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MaterialCloning: Acquiring Elasticity Parameters
from Images for Medical Applications

Shan Yang and Ming C. Lin, Fellow, IEEE

Abstract—We present a practical approach for automatically estimating the material properties of soft bodies from two sets of images,
taken before and after deformation. We reconstruct 3D geometry from the given sets of multiple-view images; we use a coupled
simulation-optimization-identification framework to deform one soft body at its original, non-deformed state to match the deformed
geometry of the same object in its deformed state. For shape correspondence, we use a distance-based error metric to compare the
estimated deformation fields against the actual deformation field from the reconstructed geometry. The optimal set of material
parameters is thereby determined by minimizing the error metric function. This method can simultaneously recover the elasticity
parameters of multiple types of soft bodies using Finite Element Method-based simulation (of either linear or nonlinear materials
undergoing large deformation) and particle-swarm optimization methods. We demonstrate this approach on real-time interaction with
virtual organs in patient-specific surgical simulation, using parameters acquired from low-resolution medical images. We also highlight
the results on physics-based animation of virtual objects using sketches from an artist’s conception.
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1 INTRODUCTION

PHYSICALLY-BASED animation, unlike traditional
keyframing, can automatically generate realistic motion

and deformation without tedious and time-consuming low-
level control [1], [2] and offers greater flexibility, allowing
for quick prototyping of different designs of complex
artifacts. But in physically-based animation, simulation
parameters (such as material properties) often require many
iterations of manual adjustment and re-assessment of the
visual results. This iterative process is both unintuitive and
costly. Automatic parameter identification from real-world
data, such as simulation results, images, audio, video, and
animators’ sketches, is thus becoming a topic of increasing
interest in computer animation [3], [4], [5], [6], [7], [8].

For example, the use of material-property estimation in
the simulation of cloth has been suggested in [5], [6], [9]; it
has also been used in procedures for designing and fabricat-
ing materials that produce a certain deformation behavior
[4]. These parameter estimation methods focus on materials
that can be put into a specialized video capturing system
to measure displacements, and (in the case of elasticity
parameters) often require a force measuring device [10], [11].

Beyond computer graphics, parameter estimation is also
an area of interest in medical applications such as non-
invasive cancer detection, since human tissues are gener-
ally difficult to measure and it is sometimes impossible to
acquire the actual parameters of a live patient. Currently,
2D Elastography [12], [13], [14] is used to estimate the elas-
ticity value of each pixel in medical images; most existing
methods are based on a dense displacement field estab-
lished by pixel-wise correspondence between pre- and post-
compression images. However, in some imaging modalities,
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it is difficult to find a reliable dense displacement field, and
some organs, such as prostate, are located so deep within
the body that direct force measurements (such as 3D elas-
tography) are practically impossible to use. Furthermore,
the majority of the measurements taken in a laboratory are
performed on organs ex vivo, but bodies’ tissue properties
can change from in situ to ex vivo. Therefore, obtaining
patient-specific tissue elasticity parameters remains a prac-
tical challenge.

In computer animation, artists and animators often
sketch out keyframes of conceptualized motion and body
deformation. These drawings are mental images of ani-
mated virtual models that do not exist, so it is impossible
to measure the elasticity parameters of these virtual objects
to reproduce the artist’s desired deformation. An efficient
method for inferring these parameters directly from artist’s
sketches (which can be treated as images) can help auto-
mate the selection of elasticity parameters for physically-
based animation of deformable bodies based on given hand
drawings of keyframes.

In this paper, we introduce the “MaterialCloning” frame-
work, which acquires elasticity parameters directly from
images. We assume that (at least) two sets of multiple-view
images for the same object are available to reconstruct the
original geometry before and after deformation using state-
of-art 3D geometry reconstruction [15], [16], [17], [18]. A 3D
finite-element mesh is then constructed for each geometric
representation of the deformable model using FEM mesh
generation systems, such as TetGen [19]. We further assume,
in order to set the boundary condition in the Finite Element
Method (FEM) simulation, that the material parameters for
the surrounding media are known (the standard default val-
ues); these parameters are used to compute the contact force
between the deformable body of interest and the surround-
ing media in solving the governing equation. Our algorithm
then minimizes an (error) objective function based on the
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Hausdorff distance between the deformed mesh and the
reference (target) surface mesh using a coupled simulation-
optimization-identification framework, with a set of initial
(default) elasticity values and boundary forces as the in-
put parameters to the iterative optimizer. The optimization
process is the critical part of our framework. We carefully
design the error metric and choose the optimization method
for different applications. When we have only two sets of
images as input, we choose the Hausdorff distance between
the deformed and the reference surfaces as our error metric.
We choose the optimization method based on accuracy and
convergence rate. In applications where the dimensionality
of the boundary forces is very high, the optimizer can
become slow to converge and is more likely get stuck in
a local minimum. In these cases, we apply the Particle
Swarm Optimization (PSO) method, which is agnostic and
less prone to local-minima entrapment problems. Note that
the elasticity parameter recovered using this framework is
a relative value to the assumed material parameters of the
surrounding media. This parameter value is very useful,
especially for the target medical applications demonstrated
in this paper.

The rest of this paper is structured as follows. We first re-
view related work in Section 2. Section 3 gives an overview
of the optimization framework and of the steps in our ap-
proach. We demonstrate the effectiveness of our algorithm
by highlighting experimental results in shape deformation
and 3D elastography in Section 4 , where we also analyze
the accuracy of the recovered elasticity values. We conclude
with a summary and discussion of future work.

2 RELATED WORK

Physically-based deformable body simulation has been ex-
tensively studied in computer graphics for decades [1], [2],
[20], [21], [22]. Here we briefly discuss prior work on the
estimation of material parameters. Parameter estimation has
received increasing attention in computer graphics for its
uses in rendering, modeling, and simulating different mate-
rials. Pai et al. integrated a force measurement device with
a trinocular stereo system to model the material properties
of deformable objects by estimating the linear relationship
between displacements and tractions using a least-squares
formulation [10]. Other methods have combined a force
sensor with a trinocular stereo vision system to measure
the forces applied and the displacements of the vertices
on the deformable surface; these measurements are then
used to determine the nonlinear heterogeneous material
properties [11]. Syllebranque et al. [23] used a force-capture
device to measure boundary forces and estimate the me-
chanical properties of deformable solids. By using video-
based metrics to optimize for Poisson’s ratio and for the er-
rors in computed boundary forces, their method optimized
the value of Young’s modulus.

