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Abstract

We present a system, ESOLID, that performs exact boundary eval-
uation of low-degree curved solids in reasonable amounts of time.
ESOLID performs accurate Boolean operations using exact repre-
sentations and exact computations throughout. The demands of
exact computation require a different set of algorithms and effi-
ciency improvements than those found in a traditional inexact float-
ing point based modeler. We describe the system architecture, rep-
resentations, and issues in implementing the algorithms. We also
describe a number of techniques that increase the efficiency of the
system based on lazy evaluation, use of floating point filters, arbi-
trary floating point arithmetic with error bounds, and lower dimen-
sional formulation of subproblems.

ESOLID has been used for boundary evaluation of many com-
plex solids. These include both synthetic datasets and parts of a
Bradley Fighting Vehicle designed using the BRL-CAD solid mod-
eling system. It is shown that ESOLID can correctly evaluate the
boundary of solids that are very hard to compute using a fixed-
precision floating point modeler. In terms of performance, it is
about an order of magnitude slower as compared to a floating point
boundary evaluation system on most cases.

Keywords: Exact Computation, Boundary Evaluation, Robust-
ness, System Implementation

1 Introduction

A key operation in solid modeling systems is boundary evalua-
tion, or computing the boundary of Boolean combinations of two
or more solids. A number of algorithms have been proposed in the
literature for boundary evaluation, however these are hard to imple-
ment because of accuracy and robustness problems. These prob-
lems are particularly significant when dealing with curved primi-
tives. In general, geometric computations on non-linear primitives
are more susceptible to inaccuracies in representation and compu-
tation. As a result, designing a reliable solid modeling system for

�
keyser@cs.tamu.edu�
culver@acm.org�
foskey@cs.unc.edu�
krishnas@research.att.com	
dm@cs.unc.edu

graphics and CAD/CAM applications remains a major challenge.
The difficulties in developing a reliable or consistent solid mod-

eler using only fixed-precision arithmetic are well known [17, 21,
22, 24, 25, 30, 42, 48, 49]. Beyond the reliability of individual solid
modeling systems, numerical inaccuracy plays a significant role in
problems of data transfer. This leads to an estimated loss of more
than $1 billion annually in the U.S. automobile industry alone [6].
Many solutions, based on symbolic relationships, tolerances, inter-
val arithmetic, perturbation techniques, etc. have been proposed to
increase the accuracy and robustness of boundary evaluation sys-
tems. One such approach to this problem is the exact computation
paradigm [47], which eliminates numerical error in geometric com-
putations entirely.

In practice, most approaches have been applied to polyhedral
models only. In particular, techniques based on exact arithmetic or
representations are regarded as extremely slow and impractical for
non-linear (curved) models. Worst-case analysis of exact computa-
tion for curved objects (e.g. [49]) has further fueled the perception
that exact computation on curved solids is completely impractical.
Our work addresses this by demonstrating, for the first time, that
an exact computation-based approach can achieve reasonable effi-
ciency on curved solids while eliminating numerical error.

1.1 Main Results

We present a system, ESOLID, that performs exact boundary eval-
uation of low-degree algebraic curved solids in reasonable amounts
of time. ESOLID computes accurate Boolean combinations, main-
taining exact representations throughout. We describe a number
of techniques that improve the efficiency of the system. These
include lazy representations and evaluation, floating point filters,
use of arbitrary precision floating-point arithmetic with tight er-
ror bounds, low-dimensional formulation of subproblems, etc. ES-
OLID has been applied to a number of complex solid models, in-
cluding both synthetic models and models designed using the BRL-
CAD solid modeling system. We have compared its performance
with a boundary evaluation system based on floating-point compu-
tation. In terms of performance, ESOLID is less than one order of
magnitude slower in most cases and no more than two orders of
magnitude slower in the worst case. However, ESOLID can easily
handle cases that are very hard to handle by fixed precision bound-
ary evaluation systems. To the best of our knowledge, there are no
previous exact implementations of boundary evaluation that achieve
comparable speeds on real-world examples.

1.2 Exact Computation

The primary reason for using exact computation has been to ensure
consistency in operations by eliminating numerical error accumu-
lation in intermediate computations. Although input data might not
be exact (e.g. positions may be inaccurate or “noisy,” and certain
desirable rotations can not be represented exactly by rational num-
bers), exact computation is still very useful. Without exact com-
putation, errors build up in intermediate computation, resulting in



inconsistent intermediate data that can cause program crashes and
incorrect or invalid output. ESOLID makes a particular interpre-
tation of the given data, then uses exact computation for all oper-
ations on the data and exact representations for intermediate data.
This eliminates problems due to intermediate error buildup.

1.3 Paper Outline

We present here the issues and challenges involved in implement-
ing an efficient exact solid modeling system for curved solids. In
section 2 we describe previous work that has led to the development
of ESOLID. In section 3 we give an overview of ESOLID, break-
ing it into its major components. In section 4, we describe some of
the major challenges encountered in implementing ESOLID, along
with the solutions that we used. We discuss the various techniques
used to increase efficiency in section 5. Section 6 presents the re-
sults of ESOLID applied to both synthetic datasets and “real world”
examples. Finally, section 7 concludes with a summary of impor-
tant lessons learned in the process of implementing ESOLID.

2 Previous Work

2.1 Boundary Evaluation

Boundary evaluation is a well-studied problem in solid modeling.
Braid [4] provided one of the earliest treatments, and Requicha
and Voelcker [41] provided a comprehensive description of basic
boundary evaluation. Casale and Bobrow presented one of the
first detailed descriptions for boundary evaluation for curved solids
[7]. Today, the basic approaches for boundary evaluation are well-
understood, and have been incorporated into textbooks [23, 38].

