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Abstract

We present a practical approach for interactive crowd simulation based on
elliptical agents. Our formulation uses a biomechanically accurate pedestrian
representation to simulate different local interactions, including backpedaling,
side-stepping, and shoulder-twisting. We present an efficient algorithm for local
navigation and collision avoidance among multiple elliptical agents using velocity
obstacles. Furthermore, we describe techniques to link the orientation of each ellip-
tical agent to its velocity to automatically generate turning and lateral movements.
In practice, our approach can simulate dense crowds of hundreds of pedestrians at
interactive rates on a single CPU core. We highlight the performance in complex
scenarios and validate our simulation results by comparing with real-world crowd
videos and experiments.

1 Introduction

Pedestrian and crowd simulation has received considerable attention in different fields.
Besides computer graphics, there is extensive work in biomechanics, psychology, robotics,
and pedestrian dynamics. Biomechanics researchers evaluate various factors related to
human locomotion; psychologists investigate the spatial and behavioral relationships
of pedestrians and how those relationships affect their movement; robotics and vision
researchers study various aspects of locomotion, including path planning, collision-
avoidance, spatial flow, and visual appearance; the pedestrian dynamics community
is interested in modeling the pedestrian flows for architectural design and evacuation
planning. Many ideas from these fields are also used in computer graphics, including
interactive crowd simulation for games and virtual reality, and are employed in generating
special effects for movies and animation.

Some widely used crowd simulation algorithms are based on multi-agent models. In
these simulations, each individual is represented as an independently sensing, planning,
and moving agent. However, simulating the behavior and movement of crowds can be
challenging. Many applications model large crowds consisting of hundreds or thousands
(or more) agents. Simple, individual movements can result in emergent crowd behaviors,
and it is important to simulate these collective patterns. Furthermore, many interactive
applications must perform these computations in a tens of milliseconds or less. Given
these challenges, most prior work in crowd simulation uses a simple representation for
each agent as a 2D circular disc in a plane. There is extensive work on computing
agent trajectory and behavior based on 2D disc representation using force-based [1],
velocity-based [2, 3] rule-based [4], and cell-based [5] methods, among others. Most
commercial and research systems for pedestrian and crowd simulation use such disc
shapes and navigation algorithms.

Human pedestrians exhibit a large variety of behaviors and local interactions in tight
spaces and dense situations, including movements and salient behaviors that are used to
avoid other agents or obstacles and navigate through congestion and constriction [6, 7].
It is not uncommon for pedestrians to twist their shoulders and torsos to reduce their
profile when passing one-another. They also perform sidestep movements or backpedal
to avoid unexpected obstacles and make way for others. Current crowd simulation
algorithms are unable to model many of these interactions using radially-symmetric discs.
Furthermore, disc-based representations tend to overestimate the volume exclusion and
restrict the maximum density in a crowd simulation.

Movements such as shoulder-turning, backpedaling, and side-stepping depend on the
orientation of the agent. Some researchers impose additional restrictions with radially
symmetric discs, including applying an orientation used only to model these complex
behaviors or one that assumes that the agent is always facing along its velocity vector [8,9].
However, these techniques tend to be non-intuitive and are not able to generate all
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of the local interactions. Furthermore, rendering scenes with such disc-based agents
can be difficult because artificial orientation constraints can result in inconsistent and
erratic animation. Some of these rendering and foot-skating problems can be overcome
using footstep planning [10], although most footstep models tend to be non-convex and
dynamic.

Prior studies in pedestrian dynamics, psychology and biomechanics have argued that
2D ellipses are more appropriate approximations of a human body in terms of shape
and movement [11–14]. Ellipses are orie ntable shapes and the orientation information
can be used to model local interactions. However, the use of elliptical shapes for crowd
simulation typically yields many navigational and computational challenges. Force-
based methods may encounter radial forces as the closest point between two arbitrarily
oriented ellipses is often not along the line connecting their centers, which can vary
agent behaviors based on their orientation. Velocity obstacle based techniques must
compute the Minkowski sums of two ellipses, which is considerably more expensive
than the Minkowski sum of circles. Cell-based methods require computing complex
decompositions of 2D planes into complementary and overlapping grids, while updating
them for dynamic obstacles.
Main Results: We present an efficient agent-based crowd simulation algorithm for
elliptical agents. Our approach includes two novel components. We have developed an
efficient collision-free elliptical navigation algorithm based on velocity obstacles and
an algorithm for automatically updating the orientation of each elliptical agent along
the trajectory. We present techniques to link the orientation of each elliptical agent to
its velocity and to compute side-stepping and shoulder turning movements based on
empirical observations. Overall, our approach can simulate different local interactions
among hundreds of elliptical agents at interactive rates on commodity CPU’s. Compared
with prior methods, some of the novel components of our work include:

1. Simulating human-like local interactions and collision-avoidance behaviors, includ-
ing side-stepping, shoulder-turning, and backpedaling.

