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1. Introduction

The problem of accurate and robust implementation of geometric algorithms
has received considerable attention for more than a decade. Despite much
progress in computational geometry and geometric modeling, practical imple-
mentations of geometric algorithms are prone to error. Much of the difficulty
arises from the fact that reasoning about geometry most naturally occurs in the
domain of the real numbers, which can only be represented approximately on a
digital computer. Many times, the correctness of geometric algorithms depends
on correctly evaluating the signs of arithmetic expressions, and errors due to
rounding or imprecise inputs can lead to grossly incorrect results or failure to
run to completion.

The proposed solutions to this problem can be classified intoinexactandexact
approaches [29]. The former approach accepts the inaccuracy of the machine
representation, and attempts to modify the algorithms, given that constraint,
so that they reliably produce acceptable output. The notion of acceptability
is dependent on the application. Algorithms developed in this way have been
shown to work in specific cases. On the other hand,exact geometric com-
putation(EGC) requires that every predicate evaluation be correct [35]. The
exact computation paradigm eliminates numerical error in geometric compu-
tations entirely. Unfortunately, exact implementations are often far too slow,
especially when we are dealing with nonlinear primitives. Karasick et al. [22]
noted that naive implementations can take several orders of magnitude longer
than an equivalent floating-point implementation, an observation that is consis-
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tent with our experience. The goal has been to find techniques that reduce the
performance penalty to an acceptable level.

As work on exact geometric computation has proceeded, it has become clear
that the performance problems can be greatly alleviated. One area that has
received less attention is the issue of reliability when dealing with nonlinear
algebraic or curved primitives. This area provides numerous interesting chal-
lenges for EGC and we address some of them in this paper.

Exact Computation as a Practical Approach. There is no question that
EGC is slower than computation relying solely on machine precision arithmetic.
The question is whether the slowdown is worth the gain in precision. Indeed,
in many scientific or engineering applications the input data is inexact, and the
question arises whether an exact result is even meaningful. But the main reason
for using EGC is not exactness in itself, but ratherreliability. A common cause
of program failure is that rounding errors lead to inconsistent combinatorial
decisions, e.g. about where a point lies with regard to a surface. By making a
single interpretation of the data and performing calculations that are consistent
with that interpretation, we can avoid this source of failure. Solving the prob-
lems of accuracy and consistency is the first step towards a general solution to
the robustness problem, which also involves handling degeneracies and special
cases.

Organization. The rest of this paper is organized as follows. In Sec-
tion 2 we briefly review the relevant literature. In Section 3 we present some
underlying geometric problems involving curved primitives. We discuss our
general approach to EGC for curved primitives in Section 4, including methods
we use to achieve reasonable speeds for these computations. In Section 5 we
present some results for boundary evaluation and Voronoi computations, and
we conclude in Section 6.

2. Literature Survey

The issue of robust and accurate computations in geometric applications
has been addressed in numerous places, with surveys by Hoffmann [19] and
Fortune [16] giving an indication of the variety of work. Yap [34] described the
concept of exact geometric computation, and Li and Yap [28] have presented
a more recent survey. Some of the earlier inexact approaches were based on
geometric tolerances [32] and interval arithmetic [10].

One of the key ideas in accelerating exact computation is the use offloating
point filters, in which predicates are first evaluated using fast floating point
methods and then tested for reliability, by analyzing the size of the possible
floating point error. If a predicate is unreliable, exact computation is performed.
A good example of this method is the work of Fortune and van Wyk [17]. As
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a preprocess, they perform an analysis of the calculations that will be needed
by a geometric algorithm, so that the accuracy of these computations can be
checked quickly at run time.

A number of researchers have used exact computation for boundary eval-
uation. Benouamer, Michelucci, and Peroche [2] implement a solid modeler
using a filtered approach that differs from that of Fortune and van Wyk. Be-
nouamer et al. express each sequence of calculations as anexpression dag, that
is, a directed acyclic graph with operations at internal nodes and constants at
the leaves. Calculations are initially performed using interval arithmetic, and
if the result is not sufficiently precise, then exact rational arithmetic is used.

Fortune [15] also used exact arithmetic to implement a polyhedral solid
modeler. That work sets an upper limit on the bit-length of accepted input, so
that all geometric predicates can be evaluated using arithmetic at some fixed
precision.