More recently, robustness in boundary evaluation has gained
greater attention. Some researchers have focused on the use of ex-
act computation for polyhedral solids. This work includes that of
Sugihara and Iri [45], Yu [49], Benouamer et al. [2], Sugihara [44],
and Fortune [17]. Others have proposed methods for increasing
robustness that do not rely on exact computation. For eliminating
numerical errors in boundary evaluation on curved solids, the work
has been much more limited. Yu has explored some theoretical
bounds of exact computation [49], Fang et al. have explored toler-
ance methods for boundary evaluation [16], Hu et al. have explored
interval computations and representations [24, 25], and Desaulniers
and Stewart have given limited results on the interpretation of (pos-
sibly inconsistent) output [12].

Requicha and Voelcker have listed and summarized many of the
earliest solid modeling systems [40]. Solid modeling systems have
continued to be developed in recent years, such as the CSG-based
BRL-CAD system from the Army Research Lab [14, 13] and the
IRIT system [15], and research systems created to demonstrate new
robustness techniques. Examples of those systems are ones by For-
tune [17], Jackson [26], Benouamer et al. [2], Fang et al. [16], and
Hu et al. [24, 25].

2.2 Exact Computation

A significant amount of work has been done on exact computation
in computational geometry, solid modeling, and symbolic compu-
tation. Among the methods used to increase the efficiency of ex-
act computations are those based on interval arithmetic [29, 27],
floating-point filters [18, 19], lazy arithmetic [2], tuned computa-
tions [18, 19], precision-driven computation [47], minimized inter-
mediate computation [8, 5], fast hardware computation [43], and
modular arithmetic [18, 5]. Libraries supporting basic exact com-
putation have been developed, with LEDA [39] and CORE [28]
being notable examples. These libraries, however, support only lin-
ear computations and a limited set of algebraic computations, and

are not sufficient for general boundary evaluation problems. While
some exact methods have been applied to polyhedral solids, we
are not aware of any previous practical implementations for curved
solids.

2.3 Exact Boundary Evaluation on Non-linear Primi-
tives

Keyser et al. previously presented [30, 31, 32] the outline of an
approach for exact boundary evaluation. While this approach has
guided our later work, the work presented here builds on this previ-
ous work and significantly extends the results presented in those
papers. Other relevant previous work by Keyser et al. includes
the MAPC library [33]. MAPC provides data structures and rou-
tines for polynomials, algebraic plane curves, and two-dimensional
points with algebraic coordinates. The MAPC data structures and
routines, which were developed in the process of implementing ES-
OLID, form a primary building block for ESOLID.

3 ESOLID Overview

ESOLID is a system for performing exact boundary evaluation. In-
put is supported for several primitives (including the “CSG stan-
dard primitives” [23]), stored in a CSG tree that allows union, in-
tersection, and difference operations, as well as transformations by
a 4 
 4 matrix (see section 3.3 for a more detailed discussion of
input). The internal representation supports manifold objects made
up of trimmed patches with surfaces expressed as rational functions
of polynomials with rational coefficients.

Note that ESOLID is designed to work correctly for surfaces
of arbitrary degree and complexity. For efficiency reasons, how-
ever, only low-degree (algebraic degree four or less) surfaces
are practical—higher degree surfaces tend to take unreasonable
amounts of time and memory. With each operation, ESOLID deter-
mines the boundary of the result, updating all geometry and topol-
ogy to store the resulting object. Boolean operations are not sup-
ported for degenerate configurations of objects. Thus input, inter-
mediate representations, and output must all be manifold solids,
intersection curves may not have singularities, surfaces of differ-
ent objects should not overlap, etc. Currently, output is provided
in one of two forms: either a human-readable exact output suit-
able mainly for testing and debugging, or an approximate output
of trimmed Bezier patches, useful mainly for visualization (e.g. the
pictures shown here).

Below, we briefly discuss the architecture and representations of
ESOLID, the process of boundary evaluation, and input considera-
tions.

3.1 Architecture

ESOLID consists of approximately 45,000 lines of C++ code, im-
plemented on top of the LiDIA library [3]. LiDIA provides data
structures and routines for exact arithmetic on rational numbers.
Other libraries (such as LEDA [39]) for exact rational arithmetic
could easily be used instead.

Solids in ESOLID are represented as B-reps broken up into
trimmed parametric patches. A surface with both a parametric and
implicit form defined is associated with each patch. The intersec-
tions of such surfaces are stored as algebraic plane curves in the
parametric patch domain. These intersection curves (which become
trimming curves in a final solid after boundary evaluation) are typ-
ically not parameterizable. So, intersection curves (and trimming
curves) are stored in implicit form with endpoints. These endpoints,
since they can be the intersection of two algebraic plane curves,
can have irrational algebraic coordinates. ESOLID uses the MAPC



representation for points, which involves representing points as 2D
intervals that are guaranteed to contain a unique intersection of two
algebraic plane curves. The interval endpoints are rational numbers,
and the interval size can be reduced on demand.

A diagram showing the organizational structure of ESOLID is
given in figure 1. The portions of ESOLID that are incorporated in
MAPC are represented as an external library in the figure.

� MAPC provides routines for handling polynomials
(K_POLYs), algebraic plane curves (K_CURVEs), and both
1D points (K_POINT1Ds) and 2D points (K_POINT2Ds)
with algebraic coordinates [33]. It includes routines for
determining the topology of algebraic plane curves over a
limited domain and intersecting two algebraic plane curves.
MAPC, which was developed in the process of implementing
ESOLID, provides a fundamental building block for the other
ESOLID classes.

� A K_SURF is the ESOLID representation for a surface. It
includes K_POLYs that describe the rational parametric form
of the surface, as well as a K_POLY giving the implicit form.

� A K_PATCH describes a single patch in the B-rep. A
K_PATCH includes a K_SURF defining the surface, LiDIA
bigrationals defining the domain boundaries, and arrays of
K_CURVEs defining trimming and intersection curves. Trim-
ming curves define the boundary of the patch, and intersection
curves indicate where the patch intersects patches of another
solid. Each curve, of either type, is associated with a K_SURF
that intersects the patch. The associated K_SURFs are kept in
an array parallel to the array of K_CURVEs. In some cases,
the associated K_SURF is the K_SURF of a different patch.
In other cases it only exists to determine a boundary between
adjacent patches, so that, e.g., a sphere may be parameterized
using multiple patches.

