards the path,
whereas if it is on the path the model will feel
a goal-directed force along the path.

While traversing the path, the model is also
constrained not to penetrate any obstacle in the
scene, as such a situation would not only vi-
olate physical principles, but be visually very
unappealing. When interacting with rigid ob-
jects in the scene, the non-rigid model deforms
to ensure non-penetration, and when the object
in the scene is also deformable, both objects de-
form according to their material properties. In
the next section, we describe how we simulate
the motion of deformable bodies subject to con-
straints.

4 Modeling of Constrained
Deformable Bodies

In this section, we present our algorithm to sim-
ulate the motion of deformable bodies subject to
geometric and physical constraints. During each
time step we compute the forces acting on each
body and solve a linear system using an FEM.
The hard constraints, including non-penetration
and deformation constraints, are then explicitly
enforced.

4.1 Modeling Material Properties

As the deformable model moves along the esti-
mated path, the dynamic simulation of the de-
formable system representing the agent is gov-
erned by its own material properties. The defor-
mations of each model (or a subset of the ver-
tices in a model) are controlled by the specifica-
tion of two material parameters, Young’s modu-
lus, E, and Poisson’s ratio, ν. The elastic force
a body will exert when deformed is determined



O
ff

li
n

e

Path Generation

O
n

li
n

e

Constrained Dynamics 

Simulation

Deformation 

Constraints 

Satisfied

Yes
Locomotion

Patterns

No

At Goal

Complete

Material 

Properties
Enforce Non-

penetration

No

Yes

Yes

No

Estimated Path

Specify 

Trajectories 

and 

Constraints

Path 

Found

Compute 

Path
Sample

Motion 

Stylization

Constraints 

to Forces

Replan

Solve Linear 

System

Update 

Node 

Positions

Figure 1: System Overview: Each stage of the algorithm is shown. The preprocessing tasks are
listed in the upper half while the tasks that are completed at every time step are listed
below the line.

by the Young’s modulus as follows,

F =
EA0∆L
L0

where A0 is the original cross-sectional area
and ∆L and L0 are the change and original
length of the body, respectively. Young’s mod-
uli vary from around 0.1 Gigapascals for rubber
to around 200 Gigapascals for steel [18]. The
change in volume due to a deformation is de-
fined by Poisson’s ratio,

∆V
V0

= (1− 2ν)
∆L
L0

where ∆V and V0 are the change and original
volume of the body, respectively, and ∆L and
L0 are defined as in the Young’s modulus. Pois-
son’s ratio is only defined between −1 and 0.5,
and it can be seen from the formula that as ν
approaches 0.5, the change in volume will ap-
proach zero for any change in length.

These two properties are used to construct the
stiffness matrix that is used in the finite ele-
ment method. Each property can be set per ele-
ment in the mesh, allowing for varying proper-
ties throughout a model.

4.2 Constraint Forces
Soft geometric constraints are converted into
forces imposed on the dynamical system of

the deformable body. One of them is a path-
following force which can be represented by:

fConstrainti = wcurvature
(xproji − xi)
||xproji − xi||

wherewcurvature is a weight that depends on the
curvature of the path segment constraining node
i, xi is the position of node i and xproji is the
projection of xi on path segment.

The other constraint is the goal-seeking force
that can be simply modeled by:

fAttractioni = k(Li − Lrest)

where k is the spring constant, Li is the distance
between the milestone qi and node i, and Lrest
is the intended distance between the node and
the waypoint, qi. When this force becomes less
than a user defined threshold, we conclude that
the model reached the waypoint qi.