Other models have focused on physically-based simula-
tion of cloth, especially on determining the cloth model’s
stiffness and damping coefficients. [9] estimated cloth simu-
lation parameters by comparing video of real fabric patches
with simulated images; they used the orientation of each
edge pixel to compute the error metric, and used the
continuous simulated annealing method [24] to minimize

estimation error. Becker and Teschner presented a novel
framework based on quadratic programming to determine
linear elastic parameters; they also assessed the effects of
noisy measurements [25]. Most recently, improved data-
driven methods have been proposed to estimate cloth pa-
rameters [5], [6], [7], which can photorealistically recreate
the look of real fabric. While all these methods depend on
rendering and/or vision algorithms that use known mea-
surements and forces, our technique adopts a parallelizable
Particle Swarm Optimization (PSO) method that ‘explores’
and ‘exploits’ multiple solution candidates simultaneously.
It is also more robust in its handling of sensor noise and
can, as previously mentioned, minimize the local-minima
entrapment problem.

Estimation of material parameters for human tissues is
also well-studied in medical image analysis, where it is used
in screening and detecting tumors, as cancerous tissues tend
to be stiffer than healthy tissues. A non-invasive method,
2D elastography (also known as elasticity reconstruction),
can acquire ‘strain images’ or ‘elasticity images’ of soft
tissues [26]. Elastography is usually done by estimating
the optimal deformation field that relates two ultrasound
images, one taken at the rest state and the other taken when
a known force is applied to the skin [12], [27]. Alternatively,
the displacement field can be found with a modified MRI
machine that is in tune with a mechanical vibration of
tissues [28], [29]. Assuming that the physical model is linear,
once the deformation field and external forces are known,
the material properties can be computed by simply solving
a least-squares problem [13] or by performing an iterative
optimization to minimize the error in the deformation field
[14], [30], [31]. Although these iterative methods are slower
than directly solving the inverse problem, iterative methods
are suitable for any physical model, since they do not require
linearity of the underlying tissue model. [32] present an
alternative 2D elastography for extracting tissue parameters.
3D elastography usually requires force measurements, but
it is not always possible to obtain these measurements for
deeply-seated organs, such as the prostate. Therefore, our
use of medical images to automatically estimate the tissue
elasticity parameters offers a practical approach for devel-
oping surgical simulators with patient-specific parameters.

3 METHOD

Given (at least) two sets of multi-view images of a de-
formable object, our framework can automatically estimate
elasticity properties within multiple regions of this model.

Fig. 1 provides an overview of our system. We assume
that (at least) two sets of multiple-view images are given,
along with some initial guess at the elasticity parameters.
First, we offer an overview of how our method uses the
input images to produce the geometrical reconstructions
that are then used in the elasticity-parameter reconstruction.
Next, we describe each component of our system in more
detail.

3.1 Geometry Reconstruction and Mesh Generation

There are many approaches to reconstructing 3D geometry
from multiple images; the method chosen depends upon
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Fig. 1: The Flow Chart of Our Framework. Our framework takes (at least) two sets of images (medical images or other
multi-view images) as input; we use these images to reconstruct 3D meshes. The initial guess at the elasticity parameter is
based on standard values and is given prior to the start of the optimization process. For each optimization iteration, the
body deformation is recomputed using FEM simulation. The value of the distance objective function is also re-evaluated.
At the end of each iteration, the elasticity parameter is updated; the new, refined value is used by the finite element model
to continue the simulated-based optimization process.

the image sources. We briefly summarize below how the 3D
geometry of input objects can be constructed using various
image sources.

Medical Images are usually taken when the organs are
in a static or quasi-static state. There are several widely-used
imaging technologies, such as X-ray radiography, magnetic
resonance imaging (MRI), medical ultrasonography or ultra-
sound, elastography, tactile imaging, thermography, nuclear
medicine functional imaging, computed tomography (CT)
scanning or computerized axial tomography (CAT), etc.
Each set of CT or CAT scans provides image “slices”, or
the cross-sectional images of anatomy. Variants of MRI and
ultrasound images can be used to reconstruct anatomical
3D geometry using public-domain libraries such as ITK-
SNAP [16] or commercial systems such as AVS, 3D-Doctor,
MxAnatomy, etc.

2D Drawings and Sketches can be converted to 3D
models using widely available commercial CAD and 3D
modeling systems, such as Rhino, Autodesk LABS, Dassault
Systems SolidWorks, etc.

Multi-view Images from Cameras/Camcorder and other
imaging technologies have been used for 3D geometry
reconstruction. Excellent surveys of methods of extracting
3D models from images can be found in [15], [16], [17], [18].
These methods include algorithms using images for which
camera parameters are unknown, uncalibrated structure-
from-motion methods, metric reconstruction from images
with additional knowledge about images, etc.

FEM Mesh Generation is accomplished by first building
the input surface meshes as described above. If medical
images (e.g. CT, MRI, etc.) are used as input they require an
additional step before mesh generation: segmenting using
ITK-SNAP [16] into multiple regions. After mesh simplifi-
cation and smoothing, the entire region of interest can be
tetrahedralized using TetGen [19].

3.2 Quasi-Static Process Elasticity Parameter Estima-
tion

Our approach consists of two alternating phases: the for-
ward simulation and the inverse optimization process.

3.2.1 Forward Simulation

This step uses the elasticity parameters generated from the
inverse optimization process to compute the amount of
deformation that the body would undergo. We use the FEM
to solve the following governing equation of the deformable
body.∫

Ω

δuT ρü dΩ+

∫
Ω

δ(ε)Tσ dΩ−
∫

Ω

δuTb dΩ−
∫

Γ

δuT t dΓ = 0,

(1)
with u as the displacement field, ε as the strain tensor, σ as
the stress tensor, b as the body force and t as the tractions
on the boundary Γ of the deformable body Ω. For the quasi-
static deformation process the ü = 0. We can rewrite Eqn. 1
as[ ∫

Ω

δ(ε)Tσ dΩ−
∫

Ω

δuTb dΩ

]
−
[ ∫

Γ

δuT t dΓ

]
= 0, (2)

with the first part of the equation as the internal body force
and the second part as the external force. The computation
of the stress force is determined by the material properties.
Researchers have proposed many models for simulating
different kinds of materials. These material models define
the relation between the stress and the strain. To simulate
the human organs in the abdomen and the soft tissue
surrounding those organs, we use the isotropic hyperelastic
material model, which is used commonly to approximate
the deformation behavior of human tissue [33]. The stress-
strain relation for the hyperelastic material model is defined
through the strain energy density function Ψ (energy per
unit undeformed volume). We will be using the Green-
Lagrange strain tensor E with the second Piola-Kirchhoff
stress tensor σPK2 [34]. The boundary conditions we apply
are the tractions t applied on the boundary Γ. Our forward
simulation framework uses an invertible FEM [35] to ensure
that the deformed elements have positive volumes in the
coupled simulation-optimization process.