� A K_PARTITION describes one subpatch formed during
boundary evaluation. It includes data denoting the particu-
lar curves in an associated K_PATCH structure that define the
K_PARTITION.

� A K_SOLID describes the overall solid, and is made from a
group of K_PATCHs. K_SOLIDs are the input and output for
boundary evaluation. They can also be formed from collec-
tions of K_PATCHs, groups of K_PARTITIONs coupled with
topological information, and conversion of input CSG data
(from BRL-CAD).

� Topological connectivity information is kept in the individual
classes. Each face stores the list of trimming curves and the
adjacent face along each curve. Each curve (edge) stores the
adjacent vertices. The same 3D curve or point is often stored
in more than one 2D patch domain. These “associations”
(pointers to an equivalent point or curve in another domain)
are also stored and are important in boundary evaluation. An
overall topological graph (K_GRAPH) is constructed as nec-
essary during later stages of boundary evaluation. Details of
the topological information stored and proof of its sufficiency
are given by Keyser [34]. Note that because of the use of exact
computation, storing redundant topological information does
not lead to robustness problems.

� Not shown in the figure, the PRECISE library [37] can be
optionally included as a part of MAPC to speed up calcula-
tions involving algebraic numbers. PRECISE is an extension
of the range arithmetic techniques developed by Aberth and
Schaefer, and implemented in their range library [1].

K_PARTITION K_GRAPHK_PATCH

BRL-CAD ConvertersBoundary Evaluation

Graph Algorithms

K_SOLID

MAPC

K_SURF

LiDIA

Figure 1: The major parts of ESOLID. Shaded boxes indicate exter-
nal libraries used in ESOLID (including MAPC). A solid arrow in-
dicates that one library or structure is a necessary part of another. A
dashed arrow from one structure to another indicates that the source
structure can be used to create the destination structure.

3.2 Boundary Evaluation

Boundary evaluation is defined within the K_SOLID class. The tra-
ditional two-stage approach to boundary evaluation is followed in
ESOLID. In the first stage, the patches are intersected pairwise, par-
titioning them into separate components. In the second stage, the
partitions are identified and selectively stitched together to form the
final solid. Although this traditional approach is well-understood
and straightforward, a number of individual steps must be modified
considerably in order to allow it to be used in an exact computation
scheme. Previous papers have described some of these issues in de-
tail [31, 32], but actual implementation highlighted the importance
of other issues (e.g. curve correspondence) that had not been con-
sidered. Only a brief overview will be given here, although some
steps are treated in more detail in section 4.

The procedure is as follows:

� For each pair of patches:

– Generate an intersection curve in the domains of the
patches by substituting the parametric representation of
each patch into the implicit representation of the other
patch. Each intersection curve is represented as the zero
set of a bivariate polynomial.

– Resolve the topology of the intersection curves (i.e. de-
termine their structure in the patch domain).

– Intersect the intersection curve with the trimming
boundary, determining the position of each intersec-
tion point in the domain of both patches (point inver-
sion).

– Determine the curve correspondence, that is, how the
individual portions of the algebraic plane curve in one
patch domain relate to those in the other domain.

– Clip the intersection curves in each domain so that only
the portions inside the trimmed regions of both patches
are maintained.

� For each patch:
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Figure 2: A summary of the five main steps in the first stage of the
boundary evaluation algorithm.Arrows show how the basic data and
kernel operations are used in the various steps. At top are the steps
in boundary evaluation, in the middle are the kernel operations, and
at bottom are the data structures for the input solids.

– Merge intersection curves from the patch/patch inter-
sections to form patch/solid intersection curves.

– Partition the patch into different components based on
the trimming curves.

– Classify partitions as to whether they are inside or out-
side of the other solid by classifying a point contained
in each partition.

– Based on the Boolean operation, choose the correct
components from each solid to build the final solid,
updating all topological information.

These operations are built on a set of “kernel operations” in-
cluding curve-curve intersection, curve topology, point genera-
tion/location, and implicit surface generation. Curve-curve inter-
section and curve topology are a part of MAPC, and the new al-
gorithms developed for them have been highlighted elsewhere [33].
Point generation refers to quickly generating a point with ratio-
nal coordinates that lies on the surface of an object. Point loca-
tion refers to classifying whether a 2D point lies inside or outside
the trimmed region of a patch, or whether a 3D point lies inside
or outside of another solid. Implicit surface generation refers to
creating an implicit surface given information about a specific para-
metric curve and/or patch. The efficiency of these kernel operations
has a tremendous effect on the efficiency of the entire system. Fig-
ures 2 and 3 show the relationships between the kernel operations
and the steps in boundary evaluation. Also shown in the figures
is the way that the point (K_POINT), curve (K_CURVE), patch
(K_PATCH), and topological data are used in the various kernel
routines and steps of boundary evaluation.

3.3 Input Considerations

From the beginning, ESOLID was intended to handle data from
real-world examples, meaning data not developed specifically to
test exact boundary evaluation. The BRL-CAD [14, 13] data for-
mat was used as the model for the input accepted by ESOLID. BRL-
CAD is a CSG-based solid modeling system developed at the Army
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Figure 3: A summary of the four main steps in the second stage of
the boundary evaluation algorithm. Arrows show how the basic data
and kernel operations are used in the various steps. At top are the
steps in boundary evaluation, in the middle are kernel operations,
and at bottom are the data structures for the input solids.

Research Lab and used for a variety of defense applications. Specif-
ically, we focused on the Bradley Fighting Vehicle model provided
to us courtesy of the Army Research Lab. It provided a large, com-
plex, real-world example on which previous boundary evaluation
attempts had proven difficult. While BRL-CAD supports a number
of primitive CSG solids, most of them, including all those prim-
itives used in the Bradley, contain only low degree (surfaces no
more than degree four), so we focused our efforts on handling such
low-degree cases efficiently.

BRL-CAD represents all transformations as transformation ma-
trices. Transformation matrices are the only method currently sup-
ported by ESOLID for specifying translations, rotations, etc. Note
that transformation matrices can be input exactly, while other trans-
formation descriptions, such as “rotation by X degrees,” might not
have an exact representation using rational numbers.

