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1 BASICS

We will introduce some basic concepts in the continuum
mechanics.

1.1 Stress And Stress Tensor

Stress is always simply Force/Area, but some complexity
does arrise because the relative orientation of the force
vector to the surface normal dictates the type of stress [1].
When the force vector is normal to the surface, as shown in
the Fig. 1, the stress is called normal stress and represented
by σ [1]. When the force vector is parallel to the surface, the

Fig. 1: The figure shows force vector normal to the surface
or parallel to the surface. Copyright Wikipedia [2]

stress is called shear stress and represented by τ [1]. When
the force vector is somewhere in between, then its normal
and parallel components are used as follows [1].

σ =
Fnormal

A
(1)

τ =
Fparallel

A
(2)

• Shan Yang and Ming C. Lin are with the Department of Computer
Science, University of North Carolina, Chapel Hill, NC, 27599-3175.
E-mail: alexyang,lin@cs.unc.edu

Manuscript received November 20, 2014.

Of course, things can get complicated in nonlinear problems
with large deformations (and rotations) because the final
deformed area may be different from the initial area, among
other things [1].

Stress is in fact a tensor [1]. It can be written in any of
several forms as follows [1]. (Cauchy stress tensor shown in
Fig. 2) In 3-D it can be written as,

σ =

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 =

σxx τxy τxz
τyx σyy τyz
τzx τzy σzz


(3)

Fig. 2: The figure shows the components of the cauchy stress
tensor. Copyright Wikipedia [2]

1.2 Strain And Strain Tensor
Strain like stress are been classified in to normal strains,
shear strains (parallel stress). Normal in normal strain does
not mean common, or usual strain [3]. It means a direct
length changing stetch (or compression) of an object result-
ing from a normal stress [3]. It is defined as (the quantities
are shown in Fig. 3),

ε =
∆L

Lo
(4)

This is also known as Engineering Strain [3].
Shear strain is usually represented by γ and defined

as [3],

γ =
D

T
(5)

This is the shear-version of engineering strain [3].
Strain, like stress, is a tensor [3]. And like stress, strain

is a tensor simply because it obeys the standard coordinate
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Fig. 3: The figure shows the stetch from a normal stress and
the resulted normal strain. Copyright Continuum Mechan-
ics [3]

Fig. 4: The figure shows the shear strain definition. Copy-
right Continuum Mechanics [3]

transformation principles of tensors [3]. It can be written in
any of several different forms as follows [3].

ε =

ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 =

 εxx γxy/2 γxz/2
γyx/2 εyy γyz/2
γzx/2 γzy/2 εzz

 (6)

1.3 Deformation Gradient
Displacement and deformations are the essentials of con-
tinuum mechanics. The deformation gradient is used to
separate rigid body translations and rotations from de-
formations, which are the source of stresses [4]. In this
tutorial we won’t be covering rigid body dynamics. As
is the convention in continuum mechanics, the vector X
is used to define the undeformed reference configuration,
and x defines the deformed current configuration [4]. The
deformation gradient F (shown in Fig. 5) is the derivative
of each component of the deformed x vector with respect to
each component of the reference X vector [4], then

Fij = xi,j =
∂xi
∂Xj

=

 ∂x1

∂X1

∂x1

∂X2

∂x1

∂X3
∂x2

∂X1

∂x2

∂X2

∂x2

∂X3
∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

 (7)

The displacement u can be defined as,

u = x−X (8)

Fig. 5: The figure shows the displacement field and the
deformation gradient. Copyright Wikipedia [5]

2 NONLINEAR MATERIAL MODEL

For many materials, linear elastic models cannot accurately
capture the observed material behavior; hyperelastic mate-
rial models that can capture the nonlinear material behavior
subjected to large strain. For example, animal tissue and
some common organic materials are commonly been simu-
lated using hyperelastic material.

Material model describes the behavior of a deformable
body by defining the relation between the displacement
field and the stress. Through the material model, we can
compute the displacement field given the stress or vice
versa. In order to define a nonlinear material model, we
need to define the following,

1) Displacement-Strain Relation
2) Energy-Strain Relation
3) Strain-Stress Relation

2.1 Displacement-Strain Model

The displacement-strain model describes the relation be-
tween the displacement and the strain. In this section we
will introduce the Green-Lagrange strain model. Before we
introduce the strain model, we first set some notations. We
will use small n as the surface normal for the deformed
configuration while the N for that of the reference con-
figuration. The Green-Lagrange strain model is designed
for the measurement of large strain. It is defined through
the right Cauchy strain tensor Cr = FTF, where F is
the deformation gradient. The right Cauchy strain tensor
measures the square of the changes of local deformation.
The Green-Lagrange strain tensor E removes the rigid body
transformation from the right Cauchy strain tensor. It is
defined as

