
Real-time Collision Detection and Distance Computation
on Point Cloud Sensor Data

Jia Pan† and Ioan A. Şucan‡ and Sachin Chitta‡ and Dinesh Manocha†

Abstract— Most prior techniques for proximity computations
are designed for synthetic models and assume exact geometric
representations. However, real robots construct representations
of the environment using their sensors, and the generated
representations are more cluttered and less precise than syn-
thetic models. Furthermore, this sensor data is updated at high
frequency. In this paper, we present new collision- and distance-
query algorithms, which can efficiently handle large amounts of
point cloud sensor data received at real-time rates. We present
two novel techniques to accelerate the computation of broad-
phase data structures: 1) we present a progressive technique
that incrementally computes a high-quality dynamic AABB tree
for fast culling, and 2) we directly use an octree representation
of the point cloud data as a proximity data structure. We
assign a probability value to each leaf node of the tree, and the
algorithm computes the nodes corresponding to high collision
probability. In practice, our new approaches can be an order of
magnitude faster than previous methods. We demonstrate the
performance of the new methods on both synthetic data and
on sensor data collected using a KinectTM for motion planning
for a mobile manipulator robot.

I. INTRODUCTION

The problem of collision detection and distance compu-
tation has been widely studied in various fields including
computer graphics, robotics, haptics and computational ge-
ometry. Many algorithms have been proposed to perform
these queries on geometric models. Furthermore, efficient
implementations of some of these algorithms are also avail-
able, including Bullet [1], ODE [2], V-Collide [3], PQP [4],
Box2d [5], etc.

However, almost all these algorithms and libraries were
originally designed for synthetic models and environments
where objects are represented as meshes or primitive ge-
ometric shapes. These representations differ from the raw
representation of the data collected by real robots using their
sensors. In this paper, we address the issue of collision detec-
tion and distance computation on point cloud data generated
from robot sensors. This includes visual sensors that can
compute depth information in the form of a point cloud
(e.g., laser sensors, stereo cameras, time-of-flight cameras)1.
We further assume these sensors periodically generate point
cloud data corresponding to their field of view. We call each
view of the environment a “frame”.

†Jia Pan and Dinesh Manocha are with the Department of Com-
puter Science, UNC Chapel Hill, Chapel Hill, NC, 27599, USA
(panj,dm)@cs.unc.edu

‡Ioan A. Şucan and Sachin Chitta are with Willow Garage Inc., Menlo
Park, CA 94025, USA (isucan,sachinc)@willowgarage.com

This research is supported in part by ARO Contract W911NF-10-1-0506,
NSF awards 0917040, 0904990, 1000579 and 1117127

1Here, we consider point clouds to be a collection of 3D points

The generated point clouds correspond to samples on
the visible parts of the various objects in the environment.
Dealing with these samples of the environment introduces
many challenges: 1) it can be expensive to extract objects
from the sensor data; such operations involve complex steps
such as segmentation [6] or object recognition [7], among
others; 2) tracking objects among different frames of sensor
data is challenging due to noise and amount of sensor data;
3) amount of sensor data is large and is typically received at
high frame rates; for example, typical RGB-D sensors like
the Microsoft KinectTM sensor can generate a detailed point
cloud with around 300,000 points at 30 Hz; and 4) sensor
data usually contains some level of noise and uncertainty
and may not represent the environment fully (some parts are
occluded). However, most collision and distance computation
algorithms assume that a geometric model for each object
in the environment is available. Furthermore, there are two
additional issues in terms of applying existing algorithms
to dynamically generated sensor data. First, most proximity
algorithms tend to compute complex acceleration data struc-
tures before performing actual queries. The computational
overhead of such data structures can be high for large sensor
data. Second, parts of the environment are not well captured
by the sensor data. In traditional approaches such regions are
considered either as free space (optimistic, but unsafe) or as
occupied (safe, but perhaps too conservative). Instead, we
need techniques that model the uncertainty in the captured
point-cloud data.