4.3 Deformations

We simulate deformations using a standard FEM
with stiffness warping [19] using linear, tetrahe-
dral elements. We present only a brief overview
of this approach and refer the reader to [19] for a
complete discussion. The motion equation that
describes the dynamic system for a deformable



body is typically described by:

M ẍ + Cẋ +K(x− x0) = fext (1)

where x0, x, ẋ and ẍ ∈ R3n are vectors contain-
ing the initial position, current position, velocity
and acceleration of all the vertices in the body,
M ∈ R3n×3n is a mass matrix, C ∈ R3n×3n is a
damping matrix which is dependent on a damp-
ing constant and the mass of each vertex, K ∈
R3n×3n is the stiffness matrix, and fext ∈ R3n

is a vector representing the external forces be-
ing exerted on each vertex in the body. The K
matrix represents the coupling of the vertices in
the body and therefore the K(x − x0) term in
the equation of motion generates the forces that
attempt to minimize the internal energy due to
the deformations of the body. The stiffness ma-
trix, K, is an assembly of the stiffness matrices
for each element, Ke = V BT

e EeBe where V
is the volume of element, Be is a matrix repre-
senting the shape of the tetrahedral element and
Ee is the isotropic elasticity matrix, constructed
from the specified material properties, discussed
in section 4.1. The elasticity matrix, Ee, is noth-
ing more than the extension of Hooke’s law to
three dimensions, σ = Eeε, relating the strain,
ε, on a tetrahedron to the stress, σ, generated by
that strain.

Once we have constructed the matrices listed
above, we must accumulate the external forces,
fext, for each node. Once the forces have been
summed and applied to each node, we solve the
system using the implicit formulation from [19],
by constructing the following linear system for
ẋi+1 and solving it using the conjugate gradient
method:

(M+∆tC+∆t2K)ẋi+1 = M ẋi−∆t(Kxi+f0−fext)

After computing the values for ẋi+1, we can
update the positions of the nodes in the mesh
using xi+1 = xi + ∆tẋi+1. Once the positions
of the nodes are updated, we resolve the colli-
sions and enforce the deformation constraints,
discussed in the two sections to follow.

4.4 Contact Handling
The contact determination is performed using
a bounding volume hierarchy of axis-aligned
bounding boxes [20]. The hierarchy is ini-
tially generated using a top-down rebuilding al-
gorithm whose complexity is O(nlogn) for n
triangles. During each step of the simulation,
this hierarchy is updated using bottom-up refit-
ting algorithm, which takes linear time. Since
the connectivity of the deformable model is pre-
served, the refitting algorithm provides tight fit-
ting bounding volumes to the underlying primi-
tives. This hierarchy is used to check for colli-

sions between the deformable model and the ob-
stacles. We can also check for self-collision us-
ing the same hierarchy. Exact triangle-triangle
intersection tests are then performed using [21].
We found this implementation to be sufficiently
fast both for intersection tests and during up-
dates, and incurred collision time on the or-
der of milliseconds for even our most complex
geometries–accounting for only 1-2% of the to-
tal simulation time.

After the positions are updated at each time
step using the finite element method, intersec-
tions are found and the vertices of each pair of
intersecting triangles are adjusted so the trian-
gles no longer intersect. The velocities of the
vertices are adjusted appropriately, with differ-
ent formulations depending on whether the an-
imator has selected elastic or inelastic collision
response. Although we did not implement a fric-
tion model, given that we are already operating
on all the vertices in collision, it would not be
difficult to implement one here if the animator
required this functionality.

4.5 Deformation Constraints
The animator may also specify multiple possi-
ble deformation constraints that will be imposed
during the simulation. These constraints are re-
lated to the material properties of the model and
can be used when a hard threshold must be en-
forced. At each time step, after the resolution of
collisions, any specified deformation constraints
are checked and if they are not met then the sys-
tem is reset to a previous, valid state and a new
path is found. Any physical quantity that can be
extracted from an FEM could be used as a defor-
mations constraint; we present three constraints
that we found particularly useful.