3.2.2 Material Model

The elastic behavior of deformable bodies varies for differ-
ent materials. For small deformations, most elastic materials
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(e.g. springs) exhibit linear elasticity, which can be described
as a linear function between stress and strain.

Linear Elasticity Material Model: The linearly elastic
model assumes a constant variation of stress and strain
according to Hooke’s law, with no permanent deformations
after the applied stresses are removed. This holds true until
the yield point, which is followed by an unrestricted plastic
strain after yield. Assuming isotropic linear elasticity, we
can write

σ = Dε, (3)

where σ is the stress tensor induced by the surface forces, ε
is the strain tensor defined by the spatial derivatives of the
displacement u, and D is a matrix defined by the material
property parameters µ (D = D(µ)). Assuming an isotropic
material, the commonly used material property parameters
are Young’s modulus E and Poisson’s ratio ν.

Isotropic Nonlinear Hyperelastic Material Model: For
many materials, linear elastic models cannot accurately
capture the observed material behavior. Hyperelastic mate-
rial models better describe the nonlinear material behavior
exhibited when deformable bodies are subjected to large
strains. For example, animal tissue and some common
organic materials are known to be hyperelastic [33]. The
nonlinearity is captured through the energy density function
Ψ for hyperelastic material models. The energy function is a
function of the strain tensor ε and the material property pa-
rameters µ, where Ψ = Ψ(ε,µ). With the energy function,
the stress tensor is computed by taking the derivative of the
energy function over the strain tensor.

σ =
∂Ψ(ε,µ)

∂ε
(4)

The energy function takes different forms for different mod-
els of hyperelastic materials.

Energy Function: The energy density function deter-
mines the nonlinear behavior of the deformable object.
Human organs are hyperelastic and nearly isotropic. Gen-
erally speaking, for an isotropic material model, the energy
function is expressed as a function of the invariants I1, I2

and I3 of the deformation gradient F,

I1 = λ2
1 + λ2

2 + λ2
3

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3

I3 = λ2
1λ

2
2λ

2
3

(5)

and the deformation gradient F is a function of the strain
F = F(ε). One general energy function for this class of
incompressible materials, proposed by Rivlin [36], is

ΨR =

∞∑
i,j=0

Cij(I1 − 3)i(I2 − 3)j , (6)

where Cij are the material parameters. To account for
volume changes, compressible forms of this class of material
are proposed by adding the third invariant to the above
Rivlin expression.

Ψ = ΨR + Ψ(J), (7)

where J is the volume ratio J =
√

I3. We refer interested
readers to the brief tutorial, provided as a supplementary
document, for more detail.

Mooney-Rivlin material model is widely known for its
accuracy in modeling this property; we use this model in
our implementation because of its popularity and wide
adoption in both medical and engineering applications. In
this paper, we use this form of the energy function of
Mooney-Rivlin material model [37], [38]:

Ψ =
1

2
µ1((I2

1−I2)/I
2
3
3 −6)+µ2(I1/I

1
3
3 −3)+v1(I

1
2
3 −1)2, (8)

where µ1, µ2 and v1 are the material parameters. The
first two elasticity parameters, µ1 and µ2, are related to
the distortional response (i.e., together they describe the
response of the material when subject to shear stress, uni-
axial stress, and equibiaxial stress), while the last parameter,
v1, is related to volumetric response (i.e., it describes the
material response to bulk stress). I1, I2 and I3 are the three
invariants.

Incompressibility: In our simulation, we model ab-
dominal organs as incompressible material [39]. There are
several options for achieving incompressibility: One can add
constraints to the governing equation to ensure that the
determinant of the jacobian J of the deformation gradient F
is equal to one. Alternatively, one can use the third material
parameter (v1 in Eqn. 8) to approximate incompressibility.
To achieve incompressibility, we choose a fairly large v1;
this means v1 will not be optimized. In order to accurately
describe the material, we reconstruct both µ1 and µ2.

3.2.3 The Boundary Condition
The boundary condition is critical in solving Eqn. 2. The
boundary condition can be either the displacement field or
the tractions on the boundary. Our target applications for
this work include both medical applications and sketch-
driven animation; for medical applications, we use the
contact force between the organ and the surrounding tissue
as the boundary condition. To compute the contact force we
make two assumptions:

1) We simulate the surrounding tissue using a linear
material model.

2) We know the (default) elasticity parameters for the
surrounding tissue.

During the model reconstruction step, we include the sur-
rounding soft tissue of the prostate, as well as the bones
of the male pelvis area (as shown in Fig. 2). We simulate
the surrounding tissue using a linear material model. This
assumption is valid because the volume of the surrounding
tissue is far larger than that of the target organ, so the
amount of strain ∂us

∂Xs
can be considered a small strain. The

displacement of the surface of the surrounding tissue will
populate the displacement field us. For the second assump-
tion, we set the elasticity parameters of the surrounding
tissue to a default value. Then the elasticity parameters of
the target organ become relative values with respect to the
surrounding tissue. The second assumption is necessary for
several reasons:

1) It is almost impossible to assess the elasticity prop-
erties of the tissue surrounding the target organ in
vivo;

2) without the boundary condition we cannot accu-
rately solve the governing equation, Eqn. 2; and
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3) the relative material properties of the target organ
have already proven to be useful for cancer detec-
tion [40].

Given the displacement field us of the surrounding tissue,
we compute the contact force using the following equation:

Kus = f , (9)

where K is the stiffness matrix of the surrounding tissue
(whose elasticity parameters are known), and f is the re-
sulting contact force. The FEM domain for the computation
consists of elements belonging only to the surrounding
tissue. An example of the reconstructed contact force is
shown in Fig. 3.