Yap and Dub́e [35] introduced a general approach they call “precision-driven
computation.” Like Benouamer et al., they also use expression dags, but as a
tool to determine in advance the amount of precision needed (that is, the num-
ber of digits in a floating point representation). Precision-driven computation
is noteworthy because it is fundamentally distinct from filtered approaches.
However, it is only applicable for closed-form calculations.

Boundary evaluation in solid modeling has been a well studied research topic
in the area of polyhedral models. In addition to the results on the subject men-
tioned above, we note work of Hoffmann [20] and Requicha and Voelcker [31].
Some algorithms have also been proposed for quadrics or higher degree alge-
braic primitives. Casale et al. [4] use trimmed parametric surfaces to generate
boundary representations of sculptured solids. Their algorithm uses subdivision
methods to evaluate surface intersections, and represents the trimming boundary
with piecewise linear segments. Krishnan and Manocha presented algorithms
and a system called BOOLE based on the algebraic formulation of the problem
[26]. BOOLE is based on lower dimensional algorithms for computing the
intersections of parametric surfaces and uses a combination of symbolic and
numeric algorithms [25]. It uses64-bit IEEE floating point arithmetic.

One area where reliability is particularly challenging and has received rel-
atively little study is computation of the medial axis of a polyhedron. There
have been a number of approximate approaches, however. Vleugels and Over-
mars [33] and Etzion and Rappoport [14] both use recursive subdivision of
space to create an arbitrarily close approximation, while Hoff et al. [21] com-
pute an approximation at a fixed resolution using graphics hardware. Other
authors do not rely on an approximation. Of these, Milenkovic [30] was the
first to propose an algorithm for computing the medial axis as a 3D geometric
object by tracing the seams between the curved faces of the structure.
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3. Nonlinear Geometric Problems

In this section we discuss a number of problems involving curved geometric
primitives that arise in geometric applications.

Polynomial Root Isolation. The isolation of complex roots of polynomials
is in a sense a geometric problem in the complex plane. Also, the other prob-
lems we discuss will depend in an essential way on localizing the real roots of
polynomials.

Curve Arrangements. Given a number of algebraic curves in a bounded
region of the plane, the goal in the curve arrangement problem is to compute the
connected subregions that have no curve passing through them. Each subregion,
called aface, is defined by piecewise algebraic curves that enclose its boundary.
For each of the polynomials defining a face, all points in the face will have the
same sign with regard to that polynomial. The output of the curve arrangement
algorithm is the explicit topological description of each cell.

Boundary Evaluation. In computational solid geometry (CSG) [20], ob-
jects are constructed from solid primitives by the boolean operations of union,
intersection, and set difference. A complicated object will be represented as
a tree, with geometric primitives at the leaves, and boolean operations at the
internal nodes. Theboundary evaluation problemis the problem of taking a
CSG model and constructing from it a representation of its boundary as a set of
possibly curved two dimensional surface primitives with adjacency information.

The Medial Axis Transformation. The medial axis of a polyhedron is
the locus of points that are the centers of spheres contained in the polyhedron
and touching the boundary at two or more points. In 3 dimensions, the medial
axis is made up of portions of quadric surfaces intersecting along curves. All of
the known practical algorithms for computing the exact medial axis—explicitly
constructing all of its surfaces and curves—rely on tracing these curves, starting
at the vertices of the polyhedron [5]. Combinatorial errors at early stages can
cause incorrect curves to be generated, typically resulting in a program failure.
The probability for such a failure increases rapidly with the complexity of the
polyhedron.

4. Exact Geometric Computation for Curves and Surfaces

The fundamental challenge of EGC in the curvilinear domain is that the
coordinates of points determined by intersecting polynomial surfaces will typi-
cally be irrational and thus not representable exactly by a rational package. We
represent such a point by retaining the polynomials defining it, along with an
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axis-aligned box with rational coordinates known to contain only that intersec-
tion. There are mechanisms to shrink the box when necessary, to isolate the
roots and make comparisons between the points. As a result, the algorithm uses
minimal precision to accurately perform the tests. This technique is an example
of the distinction between exact arithmetic and exact computation—the only ex-
plicit representation of a point is inexact, but all comparisons are made exactly.
The library MAPC [24] has been designed to embody these representations for
points and curves in two dimensions.