The simplest deformation constraint is a con-
straint on the percent change in the volume of
a tetrahedron. The volume of a tetrahedron is
given by

Velement =
1
6

(p1 − p0) · ((p2 − p0)× (p3 − p0)

where p0 . . . p3 are the locations of the vertices
of the tetrahedron. Given this, we can easily find
the percent change by taking ∆V (t) = V0−V (t)

V0
.

We can also constrain the stress on a tetrahe-
dral element, which can be computed as follows,

σelement(t) = EeBeû

where Be and Ee are the same matrices used to
construct the stiffness matrix, K, and û = x −
x0.

Finally, the energy of the entire body can be
found from the displacements and the stiffness



matrix,

Ubody(t) =
1
2
ûTKû

It is worth noting that the stress and volume
change calculations are computed per tetrahe-
dron, so we can either enforce the constraint on
the maximum value or the average, depending
on the scenario.

4.6 Algorithm

Once the animator has specified the necessary
constraints on the model, the scene and the de-
sired trajectory, the simulation is run. The agent
will move along the path indicated by the anima-
tor through the scene, by running the following
simulation:

Algorithm 1 Simulation Loop
1: while not at the final waypoint do
2: Collect external and path following forces

and apply them to each node . section 3
3: Solve the linear system . Eqn. 1
4: Update the positions of each node in the

model using ẋi+1 and xi . section 4.3
5: Identify and resolve collisions generated

during the simulation step . section 4.4
6: if any deformation constraints are not met

then . section 4.5
7: Reset the system to a prior, valid state
8: Reject the synethsized motion that re-

sults in the violation of the constraints
9: Compute a new trajectory through the

remaining waypoints to the goal
10: end if
11: end while

5 Implementation and Results
The meshes used in our simulations are gener-
ated using TetGen, which implements the De-
launay refinement algorithm [22]. The µblas li-
brary from boost C++ libraries are used to per-
form all the vector and matrix calculations. All
timing results for our benchmarks were gathered
on a 2 GHz laptop with 2 GB of memory. Af-
ter running the simulation, our final videos were
rendered using Blender [23].

5.1 Benchmarks

We have tested our prototype system on several
challenging benchmarks:
1. Squishy Bear: In this benchmark, the bear
must travel through the narrow tube from one
end to the other (Fig. 5.1). The tube is rigid
and the bear is deformable and has a Young’s
modulus of 0.05 GPa and Poisson’s ratio of 0.33.

To ensure that the bear actually travels through
the tube (and not around it), the animator has
placed waypoints inside the tube. We were able
to achieve run times of 239 msec per FEM sim-
ulation time step while spending 2 msec on col-
lision detection per time step – about 99% of the
simulation time in this case is spent running the
FEM.
2. Snake among the Rocks: In this scenario,
the snake is initially positioned at one end of
a field of rocks and is given the simple goal of
reaching the other side (Fig. 5.1). All the rocks
are rigid, however, the snake can deform and has
a Young’s modulus of 0.15 Gpa and Poisson’s
ratio of 0.33. We imposed three constraints on
the path: first, the angle between successive seg-
ments of the path is limited to be less than π

8 ;
second, the path is limited to be on the ground,
and finally, a sinusoidal deviation from the path
is specified to simulate the slithering motion of
the snake. On this benchmark our algorithm
spent 7 msec per time step doing collision de-
tection.
3. Synchronized Fish Swimming: In this
benchmark we start with four fish on one side
of an ocean scene containing rocks and ocean
plants. Waypoints have been specified for each
fish so that it takes a unique path through the
scene to the other side. The animator has also
given the fish goals such that upon reaching the
other side, they spell out ‘CASA’. Each fish is
simulated individually, however, they each share
the same model and material properties, with a
Young’s modulus of 0.1 Gpa and Poisson’s ratio
of 0.33.
4. Catheter Insertion Procedure: Catheters
are often used to gather diagnostic information,
deliver treatments, and perform minimal inva-
sive surgery. Simulations can be carried out
to select catheters of appropriate properties and
sizes for pre-op planning. In our simulation, a
1.35 mm diameter and approximately 1 m long
catheter is inserted into an artery in the leg with
the goal of delivering chemotherapy medication
to a tumor in the liver (Fig. 5.1). We model
the catheter using 6, 871 tetrahedra defined by
3, 185 nodes and set its Young’s modulus to
8,700 KPa for silicon [24]. The arteries, which
can range in diameter from 2.5mm to 6mm are
modeled using 8,330 nodes that define 5, 548
tetrahedra forming a single layer over the out-
side of the arteries. The Young’s modulus for the
arteries is set to 20 KPa, an average for a healthy
human artery [25]. The model of the liver is
simply rendered, since the catheter remains in
the interior of the arteries for the entirety of the
simulation. Our collision time per time step was
4.4 msec. The arteries model and liver model
are both obtained from the 4D NCAT phantom