Fig. 2: The CT Image of Male Pelvic Area. The red dotted
lines are the boundary of our model reconstruction.

Fig. 3: Reconstructed Contact Force of One Patient’s
Prostate. The light colored transparent surface is the refer-
ence mesh; the nontransparent surface is the initial surface.

3.2.4 Distance-Based Objective Function
Since our simulation framework requires only two three-
dimensional surface models of organs, our error metric is
constructed using the Hausdorff distance dH between the
deformed organ surface Sl and the target reference organ
surface St. The deformed organ surface is the output of the
forward simulation. The one-sided Hausdorff distance of
two sets of points A and B is defined as

dH(A,B) = max
a∈A

min
b∈B

d(a, b), (10)

where set A represents points vl of the deformed organ
surface Sl and set B represents the points on the target
reference organ surface St.

Given this definition of the one-sided Hausdorff dis-
tance, our surface distance metric is given as

Φ(µ) =
∑
vl∈Sl

‖dH(vl,St)‖2. (11)

The above Eqn. 11 will be the objective function for this
optimization problem. The optimization problem is thus

µ = argmin
µ

∑
vl∈Sl

‖dH(vl,St)‖2, (12)

where µ is the material parameter vector. The µ that
minimizes the objective function is the optimized elasticity
parameter vector.

3.2.5 Multi-Region Elasticity Parameter Estimation
Multi-region elasticity parameter reconstruction is much
more complicated than single-body reconstruction. We con-
sider two options for multi-region parameter reconstruction:
1) Alternate the parameter reconstruction process between
the regions, or 2) simultaneously reconstruct the elasticity
parameters for all regions. We adopt the second method
in this paper, since our early experiments showed simulta-
neous reconstruction method to have a better convergence
rate than the alternating method. Questions still remain
regarding several elements of the process: 1) How to define
the regions; 2) how to simulate the regions; and 3) how to
define the objective function.

In the case of prostate, we define the regions under the
guidance of physicians; in general, this step can be left to
the users with knowledge in the target applications. In our
examples, the prostate is naturally divided into two parts
by the prostatic urethra, as shown in Fig. 4. Our multi-
region elasticity parameter estimation is aimed at deter-
mining which part of the organ of interest is stiffer and
therefore more likely to have cancers. This work will assist
in diagnosing cancer and in performing simulation-guided
biopsy and other surgical procedures.

Fig. 4: The Prostatic Urethra. The prostatic urethra naturally
divides the prostate into two parts. c©Wikipedia [41]

We choose to simulate the regions of the deformable
body as one deformable body. We do this because we
need to maintain the continuity of the surface of the target
organ. Multi-region elasticity parameter reconstruction re-
quires some modifications to the objective function defined
in Eqn. 11. In this type of multi-region reconstruction, we
use the following objective function:

Φ(µ) =

M∑
m=1

∑
vl∈Sm,l

‖dH(vl,Sm,t)‖2, (13)

with M as the total number of regions, Sm,l as the
deformed surface of the mth region, and Sm,t as the surface
of the reference mth region. The definition of Sm,l is critical
for the convergence of the reconstruction.

We exclude the nodes that are shared by other regions
(as shown in Fig. 5 and Fig. 6). When the nodes shared by
the regions are included in the objective function given in
Eqn. 13, the distance dH(vl,Sm,t) may lead to optimization
in the wrong direction; the decrease in the distance that is
computed from these nodes’ displacement fails to show that
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the optimizer is converging to the ground truth. In fact,
it is possible for the distance between the nodes and the
reference surface to decrease while the optimizer is diverging
from the ground truth when nodes shared between regions
are used in the computation. We address this issue by in-
cluding only the original vertices on the surface of the object,
not those on the shared boundary of two regions, as the vl in
Eqn. 13. With this approach, our experiments indicate that
the multi-region parameter estimation can converge to the
right parameters for each region simultaneously.

Region'1' Region'2'

Fig. 5: The 2D Illustration of the Nodes Shared by Two
Regions. These nodes do not contribute to the convergence
of the optimization.

Fig. 6: The 3D Illustration of the Nodes of Regions. The
figure on the left shows nodes shared by the two regions;
the figure on the right shows the nodes not shared by the
two regions.

3.2.6 The Inverse Step
This step estimates the recovered elasticity parameters of
the target organ (or tissue). It determines the accuracy of the
estimated parameter by measuring the Hausdorff distance
between the (model) surface of the reference organ and that
of the deformed organ, using the displacement computed
by the forward simulation.
Particle Swarm Optimization: A critical part in the in-
verse step is the optimization process. After experimenting
with several techniques, we have adopted a variant of the
Particle Swarm Optimization (PSO) method [42], [43], [44],
a population-based stochastic optimization method. This
variant of the PSO method has the following advantages:

1) It can cope with a noisy objective function that has
many local minima;

2) it does not need to compute the gradient of the
objective function; and

3) it is easy to parallelize the state updates of each
particle.

Each particle in the PSO method corresponds to a state
in the optimization process, and each particle possesses five
attributes: the position, the velocity, the fitness value, the
previous best position of itself, and the previous best posi-
tion of the entire particle swarm. We use the subscript i to
index the particle in the swarm, pi to represent the previous
best position of the ith particle, and pg,i to represent the

previous best position of its neighbors. Superscript t denotes
the current iteration.

Position will be a vector of N dimension represented as
µti, and vti is the velocity of the ith particle in the current
iteration; yti (scalar value) represents the fitness value of
the ith particle in the current iteration. The swarm size is
M , which usually ranges from 10 to 100. The dimension
N of the particle position and velocity is the same as the
dimensionality of the optimization problem space. The five
attributes of the ith particle at the tth optimization iteration
can then be defined as:

1) The position µti = (µt1,i, . . . , µ
t
n,i, . . . , µ

t
N,i), with

µti ∈ H, 1 ≤ n ≤ N , 1 ≤ i ≤M
2) The velocity vti = (vt1,i, . . . , v

t
n,i, . . . , v

t
N,i), with

vmin ≤ ‖vti‖ ≤ vmax, 1 ≤ n ≤ N , 1 ≤ i ≤M
3) The fitness value yti = Φ(µti), with Φ() as the fitness

function or the objective function of the optimiza-
tion problem

4) The previous best position of itself pti =
(pt1,i, . . . , p

t
n,i, . . . , p

t
N,i), with pti ∈ H, 1 ≤ n ≤ N ,

1 ≤ i ≤M
5) The previous best position of its neighbors

ptg,i = (ptg,1,i, . . . , p
t
g,n,i, . . . , p

t
g,N,i), with ptg,i ∈ H,

1 ≤ n ≤ N , 1 ≤ i ≤M
The position is a point in the Euclidean search space H
of the optimization problem. In our problem, the search
space is the range of all possible elasticity parameters. The
number of parameters we are recovering is the dimension
of the search space of the optimization. In other words, the
positions of the particles are a set of the parameters we
want to estimate. The fitness value is computed from the
fitness function Φ, which is the objective function of the
optimization problem (Eqn. 11). The velocity represents the
search direction. The previous best position of the particle
itself is the best set of parameters this particle has found
so far. And the previous best position of its neighbors is
the best set of parameters the neighbors of particles has
found. The current position, the current velocity, the fitness
value, the previous best position itself, and the previous best
position of the swarm will be used to compute the velocity
or the search direction.

Instead of optimizing one estimated solution at a time,
a number of the particles are used together to collectively
search for the best solution to the optimization problem (i.e.,
multiple coordinated searches going on simultaneously).
Intuitively, the “particle swarm” will not only accelerate
the search for the best solution, but will also increase the
probability of finding the globally optimal solution.

The PSO method works by iteratively updating the
particles’ properties. The canonical PSO method uses the
following two equations to update particle position and
velocity, with Rand() as a random value generator.

v
(t+1)
i = vti +Rand()(pti − µti) +Rand()(ptg,i − µti) (14)

µ
(t+1)
i = µti + vt+1

i ∆t, (15)

with ∆t = 1. The particle’s position update (Eqn. 14,
Eqn. 15) can be computed since it is determined by sev-
eral factors: the current position µti; the persistence in the
previous direction (first part of Eqn. 14); the influence of the
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previous best position of itself (second part of Eqn. 14); and
the influence from its neighbors (third part of Eqn. 14). Two
questions remain:

1) How to define the neighbors (how to compute ptg,i),
and

2) how to weigh the particle’s persistence in its previ-
ous direction and the influence from its neighbors
(i.e., how to refine Eqn. 14).

The design of appropriate PSO variants mainly focuses on
these two issues.

Population Structure: The population structure of the
swarm affects the convergence rate, as the structure deter-
mines how fast information propagates inside the swarm.
If each particle in the swarm is informed by every other
particle, the influence term in Eqn. 14 will be same for
every particle, meaning that all particles will move in similar
directions. This makes it easy for the swarm to become
entrapped in a local minimum. But if each particle in the
swarm is only informed by one or two other swarm par-
ticles, the influence of other particles will be small. But if
the particles are not informed enough, this slows down the
process of finding the best solution. Therefore, the way that
information is communicated from particle to particle can
be crucial. Various kinds of swarm topology, or population
structures [45], have been studied. The canonical particle
swarm optimization (Eqn. 14, Eqn. 15) uses the global
best solution so far; it connects every particle with every
other particle. After some experiments, we chose instead to
use the adaptive random structure [46]. With this adaptive
scheme, after every unsuccessful iteration, the neighbors of
the particle i changes toK random neighbors. This adaptive
random structure keeps the particles informed about differ-
ent neighbors at every iteration. The value of K depends
on the swarm size M and the properties of the objective
function. For our problem, we chose K = 3 and M = 40
based on our experiments.

Velocity: The canonical way of updating velocity (di-
mension by dimension) is known to be biased [47]. There-
fore, we adapted the method of computing the velocity or
the search direction from [46]. For each iteration, we update
the velocity of the ith particles by

v
(t+1)
i = C(vti ,p

t
i − µti,ptg,i − µti). (16)

The function C , denoting the velocity of the next iteration, is
dependent on three terms: (a) the current velocity vti , (b) the
difference between the current position µti and the current
best position of itself pti, and (c) the difference between the
current position µti and the best position of its neighbors pg,i.
The best positions are the ones that result in best fitness
value. For each iteration, the fitness value of each particle is
evaluated to find the best position.

D being the dimension of the search space, which is
denoted by a hypersphere Hi(G

t
i, ‖Gt

i − µti‖)), with the
center Gi as the geometric center of the three points. These
three points are: 1) the current position µti; 2) the point near
the previous best position of it self (µti + c(pti − µti)); and
3) the point near the previous best position of the neighbors
(µti + c(ptg,i − µti)).

Gt
i =

µti + (µti + c(pti − µti)) + (µti + c(ptg,i − µti))
3

, (17)

with c as a constant. We use c = 1/2 + ln(2) [44] and we
assume a radius of rmax = ‖Gt

i − µti‖ We then randomly
select a position µ

′t
i within the space bounded by the D-

sphere that has radius r = U(0, rmax).
In addition to their known bias, the canonical velocity

update methods (Eqn. 14) also result in velocity divergence.
This problem was solved in paper [48] by the introduction
of the inertia term ω; We follow [48] by incorporating ω into
our velocity update function to solve the problem of velocity
divergence. Now our velocity update function is defined as

v
(t+1)
i = ωvti + µ

′t
i − µti, (18)

where the ω is a constant. We set ω = 1
2ln(2) [44]. The update

of the position of the ith particle is then computed as

µ
(t+1)
i = ωvti + µ

′t
i . (19)

If the position of the next iteration µt+1
i is outside the

current D-sphere, then the particle is “exploring” the area
(searching in the unknown area); otherwise, it is “exploit-
ing” (searching within the known area). Allowing the par-
ticles to “explore” and “exploit” can effectively avoid the
problem of noise and local minima affecting the results.
The pseudo code for our system work flow is provided in
Algorithm. 1.