Methods used to isolate points in 2D and 3D are detailed in [23] and [5] re-
spectively. We will briefly discuss them here to indicate the kind of calculations
needed. The fundamental tool we use for reliably localizing algebraic points
is theSturm sequence. For a univariate polynomialf , the Sturm sequence of
f is the polynomial remainder sequence off andf ′, with the signs changed
according to a simple convention. For any given real numberx, the number of
sign permanenciesPERM(f, x) is the number of times the sign remains the
same when successive polynomials in the Sturm sequence are evaluated atx.
For two real numbersx < y, PERM(f, y) − PERM(f, x) is the number of
real roots off betweenx andy.

There are generalizations of the Sturm sequence concept for sets of polyno-
mials in two and three dimensions, but they are much slower. In the computation
of the medial axis, there are times when a point must be localized in 3D using
the trivariate Sturm sequence [5]. However, in most cases it is possible to lo-
calize a 2D point using only univariate Sturm sequences [23]. The idea is to
use an alternate method to find candidate boxes that may contain one or more
points, and then to reduce the problem to a sequence of root determinations on
the boundaries of these boxes.

4.1 Improving Efficiency

To ensure accuracy, Sturm sequence calculations are usually done with exact
arithmetic. Since bit lengths arising in a Sturm sequence calculation can be
exponential in the degree of the polynomial, these calculations can be quite
slow. To improve running times, we have made extensive use of floating point
filters. Unfortunately, there is a large gap between the53 mantissa bits of a
machine double on current hardware and the hundreds of bits that can arise in a
Sturm sequence calculation. It is useful to have an arithmetic that is faster than
rational arithmetic but that can be flexible in the amount of precision it allows.
Aberth and Schaefer [1] have proposed a solution to this problem in what they
call range arithmetic, which combines conservative interval arithmetic with
variable precision floating point computation. Each number in their arithmetic
is represented by a single floating point number of arbitrary length, with an
associated single-precision radiusR. The radiusR indicates the width of the
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associated interval, on the scale of the least significant machine word in the
representation of the floating point number.

To guarantee the precision of their results, Aberth and Schaefer perform a
calculation at a specified initial precision, keeping track of the loss of accuracy.
If the accuracy of the result is insufficient, they increase the precision of their
representation and recompute the results with increased precision. We find that
this approach ofiterative revisionis useful for many geometric problems, where
precision-driven computation using expression dags may not be effective.

5. Some Results

In this section, we give examples of how the techniques we have described
can be applied to a number of problems.

5.1 Polynomial Root Isolation

To isolate complex roots of polynomials, we have used Aberth and Schaefer’s
Range library [1] to apply a variant, described in [27], of the Durand-Kerner
algorithm [11, 9] to a number of polynomials. A similar algorithm has also
been proposed by Bini [3]. We tested this algorithm on a benchmark set of
polynomials from the PoSSo project, available at the following site:

http://www-sop.inria.fr/saga/POL

Each class of polynomials is known to be troublesome for many root finding
algorithms. We compared our results with two other packages, Maple and Mu-
PAD. The results are given in Table 1.1. Maple and MuPAD allow the user
to specify the number of digits retained throughout a calculation, but not the
(smaller) number of digits that will be reliable in the output. For the purposes of
comparison, we specified that calculations be performed with the same number
of digits as the maximum used in our calculations with the Range library. Be-
cause the Range library performs later calculations with fewer digits than the
maximum required, it has a speed advantage when intermediate calculations
must be performed at a much higher precision than needed in the final result.
The particular root-isolation method used also contributes to the speedup. There
is, however, an overhead in maintaining the error interval, which becomes more
apparent when less precision is needed. These results were previously reported
in [27].

We used the following polynomials:

Poly1: Σn
i=0

xi

i! , n = 50.

Poly2: (x− 3c2)2 + icx7, 0 < c� 1, c = 10−20.

Poly3: (c2x2 − 3)2 + c2x9, c = 1020.
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Case Root Precision MuPAD Maple Range

Poly1 10 78.77 4.79 13.17
Poly2 120 5.15 41.54 13.06
Poly3 80 3.32 8.539 6.32
Poly4 30 4.569 0.792 0.82
Poly5 30 32.21 36.31 5.67
Poly6 30 14.01 34.31 0.65
Poly7 30 6.517 13.53 1.23
Poly8 30 12.21 18.717 5.26
Poly9 30 71.215 1.26 1.44

Table 1.1. Univariate root finding algorithm applied to nine polynomials from the PoSSo bench-
mark suite. The second column indicates the number of required significant digits, specified in
advance. The last three columns indicate running times taken by Maple, MuPAD and our al-
gorithm. Times are in seconds and measured on an SGI Origin 400 MHz R12000 processor
running Irix6.5.