(a) Initial configuration (b) The bear squishing through the nar-
rowest part of the tube

(c) The bear after the simulation is fin-
ished, returned to its normal shape

Figure 2: A soft bear containing 5,252 movable nodes squeezes through a narrowing, rigid tube.
This benchmark takes 239 msec per FEM simulation time step and 2 msec for collision
detection per time step.

(a) Initial configuration with the planned trajectory (b) The snake navigating through the rocks

Figure 3: A snake navigates rapidly through a bed of rocks. The rocks contain 5,302 fixed nodes
and the snake is made up of 6,832 deformable nodes. Our algorithm spends 304 msec per
FEM simulation time step and 7 msec per time step doing collision detection.

[26].

5.2 Timings

The results from each of our benchmarks is sum-
marized in Table 5.2. The first two columns de-
scribe the geometric complexity of the scene,
broken down in to rigid nodes, which are only
considered during planning and collision re-
sponse, and deformable nodes, which must be
simulated using the FEM. The following three
columns show the performance during the three
primary phases of the algorithm. The planning
time is a fixed cost at the beginning of the al-
gorithm, whereas the simulation and collision
times are the accumulated time for all time steps
necessary to traverse the waypoints and reach
the goal. The final column shows the time spent
solving equation 1 and updating the node posi-
tions at each time step.

Due to the complexity of the narrow passages
in the catheter benchmark, we biased the path

sampling with the medial axis of the arteries.
We also were able to accelerate the simulation
of the catheter benchmark substantially by tak-
ing advantage of the fact that the arteries are not
rotating, allowing us to avoid re-calculating the
stiffness matrix at each time step.

Conclusions and Future Work
In this paper we presented a new method
of constraint-based motion synthesis for de-
formable models. The animator first specifies
a desired path through the scene for the model,
then a physical simulation is run to generate
physically-plausible motion along that path. De-
formations of the model are simulated using a fi-
nite element method and computed based on the
contact forces between the agent and the envi-
ronment as well as constraint forces to move the
agent along the target path.

There are several possible directions for fu-
ture work. We would like to exploit many-core



(a) The initial setup of the fish (b) Fishes ’C’ and ’A’ navigating the
environment

(c) The fish forming ‘CASA’

Figure 4: Four fish swim along the ocean floor to form ‘CASA’. Each fish is simulated indepen-
dently and contains 4,818 nodes. Our algorithm takes 237 msec per FEM simulation time
step per fish (950 msec combined) and 27 msec for collision detection.