In this paper, we present real-time collision detection and
distance computation algorithms for point cloud sensor data.
Our approach is general and is applicable to all sensors that
can generate point clouds. Given the point cloud data, we first
convert it into an octree, a compact data structure for model-
ing arbitrary environments, which can encode the uncertainty
in the sensor data and in the occluded space [8]. Based on the
octree representation, we present two techniques to perform
efficient collision and distance queries on the sensor data:

• We amortize the cost of initialization over multiple or all
proximity queries. That is, we initialize the acceleration
data structure (a dynamic AABB tree) for collision or
distance queries using a simple technique that is not
optimal but fast, and then we incrementally improve the
tree’s quality as more proximity queries are performed.

• In the second strategy, we completely avoid the initial-
ization overhead by performing collision and distance
queries directly with the octree representing the sensor.
In this case, each query may be slightly more expensive



than using traditional methods. However, we save the
overhead of computing a spatial data structure that is
used to accelerate the queries.

These two strategies are complementary and used in
different settings. Each of them can provide up to an order
of magnitude improvement over prior methods for proximity
computations over sensor data. In order to handle occlusions
and uncertainty in sensor data, our new algorithms assume
that each leaf node in the octree specifies a probability of
occupancy [8]. As sensor data is received, the probability of
occupancy is maintained to be an average of occupancy over
a number of previously observed frames. Our approach uses
the probability of occupancy specified in the octree and can
report a set of axis-aligned bounding boxes, that correspond
to intersections of robot links and octree nodes. These
bounding boxes also specify the probability of occupancy
carried over from the octree node. Using this set of bounding
boxes a notion of cost can be defined for collision detection.
A simple example of cost is the weighted sum of the box
volumes using the probabilities of occupancy as weights.

We validate the performance of our new algorithms on
both synthetic sensor data and real sensor data generated
with a RGB-D sensor. The algorithms are implemented in
the open source library FCL [9].

The rest of the paper is organized as follows. We survey
related work on collision checking and distance computation
on sensor data in Section II. Section III explains why
previous methods are not efficient for sensor data and gives
an overview of our new methods. Section IV discusses the
details of our new approaches. We present the results in
Section V and conclusions follow in Section VI.

II. PROBLEM DEFINITION AND RELATED WORK

The general collision query is defined as follows:
Given two sets of objects {Ai}n

i=1 and {Bi}m
i=1 with n

and m objects, respectively, as well as their configurations,
the collision detection query returns a yes/no answer about
whether any pairs of objects, one from each set, are in
collision with each other. Optionally, it also returns all pairs
of colliding objects.

A special case of the collision query is when the two sets
of objects are the same, which is called the self-collision
query. As an example, a self collision check is useful to test
whether a configuration of an articulated model is valid.

The general distance query is defined as follows:
Given two sets of objects {Ai}n

i=1 and {Bi}m
i=1 with n

and m objects, respectively, as well as their configurations,
the distance query returns the minimum separation distance
between the two sets. Optionally, it also returns the pair of
objects that are closest to each other.

In order to avoid the quadratic worst-case complexity of
collision checking or distance computation between two sets
of objects, prior techniques use a two-phased approach: a
broad phase and a narrow phase. Intuitively, broad-phase
computation excludes object pairs that definitely are not
colliding or are far away, and identifies the pairs of objects
that may be colliding or may contribute to the minimum

distance between the two sets [10], [9]. The narrow-phase
computation corresponds to exact, pairwise collision or dis-
tance tests between the identified pairs.

To efficiently cull out object pairs that are definitely not
colliding or are far away, special data structures are used to
manage all the objects in the given set. For example, interval
trees [11] are used in sweep-and-prune (SaP) based broad-
phase algorithms; spatial partitioning trees such as octrees
and k-d trees can also be used [12]; hash tables are used
in spatial-hashing based approaches [10]. These broad-phase
data structures are designed so they can be updated efficiently
when the underlying objects change their positions or when
objects are added into or removed from the environment. In
traditional broad-phase approaches, the overhead to initialize
the broad-phase data structure is usually ignored, because the
broad-phase data structure is typically used for a long time
over many queries. As a result, the initialization overhead is
negligible when compared to the total time of a large number
of collision or distance queries performed by the underlying
application.

Previous work on proximity queries on sensor data tends
to ignore the fact that the underlying data can be updated
quickly when a new frame is received from the sensor. For
example, the sensor data is first converted into a set of
boxes [13], and then ODE [2] is used to check for collisions
between these boxes and the robot. Passing the sensor data to
the collision checker in this manner is relatively slow when
the frame rate of the sensor is high.