2. A method to link the orientation computation to velocity, which reduces the
simulation cost and dimensionality of motion planning.

3. Validation with pedestrian experiments including comparison to video data and
behavior classification experiments.

Our overall formulation is simple. As compared to other geometric algorithms [15]
for collision avoidance between elliptical agents, our overall algorithm for local collision
avoidance and orientation computation results in one order of magnitude performance
improvement. We demonstrate the effectiveness of our algorithm by testing it on multiple,
dense scenarios. We also validate our method by reproducing the trajectories observed
in real-world pedestrian videos and comparing emergent behaviors and interactions with
captured pedestrian data.

The remainder of the paper is organized as follows. In Section 2, we provide a brief
overview of prior work in crowd simulation and the use of orientable shapes. In Section 3,
we introduce the notation and describe the elliptical representation and local collision-
avoidance algorithm. In Section 4, we describe our approach to update the orientation of
an elliptical agent. The overall crowd simulation algorithm and implementation details
are described in Section 5. We highlight the performance of our algorithm and compare
the results with real-world crowd videos in Section 6 and conclude in Section 7.

2 Related Work

In this section, we provide a brief overview of prior work in crowd simulation and use of
elliptical shapes for modeling agents.
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2.1 Crowd Simulation

There has been extensive work in simulating crowds or pedestrians in the fields of
computer graphics, robotics and pedestrian dynamics for more than three decades. Some
widely used approaches are based on cellular-automata [5], force-based computations [1,8,
16], field-based methods [17, 18], geometric computations based on velocity obstacles [2],
steering models [4], vision-based [19], continuum techniques [20–22], cognitive models and
decision networks [23,24], and data-driven simulation [3,25,26], among other approaches.
These methods model different aspects of crowd simulation, including local collision
avoidance, emergent behaviors, high-level behavior modeling, etc. However, almost
all these methods model each agent as a 2D circle or disc on a plane to compute its
trajectory or behavior. Most of these efficient local navigation and collision-avoidance
methods exploit the fact that the agent can be conservatively approximated by a disc.

2.2 Lateral Motion and Orientable Shapes

Earlier work in pedestrian dynamics and biomechanics has argued for the use of elliptical
shapes. Fruin [12] proposed the use of elliptical pedestrians for planning and design.
Gérin-Lajoie et al. [11] demonstrated the relationship between stride-length, density, and
pedestrian movement shape to make a case for elliptical personal space. Templer [27]
showed the presence of the sensory zone around a pedestrian using elliptical models.
Imanishi and Sano [6] showed the importance of side-stepping and shoulder turning in
avoidance behaviors from laboratory experiments. Singh et al. [28] present an algorithm
for human-like steering in dynamic crowds based on a simple biomechanical footstep
model and combine it with space–time planning to generate subtle navigation behaviors,
including side-stepping.

There has been some research performed with respect to representing each agent as
an orientable shape. Giese et al. [29] used the concept of reciprocal rotation to extend
the reciprocal velocity obstacle (RVO) algorithm to polygons. Chraibi et al. [14] applied
social forces to deformable discs to simulate ellipse-like local behaviors. Johansson
et al. [9] applied elliptical forces to disc-shaped agents. Karamouzas et al. [30] used
velocity obstacles to navigate disc-based agents in deformable orientable formations.
There is some work on modeling the lateral motion in crowd simulation. Hughes et
al. [7] used pedestrian experiments to generate discrete side-stepping interruptions.
Choi et al. [31] used precomputed motion patches to generate appropriate animation in
complex environments. van Basten et al. [32] used interpolation techniques to generate
parametrized footsteps for articulated characters. Our approach is based on explicit
representation of 2D elliptical agents and differs from these methods.

3 Elliptical Agents

In this section, we introduce our notation and describe our elliptical representation along
with the local collision avoidance algorithm.

3.1 Elliptical Representation

We assume that the underlying multi-agent simulation algorithm uses a high-level module
that computes a new preferred velocity for each agent during each step of the simulation.
This new preferred velocity could be computed based on a high-level behavior module or
a global path planning algorithm. The preferred velocity is the velocity that optimally
leads the agent toward its current goal if there were no other agents or obstacles in the
scene. The current velocity is the actual velocity computed at the current time step
to avoid collisions with the obstacles and other agents in the scene. Our agents are
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represented in terms of their shape dimensions, current position, current velocity, and
preferred velocity.
Notation: For an agent A, ~pA, ~vA, and ~v0A, denote the current position of the agent’s
center of mass, current velocity, and preferred velocity. Each elliptical agent is represented
using the following 10-dimensional state vector [~p, ~v, ~v0, ~o, smaj , smin], where ~oA denotes
the agent’s orientation. Following [33], we define orientation as “the angle of the vector
perpendicular to the line connecting the shoulders and directed towards the front of the
person”. smajA and sminA denote the length of the agent’s semi-major and semi-minor
axes, respectively (see Fig. 1). By contrast, a circular agent X is represented as a
7-dimensional vector [~pX , ~vX , ~v0X , rX ], where rX is its radius. In the rest of the paper,
we use symbols A and B to denote elliptical agents and X and Y to denote disc-shaped
agents.