Although routines have been developed to convert BRL-CAD
data files into the ESOLID input format, ESOLID is not limited
to BRL-CAD data. Any data that can be expressed by the struc-
tures given in section 3.1 can be used in ESOLID. Note, however,
that only low-degree surfaces will yield reasonable running times.
There are some other minor restrictions (e.g. the surfaces must be
one-to-one mappings over the patch domain), however these are not
significant for the most common CSG primitives. See [34] for con-
version of several common CSG primitives to the ESOLID format.

By default, ESOLID will treat input as exact. However, as men-
tioned in section 1.2, the purpose of exactness is mainly just to en-
sure consistency. Routines are included in ESOLID that allow a
user the option of perturbing input data to achieve a particular inter-
pretation. For example, the four vertices of a face of an input rect-
angular parallelepiped might not be coplanar, due to roundoff error
in the input file. Options are provided to either treat the face as a bi-
linear patch (an “exact” interpretation), or to fit planes to each face
then form new vertices at the intersections of the faces (the “per-
turbed” interpretation). As long as such interpretation is made only
at the original input stage, and not in intermediate computations,
the consistency provided by exact computation is maintained.

Finally, ESOLID input is restricted to non-degenerate configura-



tions. Although certain degeneracies are accounted for and han-
dled within ESOLID, other degeneracies can cause ESOLID to
fail. Many real-world examples (including several from the Bradley
Fighting Vehicle) contain numerous degeneracies. ESOLID cannot
be considered a robust system, in terms of handling all possible in-
put configurations. However, ESOLID’s elimination of numerical
error increases robustness (over an inexact system), and since treat-
ing numerical error is an important prerequisite to fully handling
degeneracies, ESOLID supports future treatment of degeneracies.

4 Challenges

A number of challenges were faced in the development of ESOLID.
Among these were creating the necessary data structures and algo-
rithms for exact computation and propagating information between
the patches. A primary concern was efficiency, and this is discussed
further in section 5.

4.1 Exact Data Structures and Algorithms

One major obstacle encountered in implementing ESOLID was the
lack of existing library support for exact computation. While li-
braries exist for exact rational number computation, none were
found for algebraic number computation, except general computer
algebra systems. Because of their generality, these computer alge-
bra systems do not provide the level of efficiency needed for bound-
ary evaluation. Also, libraries providing geometric data structures
tend to focus on linear structures (and occasionally circles). A more
general library for representing curves exactly was not found.

We developed the MAPC library to meet this need. Although
geared specifically to the boundary evaluation problem, the data
structures and routines for polynomials, points, and 2D curves
that MAPC provides have been applied to other problems, as well
[10, 46, 20]. As libraries are developed that support exact compu-
tation, one of the major hurdles to exact implementations (lack of
library/compiler/hardware support) will gradually be lowered.

4.2 Transferring Data Between Patches

Many sub-algorithms used in boundary evaluation involve transfer-
ring the data from the patch of one solid to the other. Two major
examples of this are point inversion (part of the intersecting curve
step) and the curve correspondence step (see section 3.2).

In these cases, the most obvious and direct approach would be to
treat the problem in 3 or more dimensions. This proves to be prob-
lematic, however. First, exact operations in higher dimensions are
generally extremely slow. Second, and perhaps more fundamental,
new data structures might be necessary to perform such compu-
tations. For example, the intersection curve between two patches
is represented as a 2D curve in each patch domain—the algebraic
space curve is not explicitly represented. We present algorithms
for point inversion and curve correspondence based on the lower-
dimensional representation.

4.2.1 Point Inversion

A point in the domain of a patch P1 determines, via the parameter-
ization, a point � in 3-space. If � is in the intersection of P1 with
another patch P2, it may be necessary to find the inverse image of
� under the parameterization of P2. This process is point inversion.
Point inversion can be viewed as a problem in as many as seven di-
mensions (the two dimensions, s and t of P1, the two dimensions, u
and v, of P2, and the three spatial dimensions (x 
 y 
 z)). The problem
is easily reduced to four dimensions:

Fx � s 
 t ��� Gx � u 
 v �

Fy � s 
 t ��� Gy � u 
 v �
Fz � s 
 t ��� Gz � u 
 v �

where one wants to find a particular � u 
 v � interval (the inverted
point) corresponding to a given � s 
 t � interval. This four dimen-
sional operation is still too time-consuming to yield an efficient
implementation. Fortunately, we can reduce the computation to a
series of 2D and simple 3D calculations, as presented here:

In the domain of P1, � is described as a particular intersection
of two curves, f � s 
 t ��� 0 and g � s 
 t ��� 0. In boundary evaluation, f
and g will always be either intersection or trimming curves. Thus,
f is the intersection of a surface, S1 � x 
 y 
 z ��� 0 with P1, and g is
the intersection of a surface, S2 � x 
 y 
 z ��� 0 with P1. In all cases
where point inversion is necessary, either S1 or S2 (say S1, for this
example) is the surface corresponding to the patch P2.

The intersection of P1 with P2 is already computed as a curve,
f̃ � u 
 v ��� 0 in P2’s domain. The intersection of S2 with P2 is now
computed in the form g̃ � u 
 v ��� 0. Next, the intersections of f̃ and
g̃ are computed. This yields a set of points, p1 
 p2 
�������
 pn, one of
which must be the inverted point.

Note that if S1 or S2 is self-intersecting (i.e. it does not have a
one-to-one correspondence between the domain and the surface),
then there may be more than one possible inverted point. We avoid
such cases by always dividing primitive input solids into patches
such that each patch has a one-to-one mapping over the patch do-
main. By decomposing solids appropriately, this is always possible
for the patches of the common CSG primitives [34].