3.3 Sensitivity Analysis

In the sensitivity analysis, we aim to identify the uncertain-
ties in the output of the system that come from variation
in the input. The input to our optimization-simulation-
identification framework is the amount of tissue deforma-
tion inferred from two sets of images, while the output is the
estimated elasticity parameters. We wish to identify the rela-
tion between the changes in the input, i.e. the deformation,
and the output, the elasticity parameters. Mathematically,
we take the derivative of the elasticity parameters on both
sides of the objective function (Eqn. 11):

∂Φ(µ)

∂µ
=

∂Φ

∂dH(u)

∂dH(u)

∂u

∂u

∂µ
(20)

Our study therefore focuses on testing the sensitivity of
the deformation with respect to the elasticity parameters of
the Mooney-Rivlin nonlinear material model, given fixed
external forces. Specifically, we study the µ1 and µ2 in
Eqn. 8. Since µ1 and µ2 are related to distortional response,
to simplify the test without losing generality we set µ1

and µ2 to the same value for the simulation of isotropic
homogeneous deformable bodies. We will use µ to represent
both µ1 and µ2 in the following text. To demonstrate the
advantages of the nonlinear material model over the linear
material model for large deformations, we also compare the
results with those produced by linear material model.

We design the model of our test as a simple sphere
embedded in a cube. The entire domain has been tetrahe-
dralized using TetGen [19]. The sliced view of the model
is shown in Fig. 7. Forces are applied on the surface of
the sphere. The sphere will deform to an equilibrium state;
the surface of the cube will be fixed. In this study we will
use relative elasticity parameter instead of absolute values
for two reasons: (a) comparison (in order to produce the
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Algorithm 1 Static Elasticity Parameter Estimation Method

1: procedure FORWARD SIMULATION(u, µk)
2: u + ∆u← f(u,µk) // fem
3: return uk
4: procedure OBJECTIVE FUNCTION EVALUATION(u,µ)
5: u + ∆u← FORWARD SIMULATION(u,µ)
6: y ← Φ(u,u + ∆u,µ) // refer to Eqn.14
7: return y
8: procedure PARTICLE SWARM OPTIMIZATION(u)
9: Step 1: Initialize

10: for all the particles do
11: µ0

i ← randomly selected position from search
space H with uniform distribution

12: v0
i ← randomly selected vector with the length

not larger than the radius of the search space H
13: p0

i ← µ0
i

14: p0
g,i ← µ0

i

15: y0
i ← 0

16: close;
17:
18: Step 2: Iterate
19: while not converged do
20: for all the particles do
21: yti ← OBJECTIVE FUNCTION EVALUATION(u,µti)

// evaluate fitness function
22: Gt

i ←
µt

i+(µt
i+c(p

t
i−µ

t
i))+(µt

i+c(p
t
g,i−µ

t
i))

3 . //
evaluate the center of the D-sphere

23: µ
′t
i ← randomly picked point from the D-

sphere with uniform distribution
24: vt+1

i ← ωvti + µ
′t
i − µti // update velocity

25: µt+1
i ← µti + vt+1

i // update position
26: if yti better than previous best fitness value

then
27: pt+1

i = µti
28: else
29: pt+1

i = pti
30: close;
31: close;
32: for all the particles do
33: Iterate the neighbors update pt+1

g,i ← the best
pt+1
i

34: close;
35: close;
36: return µ
37: procedure MAIN
38: while not converged do
39: PARTICLE SWARM OPTIMIZATION(u)
40: close;
41: close;

same amount of deformation, the value of the elasticity
parameters differ in linear and nonlinear material models),
and (b) consistency (in application, we can usually assume
default values for the elasticity parameters of the tissue
surrounding the organ of interest).

Our analysis studies two types of material models: in-
compressible linear models and nonlinear models. To test
the incompressibility of the material model, external forces
are applied to only some of the nodes on the sphere sur-
face, deforming it to an ellipsoid; the ratio of the length
of the major axis and the minor axis will be used as the
measurement of the amount of deformation. To ensure that
the resulted system will be in equilibrium, the sum of the
external forces is set to zero. Note that we also fixed the
elasticity parameters of the area between the surface of the
sphere and the cube.

We also study the difference in material behavior be-
tween the linear material model and the nonlinear material
model. To make a fair comparison, we start with the set
of elasticity parameters that will result in the same amount
of deformation when the same amount of external force is
applied to the model. We first set the elasticity parameters
of the sphere and the surrounding area to this same set
of values. Then we change the elasticity parameters of the
sphere and record the deformation of the sphere.

Fig. 7: Sliced View of the Model Used for Sensitivity
Analysis.

To show the result, we plot the relative elasticity parame-
ters against the amount of deformation, which is computed
as the ratio of the ellipsoid major axis and the minor axis for
the incompressible material model in Fig. 8. Fig. 8a shows
that the value of the slope for the nonlinear material curve
is high when the elasticity value is small. The slope of the
curves in Fig. 8a is in fact ∂u∂µ . When the value of ∂u∂µ is high,
large variation or uncertainty in the input does not lead to
large errors in the output. This implies that our optimization
framework is less prone to uncertainties and numerical
errors when the elasticity parameters are small; when the
value of the elasticity parameter is large, the parameter
value can still be recovered but its accuracy may be lower
in comparison to the accuracy of lower parameter values.
For the target medical applications, tumor tissues generally
tend to be much stiffer and to have a much broader range
of parameter values; therefore, comparably lower accuracy
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(a) (b)

Fig. 8: The Sensitivity Analysis Results. (a) shows the relation between amount of deformation represented by the inner
sphere’s radius changes vs. the relative elasticity parameter. (b) shows the relation between the change in deformation per
change in the relative elasticity parameter vs. the relative elasticity parameter.

in this range poses little problem for the screening and
diagnosis of cancer (see Fig. 13), for surgical procedures,
or for haptic rendering.

Furthermore, in both Fig. 8a and Fig. 8b, we observe
that the slope of the blue line is almost always larger than
that of the red line (i.e., the blue line lies above the red
line), as shown in Fig. 8a and in Fig. 8b. These results show
that, compared to the linear material model, the nonlinear
material model is more robust and less prone to error from
variation/uncertainty in the input, and is thus better for
medical applications.

4 RESULTS

We have implemented our algorithms in C/C++ and have
validated the results by 1) using a synthetic dataset with
known elasticity values; 2) determining the correlation be-
tween the elasticity values extracted from the patients’ med-
ical (CT) images and their cancer stages, thereby indirectly
validating the results of our approach on a real-world (live)
patient dataset (we validated indirectly rather than by direct
force measurements because 3D elastography cannot be
performed non-invasively to obtain elasticity values in vivo);
and 3) elasticity parameter estimation based on a sequence
of 2D sketches. We demonstrate the application of our algo-
rithm on two scenarios. The first is a 3D interaction with a
virtual liver for surgical simulation; the second is a physics-
based animation of letters spelling out ‘AROMA’ based
on a user’s conceptualized sketches as keyframes. From
these drawings, we automatically estimate the elasticity
parameters and recreate the desired deformation using the
MaterialCloning algorithm. Please see the supplementary
video for demonstration of these applications.