Poly4: x20 + cx14 + x5 + 1, c = 1012.

Poly5:
∏n
i=1(x− i), n = 40.

Poly6: (0.01x10 + (x− 10)2)
∏20
i=1(x− i).

Poly7:
∏20
i=1(x− i)(x− 20)2.

Poly8: x14 + 2cx11 + c2x8 + 4x7 − 4cx4 + 4, c = 1024.

Poly9: xn − a, n = 50, a = 1.

5.2 Determinant Sign

The problem of efficiently computing the sign of the determinant of large
rational matrices has not been extensively studied, but there are situations where
it can be useful [7]. One straightforward approach, using the Range library, is
simply to use Gaussian elimination with partial pivoting, repeating the process
with progressively higher precision until the sign can be determined reliably.
Figure 1.1 indicates that this method often performs much better than exact
methods that use modular arithmetic, when applied to nonsingular matrices.
For general matrices, Culver et al. [6] proposed a filter for computing deter-
minant signs exactly. The singular value decomposition, computed at machine
precision, can be used to indicate whether the matrix is likely to be singular, what
the likely sign of the determinant is, and whether the matrix is well-conditioned
enough to ensure that the sign estimate is correct. If the sign estimate is correct,
it is used. If the matrix is ill-conditioned and likely to be singular, modular
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Figure 1.1. Determinant sign speedup.The speedup factor for the Range library, for various
matrices. The horizontal axis gives the order of the matrix, while the vertical axis gives the
speedup factor in comparison to an exact modular arithmetic algorithm. The set of matrices
includes randomly generated matrices and others arising in geometric problems. The matrices
are all nonsingular.

arithmetic is used. Otherwise, Gaussian elimination using the Range library is
used.

5.3 MAPC

The MAPC library [24], mentioned in Section 4, provides tools for exact
manipulation of algebraic points and curves. It uses exact arithmetic based
on LiDIA [18] to accurately compute the required Sturm sequences. For high
degree polynomials, exact computation of Sturm sequences can be prohibitively
slow because of the very large growth in the bit lengths of the coefficients. Some
boundary evaluation computations on algebraic primitives can require Sturm
sequence computation for polynomials of degree greater than80.

MAPC uses a number of techniques to deal with this problem. Of key
importance is reducing the number of Sturm sequence computations that must
be performed. For instance, floating point methods can be used to estimate the
locations of polynomial roots, which are then confirmed by a Sturm sequence
computation. This is much more efficient than repeated bisection using Sturm
sequences.

When a Sturm sequence computation is necessary, Aberth and Schaefer’s
Range library [1] is used. As with the sign of determinant calculations discussed
above, the process of generating the Sturm sequence and computing polynomial
signs is performed at successively increasing precision until all the signs can be
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Case 1 2 3 4

Number of Curves 3 3 6 7
Coefficient Bit size 25 22 25 62
Number of Faces 9 11 31 63
Total time without Range 5.2 9.0 62.8 122.8
Total time with Range 1.8 4.0 11.0 9.3

Table 1.2. Arrangement of planar algebraic curves. The application finds all subregions, the
segments of curves bounding each subregion, and the connectivity between subregions. The
table shows the maximum bit length needed to express the coefficients of the curves, the number
of faces generated by the arrangement, the time taken using the original (exact rational based)
code, and the time taken using Range. The curves have maximum degree 4. Times are in seconds
on a 300 MHz R12000 MIPS processor.

evaluated exactly. Once a fixed precision is reached without success (e.g. 40
decimal digits), exact rationals are used instead.

We have used MAPC as a tool in approaching each of the following three
geometric problems. We give performance information for each one, with
attention to the benefits of arbitrary-precision error bounded arithmetic. Again,
there is a speed advantage that grows with the complexity of the problem, but
a small overhead that becomes apparent with simpler calculations.

Curve Arrangements. The computation of curve arrangements is a useful
test case for the MAPC library. In Table 1.2 we indicate performance results
for some example arrangement computations.