To this point, only 2D operations have been required. Very ba-
sic 3D operations are now used to determine which of the pi is the
inverted point. We find a 3D interval (in x 
 y 
 z space) bounding
each pi. This can be done by substituting the 2D interval bounding
pi into the parametric form of the P2’s surface, S1. Interval arith-
metic operations determine the bounds for a 3D interval guaranteed
to bound pi. These intervals are compared to an interval bound-
ing � (generated from the 2D interval in P1’s domain). Typically,
only one pi has an overlapping interval and this will be the inverted
point. If two or more intervals overlap � ’s interval, the involved
intervals can be reduced. This is done by reducing the 2D interval
surrounding each point (a function provided in MAPC), construct-
ing a new 3D interval from that 2D interval, and iterating until the
ambiguity is resolved.

In this way, point inversion has been converted from a higher-
dimensional problem into a series of 2D computations (curve-curve
intersections), along with some simple 3D interval matching com-
putations.

4.2.2 Curve Correspondence

Curve correspondence refers to finding the orientation of a curve in
one patch domain relative to the same curve represented in the do-
main of another patch. Each algebraic plane curve has a direction
induced on it in the domain of the patch. The algebraic plane curve
(in the parameter space) is part of a curve in three spatial dimen-
sions. This 3D curve (or a portion of it), represented in the domain
of a different patch, may have either the same or an opposite orien-
tation from the original algebraic plane curve. A common way to
compute curve correspondence is to trace the curve in three dimen-
sions. However, most tracing methods are approximate, and subject
to numerical error. Furthermore, it is preferable to rely on only 2D
operations, for efficiency reasons.

Before curve correspondence is calculated, the points at which
a curve intersects the trimming curves of a patch are determined.
By point inversion, the locations of these points are found in both
relevant patch domains. If a connected curve intersects trimming
curves in 3 places, then the three resulting points can be used to
determine a direction for the curve in both patches, and to verify



that a particular portion of the curve in one patch domain (bounded
by two of the points) corresponds to a given portion in the other.
If there are only two intersections, an additional point can be gen-
erated to determine this information. Thus, inverted point informa-
tion is used instead of curve tracing to transmit orientation from one
patch domain to the other. More details on this algorithm and some
related assumptions are described by Keyser [34].

5 Efficiency Considerations

A major concern in the implementation of ESOLID was to make it
as efficient as possible. The goal was to create an implementation
that was one to two orders of magnitude slower than an inexact
implementation (i.e. taking no more than 10–100 times as long) on
real-world examples. In order to achieve this, a number of different
speedup techniques had to be combined.

In order to understand certain speedups, mention must be made
of Sturm sequences. Sturm sequences are a technique used to count
the number of real roots of a polynomial in an interval. Sturm
sequence operations involve generating and evaluating a series of
polynomials (see elsewhere for a more complete description [11]).
Sturm sequences, along with resultant calculations, form the basis
for the curve-curve intersection tests implemented in MAPC, and
play a major role in ESOLID’s efficiency.

5.1 Speedups

Numerous speedup techniques were employed in ESOLID, and
space permits only a brief mention of each type here. References
are provided to prior uses of the techniques, though not necessarily
in the way used in ESOLID.

� Lazy evaluation attempts to postpone high-precision (i.e.
time-consuming) computations as long as possible in hope
that they will not be necessary [2]. Lazy evaluation is applied
to both point representations (intervals surrounding algebraic
coordinates are reduced only as needed) and curve representa-
tions (curves are subdivided into segments as needed) in ES-
OLID.

� Quick rejection techniques involve quickly identifying cases
where computation can be avoided entirely. Interval arith-
metic [29, 27] is sometimes used to avoid more complicated
algebraic calculations involving curves and patches (e.g. de-
termining whether a curve can intersect a particular patch
boundary). Affine arithmetic [9], closely related to interval
arithmetic, can be used to speed up polynomial sign tests
by providing tight error bounds and an efficient implemen-
tation when evaluating an interval in a polynomial. Interval
arithmetic based on both exact rational interval bounds and
on IEEE floating-point interval bounds has been used in ES-
OLID. The use of bounding boxes is another well-known tech-
nique for quick rejection, and is part of the point, curve, and
patch representations in ESOLID. For example, patch bound-
ing boxes are compared to eliminate cases where patches
clearly do not intersect.

� Simplified computation refers to substituting fast, simple
computations for more complex ones. As an example in ES-
OLID, qualitative information can be maintained with points
to allow nearly instantaneous equality checking in certain
cases, as opposed to the rather time-consuming exact alge-
braic number comparisons used otherwise. Algorithms can
make use of problem-specific information to avoid more gen-
eral, and thus more time-consuming, computation. For exam-
ple, curve-curve intersection is greatly simplified if the curves

are found to be horizontal or vertical. Algorithms developed
for MAPC [33] use knowledge about the limited domain to
perform more efficient curve-curve intersection tests and to
determine curve topology. A third example of simplified com-
putation in ESOLID is interval reduction for intervals sur-
rounding algebraic numbers. If an algebraic number is a sim-
ple root, its defining polynomial will be negative on one side
of the root and positive on the other (and which side is which
is already known), thus allowing a simple polynomial sign
test (rather than a full Sturm sequence evaluation) to reduce
the width of the interval.

� Lower-dimensional formulation of several parts of the com-
putation also leads to great efficiency improvements. With
exact computation especially, the higher the dimension of
the problem, the longer the computation takes. It is often
much faster to replace a single higher-dimensional computa-
tion by one or more lower-dimensional computations. Exam-
ples of this in ESOLID are point inversion and curve corre-
spondence (see section 4.2), the overall boundary evaluation
algorithm (all points, curves, and computations are in only
two dimensions), and curve-curve intersection (2D computa-
tion replaced by a resultant and a series of 1D computations
[33]).