4.1 Multi-Region Elasticity-Parameter Reconstruction
The experiment is designed to validate our multi-region,
elasticity-parameter reconstruction using synthetic data. In
this experiment we divide the organ of interest into two
regions; one of the regions contains an embedded tumor

with high elasticity parameters (Fig. 9). We validate our
method by recovering the elasticity parameters for the two
different regions; the region with the embedded tumor
should have higher elasticity parameters than the normal
region. According to data from surgical experiments on
human tissues, the two material parameters, µ1 and µ2,
tend to be close [49]. Therefore, the average value of the
two material parameters is used in the following studies.
We test the accuracy and the robustness of our framework
by varying the size of the tumor, as shown in Fig. 9. In

Region''
with'tumor'

Tumor'

Region''
with'normal'1ssue'

Fig. 9: Different Regions of the Organ. left with a tumor
embedded; right with normal tissue.

this experiment we assign the tumor elasticity parameters
a value of 70kPa; the rest of the elements are assigned
30kPa. We expect the recovered elasticity parameter for the
normal tissue region to be close to 30kPa and the recovered
elasticity parameter for the tumor region to correlate with
the tumor size. Results in Table 1 show that the recovered
elasticity parameter of the region with the tumor almost
linearly correlates with the size of the tumor: the linear
correlation coefficient is 0.9659. The relative error for the
normal tissue region is much less than 5%. An example
optimization process for the normal tissue region is shown
in Fig. 10.

We further validate our multi-region elasticity parameter
reconstruction scheme by varying the tumor’s elasticity
parameters while keeping its size fixed. The tumor for this
set of experiments occupies about 64% of the entire region
on the left side of Fig. 9. The recovered value, shown in
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TABLE 1: Multi-Region Elasticity Parameter Reconstruction

As the volume ratio of tumor to the embedded region increases, so does the average stiffness value for the tumor-embedded region.
Tumor-to-Region ratio 0.022 0.14 0.30 0.49 0.65 0.76 0.85
Region with tumor µ̄ (kPa) 30.63 31.54 39.18 43.93 51.23 61.16 71.01
Region with normal tissue µ̄ (kPa) 29.15 28.89 31.22 30.17 31.49 29.31 30.46

Run 0 

µ1(KPa) 1 

µ2(KPa) 

100 

1 

100 

(Ground Truth)!

Run 3 

Search Space!

Run 8 Run 9 

Fig. 10: Particle-Swarm Optimization Process: The blue dots are the particles and the red dot signifies the ground truth.

TABLE 2: Multi-Region Elasticity Parameter Reconstruction

As the the tumor becomes more stiff, the average elasticity value in the tumor region increases as well.
Tumor Elasticity Parameter (kPa) 70 140 210 280 350 420 490
Region 1 with tumor µ̄ (kPa) 51.23 112.92 157.44 186.78 202.22 254.20 272.58
Region 2 with normal tissue µ̄ (kPa) 31.49 28.28 30.04 28.56 27.62 29.61 25.18

Table. 2, has a high linear correlation coefficient of 0.9856.

One possible source of error in our multi-region elasticity
parameter reconstruction scheme comes from variation in
the mesh resolution. It is expected that finer mesh resolution
will produce increased accuracy. To test this assumption,
we re-run the first part of our multi-region experiment on
models with different mesh resolutions. In this experiment,
we vary the size of the tumor in the tumor region (shown in
Fig. 9), then recover the elasticity parameter for the normal
region and the tumor region using models of different
mesh resolutions. In Fig. 11, we plot the relative error of
elasticity parameters recovered from models with different
mesh resolution against the tumor-to-region ratio. For the
normal region, we set the ground truth to be 30kPa. We
found that varying the mesh resolutions from 1,500 nodes
to 200 nodes was responsible for 1 − 5 percent of the error
in the recovered elasticity parameters (shown in Fig. 11). We
also found that the recovered elasticity parameters tend to
converge better (i.e. with less fluctuation) with higher mesh
resolution. As Fig. 12 shows, the blue and the green lines,
which indicate results with finer mesh resolutions, tend
to be closer together; compared this with the red and the
cyan lines, which plot lower mesh resolutions and diverge
significantly. This study further indicates that the robustness
and the convergence of our algorithm, as the resolution of
the FEM meshes increases. Other Sources of Error: We do
not expect the recovered elasticity values to be completely
free of errors, because error can come from multiple sources,
including distance-field computation, accumulation of nu-
merical errors from discretization, parameter dependency,
etc. We focus on two aspects, namely the mesh resolution
(see above) and the sensitivity analysis on parameter de-
pendency (Section 3.3), since the other possible sources of
error are similar because of discretization.

Fig. 11: The Relative Error vs. Tumor-to-Region Ratio. This
figure shows the relative error of elasticity parameters for
the normal region recovered using models with varying
mesh resolutions plotted against the tumor-to-region ratio.

4.2 Correlating Estimated Tissue Parameters with Can-
cer T-Stages
We adopt the experimental protocol from [50], because it
is impractical, if not impossible under existing regulations
for human subject protection, to measure tissue elasticity of
organs for a live patient in vivo. This experiment is designed
to indirectly validate the effectiveness of the proposed tissue
elasticity reconstruction approach in cancer staging. The T-
stage, laid out in Table 3, follow the definitions in the TNM
(Tumor, lymph Nodes, Metastasis) system [51], a common
cancer staging system. We use ten sets of real patient data
in our experimental study. The simulation scene includes
the prostate, its surrounding tissue, and the bones within a
male’s pelvis area. The three-dimensional prostate models
were reconstructed from the patient’s CT images, which
were taken when the patient was in two different states; the
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Fig. 12: The Recovered Elasticity Parameter vs. Tumor-
to-Region Ratio. This figure shows the recovered elasticity
parameter for the tumor region using models with different
mesh resolutions vs. the tumor-to-region ratio.

squished and the undeformed state. For the correlation ex-
periment, we use the same elasticity parameter value for all
the patients’ prostate-surrounding tissue: 20kPa [52]. The
result of our experiment is shown in Fig. 13. We further an-
alyze the statistical significance of this correlation between
the documented T-stages of each patient’s cancer at the time
of the imaging and the estimated elasticity of their prostates;
we use Pearson linear correlation and Spearman correla-
tion to compare the significance of the measured vs. the
estimated values. The Pearson linear correlation coefficient
for the prostate’s material parameters and T-stage is 0.8233,
with a p-value of 0.0034. The Spearman rank correlation
coefficient is 0.8304, with p-value of 0.0029. These statistics
suggest a strong correlation between the prostates’ elasticity
parameters and their T-stages. The p-values computed from
our experiments are one order smaller than that of previous
work [50]; this indicates that our method is much more
accurate.