It is understood that an elliptical approximation is more appropriate for representing
human motion, particularly in cases of high-density or tight spaces, which is illustrated
in Fig. 1; disc-based pedestrians overestimate the volume exclusion substantially more
than a corresponding ellipse. Moreover, the use of discs restricts the maximum density
and prevents the simulated crowds from reaching real measured densities.

Figure 1. Approximating Pedestrians. (A). A sample human pedestrian of
approximately average shoulder-width and body depth, 0.228 m and 0.149 m,
respectively. (B) The typical disc-based approximation (blue) of the human
overestimates its depth by over 50%. Our proposed elliptical approximation (brown)
captures the pedestrian shape accurately and can keep track of the orientation. (C)
Representation: Each agent A’s state vector consists of position ~pA, orientation ~oA,
current velocity ~vA, preferred velocity ~voA, semi-major axis smajA and semi-minor axis
sminA .

Given the preferred velocity, the underlying approach uses a local collision-avoidance
technique to compute a new velocity, ~vnew, and orientation, ~onew, for each elliptical
agent. Furthermore, each agent has access to the directly observable properties of its
neighbors to compute its current velocity. These properties include ~p, ~v, ~o, smaj and
smin. However, properties such as ~v0 are considered internal or intrinsic to the agent and
cannot be observed by other agents. We assume that all the agents in the simulation are
using the same local collision-avoidance and navigation strategies. To ensure consistency,
the current velocity ~v, is set to the new velocity ~vnew for each agent simultaneously at
the end of the simulation step. Likewise, the current orientation ~o, is set to the new
orientation ~onew.
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3.2 Local Collision Avoidance

Our local collision avoidance algorithm is based on velocity obstacles that have been used
for collision-avoidance purposes in robotics and crowd simulation [2,34]. However, all
prior velocity obstacle–based algorithms are restricted to circular agents. We outline our
efficient and conservative formulation for elliptical agents which computes a collision-free
velocity for each agent and provide full details in [35].
Velocity Obstacles: For two agents A and B, centered at ~pA and ~pB , respectively, the
velocity obstacle of A induced by B, denoted by V OτA|B , constitutes the set of velocities
for A that would result in a collision with B at some time before τ . By definition, agents
A and B are guaranteed to be collision-free for at least time τ , if ~vA − ~vB /∈ V OτA|B [34].

In this case, ~vA−~vB is the relative velocity of A and B. We use a geometric interpretation
of this condition. In general, let V denote the set of all available velocities for an agent.
At each simulation step, the agent must choose a velocity ~vnew ∈ V s.t. ~vnew lies outside
the velocity obstacles defined by all the neighboring agents and obstacles. This is a
sufficient condition for collision-free navigation for at least time τ . We refer the reader
to [35] for details on computing the velocity obstacle for neighboring elliptical agents.

3.2.1 Computing Neighboring Agent Constraints

We use the velocity obstacle to compute the set of permitted velocities for an agent.
Given the velocity obstacle V OτA|B, we construct the set of permitted velocities for A

for optimal reciprocal collision avoidance [2]. Each agent determines the set of velocities
excluded by V OτA|B and the minimum deviation from the agents’ relative velocity to
guarantee collision avoidance. As described in Section 3.1, all agents use the same
collision-avoidance strategy. Therefore, agent A is responsible for adapting its velocity
by half the required change assuming that B will do the same. The constraint takes
the form of a half-plane of excluded velocities. One constraint half-plane is constructed
for each neighboring agent and obstacle. After all the constraints have been created, a
collision-free velocity is chosen from the set of remaining permissible velocities.

3.2.2 Computing Neighboring Obstacle Constraints

Without loss of generality, we can assume that all obstacles in the scene are triangulated
and their projections on the 2D plane are given as a collection of line segments. We
follow the same basic approach described in Section 3.2.1 with the exception that in this
case, the agent must take full responsibility to avoid a collision with the static obstacle.
An agent A will collide with obstacle O within the time τ if its velocity ~vA is inside
V OτA|O.