Some recent work attempts to handle collision checking
with sensor data in a more sophisticated manner. For real-
time haptics rendering, Leeper et al. [14] represent the point
cloud using an implicit surface and use that implicit surface
for collision checking. The accuracy of this method depends
on the parameters used for the implicit surface fitting. Pan
et al. [15] present a probabilistic collision checking algo-
rithm based on support vector machines, which can perform
collision queries on noisy point clouds.

III. OVERVIEW

Current collision detection algorithms make assumptions
that may no longer hold when dealing with data from real
sensors. All existing methods require their inputs in terms
of a set of objects. An object is defined as a collection of
geometric elements (points, triangles, etc) that have a well-
defined boundary [16] – for example, a desk, a cup on the
desk, etc. In synthetic environments, the objects are provided
by default, in the form of meshes or geometric primitives.
However, for sensor data, the entire environment is in the
form of a single point cloud, and different objects contained
in the environment are not easily separable in the point
cloud. To extract objects from the point cloud, expensive
object recognition and reconstruction algorithms, such as [7],
are necessary. To bypass such difficulties, one widely used
solution is to discretize the space that contains the points
into small axis-aligned cubes and model the sensor data as a
collection of boxes with localized points. This representation
is referred to as a collision map in [13], [17]. After converting



the sensor data to a set of boxes, the collision or distance
query between the robot and the environment becomes a
query between the robot and the set of boxes. Broad-phase
structures for both the robot and for the boxes can be
constructed before performing actual queries. A diagram of
this pipeline (used in [13], [17]) is shown in Figure 1(a).

In pipelines such as ones presented in [13] and [17],
the raw sensor data in the form of point clouds is first
converted into a collision map structure. We denote the time
required to construct the collision map as T0, which is small
compared to the timing cost of other components in the
pipeline. It takes time T1 to convert the collision map into
a data structure suitable for broad-phase approaches, which
includes two parts: 1) T1,1: the time cost from collision
map to boxes; 2) T1,2: the time cost from boxes to broad-
phase structures. T1,2 can be expensive if the sensor data
is large and there are many boxes. For example, the PR2
stereo sensor data usually contains tens of thousands of
points and is converted to thousands of boxes. An additional
challenge is that these generated data structures cannot be
easily reused when new sensor data comes in, as is assumed
by traditional approaches. This is because the boxes managed
by the structure are not trackable objects: they are just spatial
cells that contain several points belonging to one frame of
the sensor data. Given a new frame of sensor data, it is
difficult to identify each box’s correspondence in the prior
frames; traditional approaches depend on the easily-identified
correspondence to prior frames in order to compute the
objects’ movements and update the broad-phase structure
accordingly. Therefore, once a new frame of sensor data is
received, we need to discard the old broad-phase structure
and reconstruct a new one from scratch. Moreover, as the
sensor data is received at high frame rates (e.g., KinectTM

frame rates can be 30 Hz and the stereo sensors on PR2
generates data at 20 Hz), we can only perform a few (e.g.,
N < 1,000) queries during the lifetime of a broad-phase
structure. As a result, for sensor data it is possible that:

T1 = T1,1 +T1,2 ∼ T2 = N ·Tq, (1)

where Tq is the time cost for a single query. In other words,
the overhead to process the sensor data for queries can be
comparable to the total time spent on the actual queries and
is in fact not negligible.

According to the analysis above, the overall time to handle
one frame of sensor data is:

T = T0 +T1 +T2 = T0 +T1,1 +T1,2 +N ·Tq. (2)

To improve performance for large point cloud datasets, we
provide two strategies. The first strategy reduces the broad-
phase structure construction time T1,2 by amortizing the cost
over all the N queries. We first construct a low-quality broad-
phase structure, which is less effective in culling but is
much faster than the near-optimal broad-phase structure used
before, i.e., the new construction time is T̃1,2� T1,2. When
performing the actual queries, we can improve the broad-
phase structure gradually with each query. The new broad-
phase structure can slow down the actual queries because we

may perform more narrow-phase computations, i.e., T̃q > Tq.
However, the incremental refinement of the broad-phase
structure guarantees that over the long term with many
queries, there may be no overall decrease in performance.
As long as T1,2 +N ·Tq > T̃1,2 +N · T̃q, i.e.,

N ≤ T1,2− T̃1,2

T̃q−Tq
, (3)

the amortized method will be faster than the original method.
The second strategy is to support collision or distance

queries directly, using the octree directly provided by the
sensor data. This means that we no longer need a broad-phase
structure to manage the sensor data. As shown in Figure 1(b),
this approach does not compute any data structures and
overcomes the overhead T1. However, because this approach
uses the octree as a low-quality broad-phase structure, the
performance of actual collision/distance queries may slow
somewhat. Suppose the time for actual query in this case is
T̃ ′q , then the second strategy is better than previous methods
if N ≤ T1,2

T̃ ′q−Tq
.