� Floating-point evaluations are still very useful as a speedup
technique, even though they might not be exact. Floating-
point filters [18, 19] are a way of avoiding certain expensive
exact computations by computing in floating-point hardware,
but maintaining an error bound. If the error is small enough,
a decision is made based on the result of the computation,
but without exact arithmetic. This is used to avoid certain
Sturm sequence calculations in ESOLID. Another technique,
floating-point guided computation has proven even more use-
ful for dealing with algebraic numbers. This refers to mak-
ing a “guess” of a root using floating-point techniques (with
no error bound), then using exact methods to verify that the
guess was close enough to the real answer. For example,
roots of a polynomial can be approximated using an imprecise
method (e.g. Newton’s method), then Sturm sequences can be
used to verify that the right number of roots was found, and
that a small interval around each approximate root contains
the true root. Thus a tight, guaranteed, exact bound is gen-
erated faster than by standard interval bisection techniques.
Arbitrary-precision floating-point computations can also be
used. This means that floating-point numbers are represented
using any number of bits. Although slower than standard,
hardware supported, IEEE floating-point computations, such
floating-point numbers can provide precision from the IEEE
level (53 bits) all the way up to exact floating-point calcula-
tions. This allows floating-point filters with varying levels of
accuracy. The PRECISE library [37] implements arbitrary-
precision floating-point computation. It is an extension of the
range arithmetic presented by Aberth and Schaefer and im-
plemented in their range library [1]. ESOLID optionally in-
cludes PRECISE within MAPC as part of a filter for speeding
up Sturm sequence computations.

5.2 Layering Speedups

ESOLID applies all of the speedups listed above into a multilayered
approach. As an example, the process for reducing the size of an
interval surrounding an algebraic root (in one dimension) will be
described. This interval reduction computation is in turn part of
more complex computations that incorporate more of the speedups
listed above.



� The midpoint of the interval is determined (or another point is
provided).

� If the root is simple, the defining polynomial will be positive
on one side, negative on the other. The signs at the upper and
lower interval bounds are known beforehand. Thus, only the
sign at the midpoint needs to be determined:

1. Apply a floating-point filter to try to determine the sign
of the polynomial at the point.

2. If that fails, evaluate the polynomial using exact com-
putation.

� Otherwise, a Sturm sequence calculation at the midpoint must
be performed:

1. Use floating-point filtered computation to attempt to
evaluate the Sturm sequence.

2. If that is unsuccessful, use arbitrary-precision floating-
point computation (PRECISE library) to determine and
evaluate an approximate Sturm sequence.

3. Determine polynomials for Sturm sequence exactly, and
evaluate signs using a multilevel approach as described
above.

5.3 Effectiveness of Different Techniques

Many of the speedup techniques we use have been used individually
in previous applications with good success. Combining techniques,
however, does not necessarily combine the effectiveness of the in-
dividual techniques. There are two reasons for this.

First, certain techniques tend to speed up the same cases. For
example, the cases where exact affine arithmetic [9] is most effec-
tive are often the same cases where floating-point filters are most
effective. In most cases we have found, there is still a benefit to be
realized by using both techniques, but in other cases, the increased
overhead from applying a second method can actually reduce over-
all efficiency.

Second, some speedup techniques tend to conflict with each
other, in that they have different goals. For example, lazy evalua-
tion of point coordinates encourages intervals surrounding the point
to be maintained as large as possible, shrinking them only as neces-
sary. Floating-point guided computation, on the other hand, encour-
ages intervals surrounding points to be reduced to the precision of
the floating-point estimate. In practice, a balance is struck between
them—intervals are reduced farther than lazy evaluation would dic-
tate, but less than floating-point guided computation would recom-
mend. Although the optimum balance would be difficult to find,
this combination still has resulted in speeds that are greater than
either technique employed alone.

Even though techniques offset each other, in total these speedups
provide several orders of magnitude improvement in speed over the
straightforward exact approach.

6 Results

ESOLID has been applied to several test cases, both “synthetic”
and “real-world.” Synthetic cases were created specifically to test
or demonstrate the capabilities of ESOLID. Real-world cases were
taken from a model developed in another solid modeling system
(BRL-CAD [14, 13]) in order to determine the effectiveness of ES-
OLID on cases not specifically designed for ESOLID.

ESOLID provides the option of including the PRECISE library
[37]. PRECISE is an extension of Aberth and Schaefer’s range
arithmetic [1], based on arbitrary precision floating-point compu-
tation. It is used in ESOLID as a filter to speed up calculation of

Sturm sequences, a key part of curve-curve intersection calculations
as well as other calculations involving algebraic numbers. Except
where noted, timings below do not include PRECISE.

All timings presented in this chapter are in seconds on a 300
MHz R12000 processor.

6.1 Synthetic Data

Figure 4 shows examples of simple Boolean combinations on ba-
sic primitives supported in ESOLID. This demonstrates some of
the objects that ESOLID allows. Note that ESOLID can handle
cases where objects have multiple components and genus greater
than one. Table 1 gives performance data for these basic cases. As
can be seen, even for these basic examples, several curve-curve in-
tersection tests may be performed, and the results may need to be
found to high precisions.

6.2 Real-World Data

Real-world sample input was taken from the Bradley Fighting Ve-
hicle model, provided courtesy of the Army Research Lab. This is a
model created in the BRL-CAD system [14, 13], a CSG-based solid
modeling system. The Bradley is composed of over 5000 solids.
Primitives used are polyhedra (53%), generalized cones including
cylinders (44%), ellipsoids including spheres (2%), and tori (1%).
Although these primitives are low-degree, they have been combined
to create a complex model.

ESOLID was applied to several parts of the Bradley, some of
which are shown in figure 5. Timing data was taken both with and
without inclusion of the PRECISE library. The same parts were
also processed by the BOOLE system [36, 35]. The BOOLE sys-
tem performs (inexact) boundary evaluation based on IEEE double-
precision floating-point arithmetic. BOOLE uses tolerances to at-
tempt to reduce the problems associated with numerical error. Ta-
ble 2 gives the number of Booleans involved in each part, along
with timing data for each system. Note that these parts sometimes
include a grouping operation, which may appear as a union opera-
tion but does not require any arithmetic computation (i.e. solids are
merged without concern for potential intersections). As is shown,
for cases that BOOLE also worked on, ESOLID performs within
two orders of magnitude in time. With the inclusion of PRECISE,
these times are within about one order of magnitude, although some
of the faster cases are slowed down slightly by PRECISE. Note also
that BOOLE is unable to handle several cases (see section 6.3 for
more details).