3.2.3 Choosing a Collision-free velocity

At every simulation step, we construct the half-plane constraints for each neighboring
agent and obstacle. The set of permitted velocities for agent A is simply the convex
region EORCAτ

A, given by the intersection of the half-planes of the permitted velocities
induced by all the neighboring agents and obstacles.

EORCAτ
A =

⋂
B 6=A

EORCAτ
A|B (1)

The agent is responsible for selecting a new velocity vnewA from EORCAτ
A that minimizes

the deviation from its preferred velocity vprefA .

vnewA = min
v∈EORCAτ

A

‖v − vprefA ‖ (2)
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Eq. 1 and 2 can be solved efficiently with an expected runtime of O(n) using linear
programming, where n is the total number of constraints. With elliptical agents, the
shape of the velocity obstacle, the tangents, and the nearest point operations are governed
by the agent’s orientation and by the orientation of the obstacles. Therefore, we require
efficient acceleration techniques to perform these computations. We refer the reader
to [35] for more details.

4 Orientation Computation

In general, pedestrians face – or are oriented toward – their direction of motion. This
fact is used by current crowd simulation algorithms that typically extrapolate the
orientation from an agent’s current velocity. However, pedestrians often twist their
shoulders and/or take sidesteps to maneuver through dense or tight spaces. They often
backpedal momentarily to give way to oncoming traffic. In these cases, their orientation
is no longer in line with the direction of their movement. These local behaviors are not
modeled by current simulation algorithms because, among other reasons, the commonly
used disc representation inherently lacks the capability to model orientation. Some
techniques augment the disc with an orientation vector, which is used for animation and
rendering [8, 9], but don’t offer sufficient capability to model these local interactions.

We present a novel orientation computation algorithm for elliptical agents that
accounts for shoulder turning, lateral motion, and backpedaling. Due to their inherent
asymmetry, elliptical agents can change their orientation to decrease the portion of
body width in the walking direction, allowing them to navigate through small gaps and
generate more human-like trajectories. This implies that we now need to explicitly track
the orientation of an agent. Furthermore, it expands the underlying configuration space
of each agent to three dimensions – [x, y, θ]. We decouple the problem into computing the
current velocity based on the current positions of the ellipse (as described in Section 3.2)
and separately computing the orientation based on the current velocity and current
orientation.

4.1 Empirical Observations

Imanishi and Sato [6] investigated pedestrian avoidance behaviors in crossing flows
under laboratory conditions. They conducted experiments in which a pedestrian, the
“traverser”, crosses a crowd of pedestrians, referred to as “pedestrians in flow”(see the
figure in the appendix). Each experiment was parametrized based on the density of
pedestrians in a flow and the angle at which the traverser approaches the crowd flow. They
observed that pedestrians avoided collisions by adjusting their walking speed, walking
route (detouring), and shoulder turning. Moreover, Imanishi and Sato quantitatively
classified each of these behaviors into four levels of avoidance: no, potential, weak
and strong avoidance. They observed that pedestrians did not use shoulder turning
when there was enough margin space around them. For example, with a density of two
pedestrians/m2 and crossing angle of 180, pedestrians slightly reduced their speeds and
avoided each other primarily by controlling their shoulder angles. They observed shoulder
turns as high as 80 degrees. However, in situations with a crossing angle of 45 degrees
with the same density, pedestrians mostly relied on speed reduction and only infrequently
performed shoulder turns. Their results also demonstrate that higher pedestrian densities
result in strong avoidance. Hughes et al. [7] also conducted experiments to observe the
conditions under which humans exhibit lateral motion and concluded that lateral motion
occurs when a collision is imminent and is mostly in tight spaces in which the pedestrian
may not be able to navigate with a non-lateral orientation. Our approach is driven by
these empirical observations.
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4.2 Shoulder Turning

Given its new velocity, each agent evaluates the scalar space, termed as “clearance”,
available to it at a sequence of points along the line joining its current position and
its estimated position in the next second (~p + ~v

‖~v‖ ). Essentially, the line denotes the

locii of the center of the ellipse during the interval :[t, t + 1]. In general, the agent is
expected to continue along with its current orientation, effectively translating along this
line. Figure 2 describes the clearance computation at a given point w.r.t. the agent.
The estimated clearance, c, available to the agent w.r.t. its current orientation is set
to be the minimum clearance at the sampled points. Once computed, the algorithm
chooses a new orientation onew as given by the optimization:

minimize
onew

‖onew − o‖

subject to w(onew) ≤ c,

where w defines the cross-section width of the new orientation perpendicular to its
new velocity. While computing the clearance, the agent only considers nearby agents
and obstacles that are ahead with respect to its new velocity and are also visible to the
agent at its current position.
Computing Clearance: Let ~qi denote the point at which we wish to compute the
clearance. We define n̂i to be a unit vector perpendicular to the new velocity ~vnewi .
Given a nearby agent j, we compute the nearest point ~pij on j with respect to ~qi. Let
c+ij and c−ij denote the clearance available for agent i at point ~qi in the direction n̂i and
−n̂i respectively, with respect to agent j, computed as:

c = ‖~pij − ~qi‖ (3)

a = (~pij − ~qi).n̂i (4)

c+ij = min(c, c+ij) ⇐⇒ a ≥ 0 (5)

c−ij = min(c, c−ij) ⇐⇒ a < 0, (6)

where c+ij and c−ij are initialized to infinity. Clearance cij at point ~qi can then be estimated

as cij = c+ij + c−ij ( Figure 2). Without loss of generality, the same equations can be
applied to compute clearance with respect to a nearby obstacle j, where ~pij represents
the closest point on the obstacle to ~qi. Doing so for each nearby agent and obstacle, we
can estimate the scalar space available to an agent at the query point ~qi.

To determine whether the new orientation is feasible, each agent projects their own
position and the positions of their neighbors one step forward in simulation, assuming
agent i adapts its new velocity ~vnewi and new orientation ~onewi while other agents continue
with their current velocity and orientation. We then explicitly check for collisions. If
there is a collision, the orientation update is discarded and the agent maintains its prior
orientation. The detailed algorithm is described in Table 1.

4.3 Lateral Motion and backpedaling

Agent i estimates the time to collision with respect to nearby agents and obstacles
based on its new velocity vnewi . It also uses the new velocity to compute the angle of
deviation from the preferred direction of travel. If the deviation from the preferred
direction is greater than threshold θthresh and there is an imminent collision – i.e., the
time to collision is less than threshold ttcthresh – the resulting algorithm performs lateral
movement or backpedaling i.e. the agent adapts its new velocity without changing its
orientation. We base our algorithm, described in Table 2, on the observations of Hughes
et al. [7].

8



VA
new

C2

C1

PB

CP

PC

n̂

-n̂

Figure 2. Computing Clearance. We compute the clearance at a point ~CP that is
nearby (e.g., 1 meter ahead) in the direction of the new velocity ~vnewA . ~c1 denotes a

vector from ~CP to the closest point on the nearest agent such that ~c1.n̂ ≥ 0 where n̂ is a
unit vector perpendicular to ~vnewA . Similarly, ~c2 denotes a vector from ~CP to the closest

point on the nearest agent such that ~c1.(n̂) < 0. Clearance at ~CP is set to ‖~c1‖+ ‖~c2‖.

5 Interactive Crowd Simulation

In this section, we describe our overall crowd simulation algorithm. We breifly present
acceleration structures that are precomputed to accelerate the runtime computation and
also present details regarding implementation.

5.1 Collision avoidance in high density scenarios

Our collision-avoidance algorithm described in Section 3.2 is conservative. It is possible
that in densely packed conditions, the set of permitted velocities may be an empty set,
i.e., EORCAτA = ∅. In that case, linear programming will report that the solution set
is infeasible. One way to address this scenario is to relax the constraints uniformly
until there is a feasible velocity. This computation is performed by reducing to a
three-dimensional linear programming where the third dimension is the signed distance
to that specific constraint. Thus, we choose a velocity that minimally penetrates the
constraints induced by other agents. The 3-D linear program is always feasible, and we
can compute an optimal solution to this formulation. Because we have relaxed certain of
the EORCA constraints, we can no longer guarantee that the new velocity would result
in collision-free motion.

5.2 Overall Algorithm

Table 3 presents the overall simulation update mechanism for each agent. We first
compute the EORCA half-plane constraints for nearby agents and obstacles, as described
in Section 3.2. We use linear programming to compute the new velocity for the next time
step (or the relaxation described above). After computing the new velocity, the algorithm
determines whether the agent must side-step (Section 4.3), turn its shoulder (Section 4.2),
or align its orientation with the new velocity. In any case, we use a threshold for the
maximum angular acceleration αthresh to bound the change in orientation. In order
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Table 1. EvalShoulderTurn: Compute the preferred orientation for shoulder turning (if
needed) for agent i.

Input: Position ~pi , new velocity ~vnewi , orientation ~oi, and simulation timestep ∆t
Output: Boolean indicator for shoulder turn, result, and the preferred orientation
~opref

result = false
~CP⇐~pi +

~vnewi

‖~vnewi ‖
obs⇐ GetNeighboringObstacles(~pi)
agts⇐ GetNeighboringAgents(~pi)

ci ⇐ getClearanceAtPoint( ~CP i, obs, agts)

~oprefi ⇐ getEllipseForClearance(~oi, ci)

if (~oprefi 6= ~oi) then

collision⇐ CollisionCheck(~pi, ~v
new
i , ~oprefi , agts, obs,∆t)

if (collision 6= true) then
result = true

end if
end if

to maintain consistency, we store the new orientation and new velocity for each agent
and perform updates at the end of the simulation step, as described by the following
equations:

~vi ⇐ ~vnewi ,

~oi ⇐ ~onewi ,

~pi ⇐ ~pi + ∆t ∗ ~vi.