Both these strategies can be extended to handle sensor data
with uncertain or unknown regions. The octree represents an
uncertain or unknown region as a octree leaf node with an
occupancy probability smaller than 1 [8]. When using the
first strategy, the boxes generated can store an occupancy
probability with them, which will be considered in the
narrow-phase algorithms. If the second strategy is used,
the octree’s occupancy probability will directly be involved
when performing collision or distance queries with the octree
structure.

IV. EFFICIENT COLLISION AND DISTANCE QUERIES ON
SENSOR DATA

In this section, we discuss the details of our new algo-
rithms, which are optimized to handle sensor data. In all the
descriptions that follow, we use the dynamic AABB (Axis
Aligned Bounding Box) tree as the default broad-phase data
structure to manage all the boxes converted from sensor
data in the form of an octree or collision map. We remind
the readers that a dynamic AABB tree is a binary tree
structure used to organize objects in a hierarchical manner.
The dynamic AABB tree recursively splits a set of objects
into two subsets; this process continues until the set contains
only one object and is used as a leaf node. Previous methods
try to construct a high-quality AABB tree in order to perform
broad-phase culling effectively, e.g., the split axis is selected
to minimize the bounding boxes of the children nodes. When
new objects are added to or old objects are removed from the
tree, the dynamic AABB tree must be re-balanced and the
tree structure must be adjusted to minimize the bounding
volume of each tree node. Such re-balancing operations
are also necessary when objects have moved. The time
complexity to construct a balanced dynamic AABB tree is
O(n logn) where n is the number of objects managed by the
tree. This is because the tree has logn levels and each level
needs O(n) time to rearrange the objects. If n is large, this



sensor data collision map boxes
broadphase

structure setup
collision check

distance comp.

T0

T1,1 T1,2

T2 = N · TqT1

(a) Pipeline for collision or distance computation: The sensor data is first represented as a collision map constructed in T0 time.
Next, the collision map is first converted into a set of boxes in T1,1 time. Finally, a broad-phase data structure is constructed
in T1,2 time in order to manage these boxes. The overhead to prepare the sensor data is T1 = T1,1 + T1,2. Once the data is
prepared, the actual time to perform N collision or distance queries is T2 = N ·Tq, where Tq is the time cost for a single query.
In traditional approaches, N is assumed to be infinite, while for sensor data, N is usually small (< 1,000).

sensor data octree
collision check

distance comp.

(b) By supporting the collision or distance query directly with the sensor data represented as an octree, we no longer need the
long conversion pipeline from octree to broad-phase structures and thus can completely avoid the main overhead T1.

Fig. 1: Comparison between possible pipelines for environment representation and collision detection.

construction step can be expensive. For sensor data, n is the
number of boxes computed from sensor data and can be as
high as 10,000.

A. Amortized broad-phase Algorithm

Our first method attempts to reduce the construction time
of a dynamic AABB tree, i.e., T1,2 in Equation 2. Instead
of constructing a high-quality dynamic AABB tree, we start
with a low-quality binary tree and then gradually improve it
during the following actual queries. The initial binary tree
is constructed by using the well known space-filling Morton
curve [18] – also known as the Lebesgue and z-order curve
– to order all the boxes converted from the sensor data. We
assume that the enclosing AABB of the entire environment
is known. We take the barycenter of each of the n boxes
as its representative point. By constructing a 2k · 2k · 2k

lattice within the enclosing AABB, we can quantize each of
the three coordinates of the representative points into k-bit
integers. The 3k-bit Morton code for a point is computed by
interleaving the successive bits of its quantized coordinates.
Figure 2 shows a 2D-example of this construction. Sorting
the representative points in increasing order of their Morton
codes will lay them out in order along the Morton curve.
Therefore, it will also order the corresponding boxes in a
spatially coherent way, which directly determines a binary
tree structure for the set of boxes. The time cost of this new
tree construction method is dominated by the time to sort n
3k-bit integers, which is of time complexity O(3k ·n) if we
use radix sorting.