Boundary Generation. A motivating application for the MAPC library is
the boundary evaluation of (low degree) algebraic solids. MAPC is a core library
in the ESOLID system [23] performing such boundary evaluations. In general,
computing the boundary representation for a CSG model leads to problems of
accuracy and robustness. These problems are exacerbated when the underlying
primitives have curved boundaries. To alleviate the reliability problems, the
ESOLID system performs performs all geometric tests exactly, using layered
filters to make the exact computation more efficient.

We have tested ESOLID on portions of a real-world model, the Bradley
Fighting Vehicle provided courtesy of the Army Research Laboratory. Some
example output B-reps are shown in Figure 1.2, with comparative timings given
in Table 1.3.

Figure 1.3 gives an example of a calculation that can be hard for machine-
precision methods. The intersection curve between the two cylinders is not
self-crossing, although it appears so at the scale shown. This distinction can be
hard for non-exact methods to resolve.
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Figure 1.2. Boundary computations. Boundary representations of six selected portions of
the Bradley Fighting Vehicle, computed by ESOLID. Computations were done exactly, and then
output as trimmed NURBS patches for rendering. Computation times ranged from about 10
seconds to 633 seconds; further performance details are given in Table 1.3.

without Range with Range
Example Total Sturm Total Sturm
Number Time Time Time Time

a 10.23 0.51 10.95 1.62
b 12.57 0.24 12.69 1.44
c 633.42 597.33 42.99 6.93
d 63.15 8.34 61.26 6.36
e 250.74 190.62 73.86 15.36
f 26.37 1.29 28.14 3.63

Table 1.3. Timings for the examples from Figure 1.2, with and without the incorporation of
the Range library. Range is used to improve the efficiency of Sturm sequence calculations. The
total time and the time spent in Sturm computations is shown.
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Figure 1.3. An example of a case that can be difficult for machine-precision methods. The
plot on the right shows a portion of the intersection curve of the two cylinders, in the parametric
domain of one of the cylinders. The curve is very nearly singular, but in fact has two distinct
components.

Figure 1.4. The “iron maiden pizza box” and a schematic of its medial axis. The top and bottom
of the box are removed to show the spikes inside. The model has 56 faces, and the computation
took 23 minutes.

Medial Axis. Computing the medial axis of a polyhedron is a challenging
problem because it inherently requires analysis of intersecting curved surfaces.
Culver et al. [8] have implemented an exact algorithm for medial axis evaluation
that relies both on the MAPC library and on the sign of determinant filter
described in Section 5.2, both of which incorporate the Range library. The
program has been used to compute the medial axis of complicated polyhedra
with as many as 250 faces [7]. Examples of the output are given in Figures 1.4
and 1.5. In both examples, seams are depicted as straight lines.

6. Conclusions and Future Work

We have found that exact geometric computation can be a practical tool to
alleviate reliability problems in geometric computations with algebraic curves
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Figure 1.5. The Venus de Milo and a schematic of its medial axis. Seams touching vertices of
the polyhedron are omitted for clarity. The polyhedron in this example has 250 faces, and took
5.6 hours to compute.

and surfaces. Some of the initial results related to root finding, curve arrange-
ments, boundary and Voronoi computations are promising and there are many
areas for future research.

One important problem is that of dealing withdegeneracies, such as the
intersection of a line with a polygon only at one vertex, or along an edge. De-
generacies can be a source of non-robustness on the one hand, or of serious
implementation difficulties on the other. For simplicity, algorithms often as-
sume that primitives are arranged so that there are no degeneracies (i.e., they
are ingeneral position). In practice, however, primitives often are not in gen-
eral position, causing implementations of the algorithms to fail. Recasting an
algorithm to handle degeneracies tends to result in a situation in which most of
the code is to handle special cases. Edelsbrunner and Mücke have presented a
nice overview of the problem [12].

A number of authors have proposed the idea ofsymbolic perturbationto
solve these problems [12, 13]. Unfortunately, these algorithms depend on the
existence of a decision tree in which each decision rests on the evaluation of an
expression that is some known polynomial in the input values. In the non-linear
problems we have discussed, the calculation cannot be formulated in this way.
A general approach to the problem of degeneracies, perhaps in the spirit of
symbolic perturbation, would be a significant contribution.

Finally, another goal is to perform reliable computations with higher degree
primitives (e.g., bicubic rational parametric patches that are widely used in
geometric modeling). Currently, we have handled primitives of algebraic degree
four for boundary evaluation and the medial axis computation results in quadric
surfaces.
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