5.3 Implementation

To perform interactive simulation with a large number of agents, we precompute an
evenly spaced set of approximated ellipses in the angular range 0 to 2π with a given
angular resolution. We also precompute the Minkowski Sum for every pair of discrete
ellipses and some additional information during an offline phase. This data is stored on
disk and can be accessed during runtime to speed up computations. More details on the
precomputed data and the run time costs can be found in [35].

We implemented our algorithm in C++ on a windows 7 desktop PC. Timing results
were generated on an Intel i7-4790 pc with 16GB of ram. All comparison algorithms –
ORCA [2], social forces [1], and our EORCA algorithm – were parallelized per agent
on 4 cores. Table 4 shows the per-agent parameters used to generate the results in our
simulation.

6 Performance and Validation

In this section, we highlight the performance of our algorithm on different benchmarks
and validate the results with some captured real-world crowd videos and trajectories.

6.1 Validation

We validate the performance of our algorithm by reproducing the live pedestrian experi-
ments reported by [6] and [36] that highlight pedestrian interaction in crossing flows and
bidirectional flows respectively. We further highlight the performance of our algorithm
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Table 2. EvalLateralMotion(): Determine if agent i should should execute lateral
motion and backpedal

Input: Position ~pi, new velocity ~vnewi , preferred velocity ~v0i , threshold from deviation
from preferred direction θthresh and threshold for time to collision ttcthresh

Output: Boolean indicator for sidestepping result.
ttc⇐∞
result = false
for each neighboring agent j do

k̂ ⇐ ~pj−~pi
‖~pj−~pi‖

~vtangij ⇐ ((~vnewi − ~vi) ∗ k̂) ∗ k̂)

ttcj ⇐ ‖~pj−~pi‖
‖~vtangj ‖

if ttcj ≤ ttc then
ttc⇐ ttcj

end if
end for
for each neighboring obstacle obs do
~pj ⇐ ClosestPtOnObstacle(~pi, obs)

k̂ ⇐ ~pj−~pi
‖~pj−~pi‖

~vtangj ⇐ ((~vnewi − ~vi) ∗ k̂) ∗ k̂)

ttcj ⇐ ‖~pj−~pi‖
‖~vtangj ‖

if ttcj ≤ ttc then
ttc⇐ ttcj

end if
end for
θdev ⇐ acos(

~vnewi ∗~v0i
‖~vnewi ‖∗‖~v0i ‖

)

if abs(θdevi) ≥ θthresh and ttc ≤ ttcthresh then
result = true

end if

on a set of illustrative demonstrations based on real-world scenarios in which lateral
motion and high-density situations are common.

6.1.1 Crossing Flows

Recently, Imanishi et. al. [6] sought to study pedestrian avoidance behaviors in crossing
flows. They devised an experiment in which a group of 16 pedestrians with density
ρ ∈ {0.25, 1, 2}p/m2 move through an open room. A single person crosses the group at
an angle θ ∈ {45, 90, 135, 180}deg. Three trials were conducted for each combination of
density and crossing angle. The authors measured the level of occurrence of each of three
local collision-avoidance behaviors: speed reduction, detouring, and shoulder-twisting.
For each combination of density and crossing angle, the authors further classify the degree
of collision avoidance via shoulder turns into one of four categories: (S)Strong avoidance
(36− 90 deg), (W)Weak avoidance (24− 36 deg), (P)Potential avoidance (12− 24 deg)
and (N)No avoidance (≤ 12 deg).

To validate our algorithm, we faithfully reproduced their experiments. Pedestrians
were modelled as elliptical agents with average human shoulder-width and body-depth
and a preferred speed of 1.3m/sec. For each combination of density, ρ and crossing
angle θ, we recorded the maximum shoulder turn made by the traverser. We classify the
shoulder turns in accordance with the classification presented by the authors. We report
these observations in Table 5 along with the observations made by the authors. For our
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Table 3. Simulation Update for agent i

Input: State Vector [~pi, ~vi, ~v
0
i , ~oi, s

maj
i , smini ] for agent i, simulation time step ∆t,

threshold for deviation from preferred direction θthresh, threshold for time to collision
ttcthresh, threshold for angular acceleration αthresh, and threshold for lateral motion
time lateralthresh.