A breakdown of the individual timings under ESOLID (with-
out PRECISE) are shown in table 3. Notice that curve-curve in-
tersection computations are the dominant factor in the overall time.
The two major parts of curve-curve intersection (as implemented in
MAPC) are resultant computations and (univariate) Sturm sequence
computations. As the table shows, the portion of the curve-curve in-
tersection time spent in each of these varies greatly. In general, it
appears that for longer-running cases, the curve-curve intersections
(specifically Sturm sequence calculations), take a higher percent-
age of the overall time. The range arithmetic (following Aberth and
Schaefer’s development [1]) included in the PRECISE library is in-
corporated primarily to speed up Sturm sequence calculations, and
achieves its best effects on cases where Sturm computations domi-
nate the running time. Also notice that all cases use a high level of
precision to isolate algebraic numbers. Due to the lazy evaluation
procedures used in ESOLID, it is likely that levels of precision close
to this would be required in order to guarantee accuracy. While a
system that does not provide this level of precision may still work
(e.g. BOOLE on cases a–d), it will be prone to failure.



Example a b c d e f g h i
Object 1 box box cyl. ell. torus twist cyl. ell. ell.
Object 2 box twist box box box cyl. cyl. cyl. twist

Degree of Object Surfaces 1,1 1,2 2,1 2,1 4,1 2,2 2,2 2,2 2,2
Number of Intersecting Patches 6 12 6 8 8 8 4 8 9

Maximum Degree of Intersection Curves 1 2 3 2 4 6 6 6 4
Number of Curve-Curve Intersections 90 551 394 990 447 562 407 881 744

Number of Univariate Roots Found 0 240 353 1268 900 2004 607 2248 1753
Bits of Precision in Algebraic Numbers - 10 13 59 87 52 31 87 25

Total Time 0.39 1.35 0.90 4.62 8.25 22.05 5.50 49.41 28.83

Table 1: Details of the difference operations illustrated in Figure 4. Object 1 describes the base primitive, while Object 2 describes the
primitive being subtracted. The primitives shown are a box (polyhedron), twist (a box twisted so that some faces are bilinear patches),
cylinder, ellipsoid, and torus. The degree of the surfaces in the two objects is given, followed by the number of pairs of patches that actually
intersect. The maximum degree (in the parametric domain) of the intersection curves is also shown. The total number of curve-curve
intersection operations performed is given, along with the total number of univariate roots found (i.e. the number of algebraic numbers found
as a root of a univariate polynomial). The maximum number of bits of precision used to represent these algebraic numbers is given, followed
by the total time taken to perform the Boolean operation.

Example Name Number of ESOLID Time ESOLID Time BOOLE
Number Booleans without PRECISE with PRECISE Time

a Tow Hook 2 10.23 10.95 2.23
b Wheel Assembly 4 12.57 12.69 2.81
c M16 Rifle 6 633.42 42.99 6.68
d Track Link 11 132.48 137.64 27.74
e Relay Mechanism 1 250.74 73.86 -
f Crew Member 3 2 26.37 28.14 -
g Launcher Mount Part 3 63.15 61.26 -
h Support Assembly Part 6 213.72 105.99 -
i Rear Hatch Hinge 7 58.92 63.48 -
j Engine Access Hatch 16 54.78 58.44 -

Table 2: Overall timings for the examples in figure 5. The number of Boolean operations performed is shown, along with the times taken
in ESOLID (both with and without the PRECISE library for arbitrary-precision floating-point filters of Sturm sequences) and in BOOLE (a
boundary evaluation system based on double precision IEEE floating-point arithmetic and tolerances). A ‘-’ indicates that boundary evaluation
failed on that object.

Number Number of Maximum % of Time % of Total % of Total
Example of Curve- Univariate Bits of Total in Curve- Time in Time in
Number Curve Roots Precision Time Curve Resultant Sturm

a 425 1831 42 10.23 68.0 54.3 5.0
b 637 1106 59 12.57 54.2 46.8 1.9
c 1003 3834 57 633.42 98.2 3.6 94.3
d 4444 13511 75 132.48 74.9 64.6 3.7
e 320 6311 41 250.74 95.1 15.6 76.0
f 315 2259 45 26.37 81.6 71.1 4.9
g 974 5227 65 63.15 81.7 63.6 13.2
h 1162 7116 66 213.72 92.5 35.8 54.7
i 1266 8191 87 58.92 69.1 57.4 5.3
j 1799 5334 69 54.78 64.2 55.0 3.8

Table 3: Timing breakdown under ESOLID, without PRECISE, for the examples in figure 5. The number of curve-curve intersections is given.
The number of algebraic numbers found as roots of univariate polynomials is shown, along with the maximum number of bits of precision
used to represent these algebraic numbers. The total time is shown, along with the percentage of time spent in curve-curve intersection, the
major component of the boundary evaluation algorithm. The percentage of total time spent in the two major components of curve-curve
intersection, resultant computations and Sturm computations (generation and evaluation of Sturm sequences), is also shown.
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Figure 4: The result of Boolean operations on pairs of primitives in
ESOLID. Details of the various operations are given in table 1.
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Figure 5: Example parts from the Bradley Fighting Vehicle model.
Details of the models and timings are given in tables 2 and 3.



Depth of Precision Total Sturm Resultant
Penetration Required Time Time Time

(10 � x) (bits) (s) (s) (s)
3 20 8.64 2.19 4.17
6 20 12.45 4.14 5.61
9 25 17.25 7.23 7.47

12 30 22.98 11.13 9.15
15 40 33.21 17.07 11.88
18 52 47.46 24.66 14.46
21 58 60.15 32.64 18.15
24 62 86.76 47.64 22.80
27 68 147.66 99.75 26.37
30 71 120.36 74.79 29.64
33 77 164.01 108.03 34.41
36 117 205.17 143.40 38.34
39 88 446.28 357.63 46.89
42 141 317.55 237.15 49.11
45 96 385.80 296.19 55.80

Table 4: Timing results for example j from Figure 4. The depth of
penetration of the two cylinders is given in the first column. Follow-
ing that is the maximum precision required in the boundary evalua-
tion algorithm to represent the algebraic numbers exactly. n bits of
precision required means that algebraic numbers were determined
to an interval of width no smaller than 2 � n. The total time to per-
form boundary evaluation is listed, followed by the time spent in
Sturm computations (both generation and evaluation of Sturm se-
quences), and in resultant computations.