(a) The catheter as it is being inserted
into the femoral artery

(b) The catheter turning from the aorta
into the hepatic artery

(c) The catheter reaching its goal in the
liver

Figure 5: A catheter is inserted into a complex network of arteries. The catheter is simulated using
3,185 nodes and the arteries are simulated with 8,378 nodes. This simulation requires
142 msec per FEM time step (92 msec for the catheter and 50 msec for the arteries) and
we spend 4.4 msec on collision detection per time step.

computing to accelerate the performance of our
algorithm. Although we were able to use this
framework to generate pleasing animations for
some scenarios, we only provide support for
full deformable models that undergo large de-
formations. Incorporating a skeletal model for
the deformable characters (as in [27]) would
enable animation of more complicated models
and agents. Incorporating this path generation
mechanism with a local footstep planner could
also provide the animator with the ability to gen-
erate realistic motion for humanoid characters
more easily. In our current framework, we are
able to specify simple kinematic constraints to
simulate interesting locomotion patterns, such
as those seen among snakes and fishes. One
possible and natural extension is to incorpo-
rate internal actuation forces and more realis-
tic frictional constraints to model more complex
goal-directed behaviors of deformable, articu-
lated characters.

Acknowledgments
We would like to thank Nico Galoppo for help-
ing with the stability and efficiency of our FEM

and Jason Sewall for his help with Blender.
This research was supported in part by ARO
Contracts DAAD19-02-1-0390 and W911NF-
04-1-0088, NSF awards 0400134, 0429583 and
0404088, DARPA/RDECOM Contract N61339-
04-C-0043, Intel, and Carolina Development.

References
[1] J. Popovic, S. Seitz, M. Erdmann, and

A. Witkin. Interactive manipulation of rigid
body simulations. Computer Graphics (Proc.
of ACM SIGGRAPH), pages 209–217, 2000.

[2] C. Twigg and D. James. Many-worlds brows-
ing for control of multibody dynamics. ACM
Transactions on Graphics (Proc. of ACM SIG-
GRAPH), 2007.

[3] C. Wojtan, P. Mucha, and G. Turk. Keyframe
control of complex particle systems using
the adjoint method. Proc. of ACM SIG-
GRAPH/Eurographics Symposium on Com-
puter Animation, pages 15–23, 2006.

[4] A. Treuille, A. McNamara, Z. Popovic, and
J. Stam. Keyframe control of smoke simula-
tions. ACM Transactions on Graphics (Proc.
of ACM SIGGRAPH), pages 716–723, 2003.



Rigid Deformable Planning Simulation Collision Simulation Time
Nodes Nodes Time (s) Time (s) Time (s) per Frame (msec)

Total (1) 1,053 5,252 <0.1 358.8 3.12 239
Bear 0 5,252 - 358.8 - 239
Scene 1,053 0 - 0 - -

Total (2) 5,302 6,832 207.1 1,830.9 43.4 304
Snake 0 6,832 - 1,830.9 - 304
Scene 5,302 0 - 0 - -

Total (3) 4,477 19,272 274.8 2,665.7 77.6 950
Fish 0 19,272 - 2,665.7 - 950
Scene 4,477 0 - 0 - -

Total (4) 11,563 <0.1 879.5 44.4 142
Catheter 0 3,185 - 565.7 - 92
Scene 0 8,378 - 313.8 - 50

Table 1: Performance of Our System: Columns one and two describe the geometric complexity of
the scene, column three shows the time required for the planning preprocess, columns four
and five show the accumulated time for the two primary runtime phases of the algorithm and
the last column shows the time requires to update the FEM at each time step. Due to the
complexity of the narrow passages in the catheter benchmark, we biased the path sampling
with the medial axis of the arteries, substantially accelerating the planning phase.

[5] S. Redon and M. Lin. Practical local planning
in the contact space. Proc. of IEEE ICRA, 2005.

[6] Andrew Witkin and William Welch. Fast
animation and control of nonrigid structures.
In Forest Baskett, editor, Computer Graph-
ics (SIGGRAPH ’90 Proceedings), volume 24,
pages 243–252, August 1990.

[7] S. F. Gibson and B. Mirtich. A survey of
deformable modeling in computer graphics.
Technical Report Technical Report, Mitsubishi
Electric Research Laboratory, 1997.

[8] A. Nealen, M. Müller, R. Keiser, E. Boxerman,
and M. Carlson. Physically based deformable
models in computer graphics. Eurographics
STAR, 2005.