Output:
agtLinesi ⇐ ComputeAgentConstraints()
obsLinesi ⇐ ComputeObsConstraints()
~vnewi ⇐ SolveLinearProgram(agtLinesi, obsLinesi)

~onewi ⇐ ~vnewi

‖~vnewi ‖
lateral⇐ EvalLateralMotion(~pi, ~v

new
i , ~v0i , θthresh, ttcthresh)

if (lateralSeq ≤ lateralthresh && lateral == true) then
lateralSeq = lateralSeq + ∆t
~onewi ⇐ ~oi

else
lateralSeq = 0
(turn, ~opref )⇐ EvalShoulderTurn(~pi, ~v

new
i , ~oi,∆t)

if (turn == true) then
~onewi ⇐ ~opref

end if
end if
if (~onewi 6= ~oi) then
~onewi ⇐ ClampAngularAcc(~oi, ~o

new
i , αthresh,∆t)

end if

smaj smin m τ τobstacle αthresh θthresh ttcthresh lateralthresh
0.2286 0.149 100 1.0 1.0 360 10 6 3

Table 4. Simulation Parameters. The parameters used in our experiments. In
order: semi-major axis length(m), semi-minor axis-length(m), number of samples, time
horizon for agent-agent collision avoidance(sec), time horizon for agent-obstacle collision
avoidance(sec), maximum angular acceleration (deg /sec), threshold for deviation from
preferred direction (deg), threshold for time to collision(sec) and threshold for lateral
motion time(sec).

model, we also report the maximum degree of shoulder turn made by the traverser.
Our results of our simulation are summarized as follows:

• Consistent with real world observations, shoulder turning was negligible in cases
where the traverser had enough margin of space to travel with its current orientation
(ρ ∈ {0.25, 1} people/m2, θ ∈ {45, 135} deg).

• The degree of shoulder turning increased as the available space decreased in higher
densities(ρ ∈ {1, 2} people/m2, θ = 90 deg) as was observed by Imanishi et. al.

• Our model was able to match the observed level of shoulder turn in every case
except when the traverser attempts to cross the crowd of density 2 people/m2.
In this case, the velocity constraints caused the traverser to detour around the
crowd flow thus, allowing him the clearance to continue without shoulder turning.
However, in the study, the traverser was instructed to “walk straight towards the
destination”, thus walking through the crowd which required him/her to shoulder
turn.
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Density Crossing Angle
180 135 90 45

(people/m2) IS14 Ours[max] IS14 Ours[max] IS14 Ours[max] IS14 Ours[max]
0.25 - W[3.4] - W[2.1] - W[3.75] - W[2.91]

1 - W(1.626) W W[25.1] S S[90] W W[30.01]
2 S N[0.12] S S[45.5] S S[83] W W[29.7]

Table 5. Validation results for crossing flow. We validate our algorithm with the
study conducted by [6] (shown as IS14). For each combination of density and crossing
angle, the authors classify the degree of collision avoidance via shoulder turns into one
of four categories: S)Strong avoidance (36− 90 deg), (W)Weak avoidance (24− 36 deg),
(P)Potential avoidance (12− 24 deg) and (N)No avoidance (≤ 12 deg). The table
presents the classification of the observed degree of collision avoidance shown by the
pedestrian crossing the flow (IS14) as well as the one simulated by our algorithm
(shown as Ours). We also provide the maximum angle (max) of shoulder turn observed
in our simulation. Our algorithm based on elliptical agents generates results that are
consistent with human behavior.

6.1.2 Bidirectional Flow

We also validated our model by reproducing the experiments of [36]. This experiment
tracked two groups of pedestrians moving in opposing directions through a hallway. The
researchers varied the initial density of the pedestrians and observed the relationship
between speed and density in the hallway. Behaviors such as shoulder turning and
sidestepping can be frequently seen in cases of high densities (2− 2.5people/m2). We
reproduced the experiment and ran our simulation using elliptical agents with initial
density ρ ∈ {0.5, 1.0, 1.5, 2.0, 2.5} people/m2. We observed emergent behaviors such as
lane formation for densities as high as 2 people/m2. This implied that most agents could
smoothly navigate through the hallway without the need for shoulder turns and sidesteps.
However, at a higher density of 2.5 people/m2, shoulder turning and sidestepping were
very frequent, in accordance with the captured data. We generated a visual rendering
of the high-density experiment (ρ = 2 people/m2) and highlighted the occurrence of
shoulder-twisting and side-stepping behaviors using our algorithm (Figure 3).

6.2 Benchmarks

We devised a set of benchmark scenarios to highlight how elliptical pedestrians can be
used to generate real-world crowd behaviors. These demonstrations clearly illustrate
frequently seen avoidance behaviors such as shoulder turns, lateral motion and back
pedalling.