Stage Definition
TX Primary tumor cannot be assessed
T0 No evidence of primary tumor
T1 Clinically inapparent tumor by palpable

or visible in imaging
T2 Tumor confined within prostate
T3 Tumor extends through the prostate capsule
T4 Tumor is fixed or invades structures

other than seminal vesicles

TABLE 3: T-stages for prostate cancer definition

4.3 Performance Analysis for Quasi-Static Parameter
Estimation
The model we use in our multi-region reconstruction vali-
dation experiment and cancer-stage correlation experiment
consists of (on average) 4,000 tetrahedral elements. We
run our experiment on a desktop with Intel(R) Core(TM)
i7 CPU, 3.20GHz. With the Particle-Swarm Optimization
(PSO) method, the entire parameter reconstruction process
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Fig. 13: Box Plot of Estimated Average Elasticity Param-
eters. The estimated elasticity parameters µ̄ of the prostate
of the ten patients vs. their cancer stages shows positive
correlation.

takes no more than 24 hours on a single core. We gain nearly
linear performance scaling by paralleling the PSO method
using OpenMP, as shown in Figure. 14. The searching step
of the PSO can be easily parallelized because each particle
searches independently for the optimal solution. Paralleliz-
ing the particles’ searches gives better performance. Com-
pared to earlier elasticity parameter reconstruction meth-
ods [50], our reconstruction algorithm can be easily paral-
lelized; it therefore achieves a performance much superior
to other methods on modern parallel architectures (such as
GPUs, many-core processors, etc).

Fig. 14: The Running Time of the Reconstruction Process
vs. the Number of Threads Used. The running time de-
creases almost linearly with the increase of the number of
thread.

4.4 Applications
We demonstrate the application of our MaterialCloning
algorithm on several different scenarios:

• Dynamic simulation of a liver and a prostate, using
extracted stiffness values from CT images of two
different patients, dropped onto a medical dish (see
Fig. 15(a));

• A user poking and interacting with a ‘virtual
prostate’ with patient-specific elasticity parameters
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(a) (b)

Fig. 15: The Virtual Surgery Application. (a) shows the liver, with elasticity parameter reconstructed from patient data,
resting on a plate. (b) is the screenshot of our virtual surgery system, using elasticity parameters for the prostate that were
reconstructed from patient data.

Fig. 16: Animation from 2D Sketches. The three images in
the first row are the 2D Sketches of three keyframes; the
three images in the second row are the simulation result of
the corresponding keyframes.

Fig. 17: Animation from 2D Sketches. The three images in
the first row are the 2D Sketches of three keyframes; the
three images in the second row are the simulation result of
the corresponding keyframes.

that were automatically acquired from 2 sets of
CT images of the patient on different days (see
Fig. 15(b));

• ‘Animated letters’ (see Fig. 16) and ’Animated figure’
(see Fig. 17) are simulated from material parameters
estimated directly from the artist’s sketches, which
serve as the keyframes to an animation sequence.

Our system, combined with dynamic tracking mech-
anism presented in a technical report [53], can be
extended to create animations from time-sequential
sketches.

The visual illustrations of these examples are included in
the supplementary video.

4.5 Comparison with Other Approaches

It is difficult to compare our work to existing methods on
parameter estimation for soft tissues [4], [10], [11], [23], [25],
as our approach does not require force-measuring devices
such as force sensors or trinocular stereo vision systems.
In contrast to earlier methods, our algorithm does not
perform data fitting, but instead uses a coupled simulation-
optimization framework to refine the estimated parameters
until the optimizer converges. Instead of force measure-
ments, we use (at least) two sets of images to reconstruct
3D geometry, then perform FEM simulation on them. The
reconstructed 3D geometry and FEM meshes can introduce
approximation and discretization errors, respectively. Nev-
ertheless, our approach makes it possible to perform non-
invasive parameter estimation directly on images in situa-
tions where 3D elastography is impossible or impractical,
such as on live patients or sourced from hand drawings.

The work closest to ours is that of Lee et. al. [50].
and in comparison to this work, our method shows much
improved accuracy (see Sec. 4.2), as well as adds the ability
to perform simultaneous parameter estimation for multiple
materials. We use the Particle Swarm Optimization (PSO)
method, which is more easily parallelizable than iterative
optimization methods [50] and is less prone to local min-
ima entrapment. However, PSO is computationally more
expensive and would require parallel implementation on
commodity hardware (e.g., GPUs or many cores) to increase
its performance. Furthermore, we demonstrate that our
method can also be used to estimate elasticity parameters
with the artist’s sketches as keyframes to automate physics-
based animation.
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5 CONCLUSION AND FUTURE WORK

In this paper, we presented the MaterialCloning algorithm,
which can automatically acquire multi-region elasticity pa-
rameters directly from two sets of multiple-view images. We
validate its effectiveness using both synthetic datasets and
real-world medical images.

The results of our validation experiments using real-
world data suggest some immediate applications: Can-
cer staging with only low-resolution CT images as input,
computer animation of deformable models from keyframe
sketches, and patient-specific surgical simulation. This
method does not require any external forces to be measured;
only the deformation of the body surface is needed. It can
therefore be used on organs deeply seated in the human or
animal body. Most importantly, this method can reconstruct
elasticity parameters for multiple regions simultaneously.
With this additional analysis, physicians can perform a more
effective, image-guided biopsy, thereby leading to higher
accuracy in cancer detection and diagnosis. We also demon-
strate our algorithm on real-time interaction with virtual
organs in surgical simulators, as well as on physics-based
animation of virtual objects directly from the animator’s
conceptualized drawings.

One possible future direction is to significantly improve
the algorithm’s computational performance using reduced
models, so that it is possible to adopt such a technique for
real-time image-guided biopsy and surgery.
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