E =
1

2
(Cr − I) (9)

Specifically each element of the strain tensor matrix E

Eij =
1

2
(
∂ui

∂Xj
+
∂uj

∂Xi
+
∂uk

∂Xi

∂uk

∂Xj
) (10)



3

It basically consists two parts, the small strain terms and
the quadratic terms as shown in Eqn. 10. When the strain
is small the quadratic terms can be ignored, and the Green-
Lagrange strain behaves the same as the Engineering strain
model which only contains the first part. But when the strain
is large the quadratic terms record the strain. The quadratic
terms also accounts for the geometric non-linearity of the
strain-displacement relations.

2.2 Energy-Strain Model

The internal energy of an object consists of thermal energy
and elastic strain energy. For hyperelastic material model,
the variation of the thermal energy is neglected. The stress-
strain relation for a nonlinear material model is defined
through the strain energy. The strain energy is the work
done by the stress as is shown in Fig. 6.

Fig. 6: The figure shows force vector normal to the surface
or parallel to the surface. Copyright BioMed Central Ltd [6]

The energy density function determines the behavior of
the deformable object when subjected to stress. The energy
density function is essentially a mapping from the stretches

to the energy. For a material model to be isotropic in
general, the energy function is expressed as a function of
the invariants I1, I2, I3 of strain tensor. The invariants are
computed from the principal stretches. When we do polar
decomposition on the deformation gradient F, we obtain,

F = RU = VR (11)

in which the matrix R is orthogonal. It is the rotation matrix.
The matrix U and the matrix V have the same eigenvalues.
Those eigenvalues are the principal stretches λ.

I1 = λ2
1 + λ2

2 + λ2
3

I2 = λ2
1λ

2
2 + λ2

2λ
2
3 + λ2

1λ
2
3

I3 = λ2
1λ

2
2λ

2
3

(12)

If the material is incompressible, the third invariant I3

equals to one.
One general energy function of this class of incompress-

ible material proposed by Rivlin [7] is,

ΨR =

∞∑
i,j=0

Cij(I1 − 3)i(I2 − 3)j (13)

where Cij are the material parameters. Many classical
material model is derived from this. One obtains the neo-
Hookean model by keeping the first term of the Rivlin
expression.

ΨNH = C10(I1 − 3) (14)

The classic Mooney-Rivlin model [8] is,

ΨMR = C10(I1 − 3) + C01(I2 − 3) (15)

By adding the second term, the Mooney-Rivlin model can
better describe the uniaxial tension behavior. To better cap-
ture the behavior of larger stretches, researchers use higher
order of I1. One such model is the Yeoh model [9],

ΨY = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (16)

To account for volume changes, compressible forms of
this class of material are proposed by adding the third
principle to the Rivlin expression Eqn. 13.

Ψ = ΨR + Ψ(J) (17)

where J is the volume ratio J =
√

I3. In this paper, we use
this form of energy function of Mooney-Rivlin material [10],
[11]:

Ψ =
1

2
w1((I2

1 − I2)/I
2
3
3 − 6) +w2(I1/I

1
3
3 − 3) + v1(I

1
2
3 − 1)2.

(18)
where w1, w2 and v1 are the material parameters. The first
two elasticity parameters, w1 and w2, are related to distor-
tional response (i.e., together they describe the response of
the material when subject to shear stress, uniaxial stress and
equibiaxial stress), while the last parameter, v1, is related to
volumetric response (i.e. it describes the material response
to bulk stress). I1, I2 and I3 are the three invariants. The
invariants are computed from the principal stretches, which
are the corresponding singular values of the deformation
gradient F.
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2.3 Strain-Stress Model
We will be using the second Piola-Kirchhoff stress tensor
with the Green-Lagrange strain tensor. The second Piola-
Kirchhoff stress σPK2 tensor for hyperelastic material is de-
fined through the energy function and the Green-Lagrange
strain tensor E. Thus the Green-Lagrange strain and the
second Piola-Kirchhoff stress relation is defined as,

σPK2 =
∂Ψ

∂E
(19)

Again the energy density Ψ for hyperelastic material con-
tains only the elastic energy. We can now give the defor-
mation energy computed from the Green-Lagrange strain
tensor E and the second Piola-Kirchhoff stress tensor σPK2

of the deformable body Ω,∫
Ω

σPK2 : E dΩ (20)
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