Aircraft Unloading: Our first benchmark shows the agents exiting a commercial
aircraft (Fig. 4(A)(B)(C)). The agents stand up, side-step to the aisle, fetch their luggage,
and exit the aircraft. The seat clearance is not large enough for agents to turn and walk
to the aisle, thus forcing the elliptical agents to sidestep to the aisle. Furthermore, the
aisles are not wide enough for two disc-based agents to pass each other. However, two
elliptical agents can pass each other by turning their shoulders and sidestepping.

Subway Station: In this scenario, depicted in Fig. 4 parts (D),(E) and (F), a group
of agents rush the platform and wait for the train. When the train arrives, these agents
attempt to board the train while those on the train attempt to exit. This creates a
bottleneck and is an ideal scenario for the target behaviours. Using our models, agents
backpedal and shoulder-twist to allow those agents disembarking to pass before entering
the subway car. The elliptical agents are able to make room for the exiting passengers
with limited motion and without unnecessary rotations, resulting in natural looking
motion.

13



A B C

D E F
Figure 3. Validation results for bidirectional flow. (Top) Frames from captured
crowd footage [36]. Shoulder twisting is a commonly observed phenomenon in
high-density crowds as shown in these still frames. In each frame, several twisting
agents have been highlighted in yellow with ellipses. (Bottom) We use elliptical agents
to generate such local behaviors automatically. The agents shoulder turn and sidestep
(E and F) to make their way through regions of high densities.

6.3 Computation Time

We include the average frame computation time for crowd simulation with elliptical
agents and compare that with a crowd simulation with disc-based agents. Table 6
shows the running time of each scenario for our elliptical agents vs. disc-based agents
using ORCA [2]. The use of precomputed data structures described by [35] improves
the runtime performance of EORCA algorithm by almost 40 times. As mentioned
earlier, exact geometric computations using ellipses can be very expensive operations for
interactive simulation of large number of agents. The combination of approximations,
setting up EORCA constraints, linking orientation to the velocity, and the precomputed
data structures improves the overall performance by one order of magnitude.

7 Limitations, Conclusions, and Future Work

We have developed an efficient collision-free navigation algorithm for elliptical agents
and compute their orientation based on real-world observations. In particular, we present
algorithms that link the orientation of each agent to its velocity and compute appropriate
side-stepping and turning motions. We have validated the results by comparing the local

14



D E F

A B C

Figure 4. Benchmarks. (Top) Pedestrians exit a commercial aircraft. Our
algorithm is able to capture the lateral steps individuals take when exiting from their
row and the shoulder-twisting that occurs as they pass one another in the aisle.
(Bottom) Pedestrians enter a subway station and wait for the train to arrive. When the
doors open, the waiting pedestrians step back to let those aboard exit before entering
the subway train. Agents sidestep, backpedal (F) and shoulder turn (E) as they make
their way into and out of the train.

interactions with real-world behaviors. Overall, we have presented a practical algorithm
for multi-agent crowd simulation with elliptical agents.

Our approach has some limitations. The collision-avoidance and navigation algorithms
that are based on elliptical agents are more expensive (e.g., one order of magnitude) and
more complex than discs. As a result, their utility may be limited to dense situations in
which such local interactions are important. The collision-avoidance algorithm tends to
be conservative. Moreover, the orientation computation is only able to model some –
and not all – of the local interactions related to turning, lateral motion and backpedaling.
The overall approach is also limited to crowd simulation algorithms that reduce trajectory
and behavior computation to the preferred velocity specification at each frame.

There are many avenues for future work. In addition to overcoming these limitations,
we would like to test our algorithm in different settings and evaluate its performance.
It would be useful to develop techniques for flocking or well-known behaviors for ellip-
tical agents (similar to [4]) and also combine these with high-level behavior modeling
and footstep planning [28]. Moreover, we would like to further improve the runtime
performance using parallelization techniques.
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Scene Num. agents Disc-based Agents Elliptical Agents
Bidirectional Flow 200 1.70 5.40

Subway 183 1.98 9.08
Crossing 16 3.18 12.68
Aircraft 157 1.13 8.43

Table 6. Average frame computation time (ms). We find that simulating
elliptical agents using our algorithm is one order of magnitude more expensive than
disc-based agents.
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S1 Figure Pedestrian interactions in crossing flows. (A) Experimental Setup by
Imanishi et. al. [6]. A pedestrian, the “traverser”, crosses “pedestrians in flow” with
density ρ ∈ {0.25, 1, 2} people/m2 at an angle θ ∈ {0, 90, 135, 180} deg. (B)
Reproduction of the experiment with elliptical agents for density 1people/m2 and
crossing angle 45 deg
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