[9] C. Holleman, L. Kavraki, and J. Warren. Plan-
ning paths for a flexible surface patch. IEEE
Int. Conf. Robot. Autom. (ICRA), 1998.

[10] F. Lamiraux and L. Kavraki. Path planning for
elastic objects under manipulation constraints.
International Journal of Robotics Research,
20(3):188–208, 2001.

[11] L. Guibas, C. Holleman, and L. Kavraki. A
probabilistic roadmap planner for flexible ob-
jects with a workspace medial-axis-based sam-
pling approach. In Proc. of IROS, pages 254 –
259, 1999.

[12] O. B. Bayazit, H. Lien, and N. Amato. Prob-
abilistic roadmap motion planning for de-
formable objects. IEEE Int. Conf. Robot. Au-
tom. (ICRA), 2002.

[13] E. Anshelevich, S. Owens, F. Lamiraux, and
L. Kavraki. Deformable volumes in path plan-
ning applications. IEEE Int. Conf. Robot. Au-
tom. (ICRA), pages 2290–2295, 2000.

[14] R. Gayle, M. Lin, and D. Manocha. Constraint
based motion planning of deformable robots.
IEEE Conf. on Robotics and Automation, 2005.

[15] R. Gayle, P. Segars, M. Lin, and D. Manocha.
Path planning for deformable robots in com-
plex environments. Proc. of Robotics: Science
and Systems, 2005.

[16] S. Rodriguez, J. Lien, and N. Amato. Plan-
ning motion in completely deformable environ-
ments. Proc. of IEEE Int. Conf. Robot. Autom.
(ICRA), 2006.

[17] S. M. LaValle. Planning Algorithms. Cam-
bridge University Press (also available at
http://msl.cs.uiuc.edu/planning/), 2006.

[18] Automation Creations Inc. Matweb: Material
property data. http://www.matweb.com.

[19] M. Müller and M. Gross. Interactive virtual
materials. Proc. of Graphics Interface, 2004.

[20] G. van den Bergen. Efficient collision detection
of complex deformable models using AABB
trees. Journal of Graphics Tools, 1997.

[21] T. Möller. A fast triangle-triangle intersection
test. Journal of Graphics Tools, 2(2):25–30,
1997.

[22] J.R. Shewchuk. Tetrahedral mesh generation
by delaunay refinement. Proceedings of the
Fourteenth Annual Symposium on Computa-
tional Geometry, 1998.

[23] Blender 2.45. http://www.blender.org.

[24] M. Cerverai, M. Dolz, J.V. Herraez, and
R. Belda. Evaluation of the elastic behaviour of
central venous pvc, polyurethane and silicone
catheters. Journal of Physics in Medicine and
Biology, 1989.

[25] K. Kim, W.F. Weitzel, J.M. Rubin, H. Xie,
X. Chen, and M. ODonnell. Arterial elastic
modulus reconstruction from in-vivo strain im-
age using arterial pressure equalization. IEEE
Ultrasonics Symposium, 2004.



[26] W.P. Segars. Development of a new dynamic
NURBS-based cardiac-torso (NCAT) Phantom.
PhD thesis, University of North Carolina at
Chapel Hill, 2001.

[27] N. Galoppo, M.A. Otaduy, S. Tekin, M. Gross,
and M.C. Lin. Soft articulated characters with
fast contact handling. Computer Graphics Fo-
rum, 26:243–253(11), 2007.


	Introduction
	Our Approach
	Outline

	Related Work
	Deformable Models
	Motion Planning for Flexible Robots

	Overview
	Path Generation
	Motion Synthesis

	Modeling of Constrained Deformable Bodies
	Modeling Material Properties
	Constraint Forces
	Deformations
	Contact Handling
	Deformation Constraints
	Algorithm

	Implementation and Results
	Benchmarks
	Timings