6.3 Importance of Precision

Consider example j in figure 4. Two cylinders barely interpene-
trate. Table 4 gives performance data for this case at varying levels
of interpenetration. As can be seen there, depending on the depth
of penetration, high levels of accuracy may be required in order
to achieve guaranteed correctness. For some of these cases, it is
impossible for standard floating-point data to provide the appropri-
ate level of precision, since IEEE double-precision arithmetic can
provide at most 53 bits of precision, under the most ideal circum-
stances. While it is unlikely that any real-world example would be
arranged like this, this case illustrates that ESOLID can correctly
operate at these high levels of accuracy.

Figure 6 shows two real-world examples where a fixed precision
arithmetic based modeler can have problems. Example 6(a) shows
one Boolean operation from the Crew Member 3 example (5(f)). A
difference operation is performed, resulting in the solid shown in
figure 6(b). BOOLE’s failure in this case is reported as a “curves
did not close” error, indicating a significant problem with the in-
tersection curve computation. Although there are many possible
reasons this could occur, it is clear that the two solids meet nearly
tangentially. Near-tangential intersections are highly prone to nu-
merical error, since a slight modification in either solid can have a
major impact on the intersection curves between them. It can be
surmised that such a problem led to BOOLE’s failure.

A more direct example is shown in figure 6(c). This close-up
view of the Relay Mechanism (5(e)) shows two cylinders meet-
ing in a nearly degenerate configuration. The intersection curve,
shown in the domain of one patch in figure 6(d), even appears sin-
gular. In fact, this curve is not singular (it has two separate com-
ponents) and ESOLID correctly resolves the topology of the curve.
BOOLE, however, exits with an error that a singularity has been
found. Clearly the exact computation of ESOLID allows an opera-
tion to be easily performed that would otherwise cause problems.
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Figure 6: Close-up views of Boolean operations where BOOLE
fails.

7 Conclusion

We have presented a description of the ESOLID system for per-
forming exact boundary evaluation of curved solids. ESOLID
has been applied to real-world examples, achieving times that are
within one order of magnitude of the time spent by an inexact sys-
tem on these cases. We have also demonstrated that ESOLID can
accurately evaluate a boundary in cases that are prone to numerical
error in inexact systems. To our knowledge, no other exact system
has achieved such results.

7.1 Implications for Further Development

ESOLID has demonstrated that exact boundary evaluation is pos-
sible with reasonable efficiency for low-degree curved solids. ES-
OLID was designed both as a proof-of-concept and as a system to
allow various speedups and algorithms to be compared. We hope
that showing that such an implementation is possible will spark fur-
ther work in exact computation with curved solids, and that knowl-
edge gained from the implementation of ESOLID can be transferred
to aid future systems. Although exact computation may still be too
slow for many applications, it is reasonable to expect that with fur-
ther research and development, the efficiency of exact computations
can far exceed the level presented here.

7.2 Lessons Learned

Implementation of ESOLID was a considerable amount of work,
and several lessons were learned in the process. Among these were
the following:

� Designing Algorithms for Exact Computation: Substitut-
ing exact algorithms for inexact ones is likely to be far too
inefficient for practical application. For example, point equal-
ity is very efficient in floating-point, but may be extremely
slow in exact computation. In order to build an (efficient)
exact system, exactness must be considered at all levels of
algorithm design.



� Layering Speedups: As mentioned in section 5, a wide vari-
ety of layered speedups must be used in order to achieve the
overall efficiency desired.

� Testing: Although exact computation is meant to eliminate
numerical errors, exact computations are just as prone (if not
more so) to programming errors as inexact ones. Since each
exact routine is assumed to be reliable and no tolerances will
be used at later stages, thorough testing for accuracy is impor-
tant.

� Space Requirements: Exact computations and representa-
tions tend to use tremendous amounts of memory. Although
not a focus of the work on ESOLID, the importance of mem-
ory management became very apparent at later stages of de-
velopment.

� Redundant Information: In a non-exact system, redundant
topological or geometric information is a potential source for
serious robustness problems. One source of computation (us-
ing or modifying one set of data) can cause inconsistencies
which eventually yield serious robustness problems. For ex-
ample, storing both vertex positions and plane equations for
polyhedra can yield inconsistencies (since the vertex might
not lie exactly on the plane of an adjacent face). Avoid-
ing redundant information often requires careful construc-
tion of operators, and may result in non-optimal code (e.g.
vertices specified only implicitly as the intersection of three
planes). With exact computation, however, no inconsistencies
will arise, so it is not necessary to constantly ensure that only
a consistent set of data is used. This leads to easier program-
ming and allows operations to be specified more efficiently.

7.3 Future Work

There are several avenues open for future work extending from ES-
OLID. Among these are:

� Higher-degree Surfaces: Although ESOLID does not limit
the degrees of input surfaces, higher-degree surfaces are still
far too slow (more than a 1–2 orders of magnitude difference).
While low-degree solids are sufficient to handle the standard
CSG primitives, handling higher-degree surfaces would cer-
tainly be useful.

� Degeneracies: ESOLID is restricted in that it assumes that
input will not be degenerate, preventing ESOLID from be-
ing considered fully robust. Degeneracies are a part of many
real-world examples, and it would be useful to address them
directly. Exact computation is an important prerequisite to
truly handling degeneracies, however, so ESOLID can serve
as a base for exploring new approaches to degeneracies.

� Speedups: Besides those listed, numerous other speedup
techniques may be applied.

� Memory Issues: Besides time-efficiency, memory-efficient
exact computations are a worthwhile subject for further study.

� Extended I/O and Integration: The current input and output
capabilities of ESOLID, while useful for research purposes,
could be expanded significantly.
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