The AABB tree constructed as above may not be as ef-
fective at culling as the high-quality AABB tree constructed
with traditional approaches and therefore the timing cost of
each actual query can increase, i.e., Tq item in Equation 2
can be larger. To overcome this problem, our solution is to
incrementally refine the initial binary tree while performing
each query. First, we encode each traversing path connecting
the tree root node to one of the leave nodes as an O(logn)-bit
integer, according to whether the left or right child is selected

during the traverse. Next, while performing the actual query,
we periodically select one of the traversing paths and re-
compute the bounding boxes for all the nodes on the path.
We begin from the leaf node, which has time complexity
O(logn). Then after (at most) n iterations, the binary tree
will become an AABB tree that is able to cull effectively. In
practice, we have observed that the dynamic tree’s culling
efficiency can be almost as good as the near-optimal binary
tree in only a few iterations. As a result, we can assume that
the actual query cost when using the amortized method is
T̃q = Tq +O(logn).

Fig. 2: Example 2-D Morton curve. According to the first two bits of the
Morton code, we can order the objects in a hierarchical manner.

B. Proximity Computation using Octrees

The amortized method cannot avoid the overhead of T1,1
in Equation 2, which can still be expensive for large sensor
data. To avoid such overhead, our second method performs
proximity queries directly on the sensor data in the form of
an octree (as shown in Figure 1(b)); this completely avoids
the long pipeline shown in (Figure 1(a)) required to prepare
sensor data. In other words, we use the octree as a low-
quality broad-phase structure for the sensor data. Octrees
may not be as efficient at culling as a dynamic AABB tree, so
the cost for a single collision or query cost can be larger than
using the traditional pipeline, i.e., T̃ ′q > T̃q > Tq. However, as



Algorithm 1: collisionRecurse(node1,node2)

1 begin
2 if node1.isLeaf() and node2.isLeaf() then
3 if overlap(node1.bv,node2.bv) then
4 narrow-phase collision between the octree box in

node1 and the object in node2

5 return collision status

6 if node2.isLeaf() or (node1.hasChildren() and
node1.bv > node2.bv) then

7 for i = 1 to 8 do
8 if node1.child(i).occupancy prob() >

threshold then
9 collisionRecurse(node1.child(i),

node2)

10 else
11 collisionRecurse(node1, node2.leftChild())
12 collisionRecurse(node1, node2.rightChild())

only a small number of queries are performed for one frame
of sensor data, the saving on sensor data preparation time
may make this strategy more efficient than the amortized
strategy.

We will now illustrate the use of this algorithm to perform
collision checking between an articulated robot and the
sensor data. The desired query can be implemented as a
collision query between trees: the sensor data is represented
as an octree and the robot is represented as a binary dynamic
AABB tree. The algorithm is shown in Algorithm 1, which
is a recursive method. We start with two root nodes of the
two trees. If both of them are leave nodes, we perform the
narrow-phase collision between the object corresponding to
the given dynamic AABB tree node and one cubic cell in the
octree. Otherwise, we need to check for collisions between
the subtrees rooted at the corresponding two nodes. If the
given octree node is not a leaf node, we recursively perform
collision queries between the given dynamic AABB node and
each of its eight children nodes. Otherwise, we recursively
perform collision queries between the given octree node
and the two children of the given dynamic AABB node.
The recursion continues until the collision is detected. One
major issue is mentioned in Algorithm 1 at line 8: we only
perform collision queries for octree cells with occupancy
probabilities larger than a given threshold. This is because the
octree representation of the sensor data can encode uncertain
or unknown regions in the environment, and we want the
result computed by the new method to be consistent with the
result provided by the simpler pipeline in Figure 1(a), where
octree cells are converted into boxes only if their occupancy
probability is larger than a given threshold.

Similar recursive traversal can be used to handle the
distance query between the robot and sensor data. Moreover,
a binary tree can also be used to represent other types of data;
e.g., a mesh can be represented as a binary AABB or OBB
tree [9] and a geometric primitive (e.g., a sphere) can be
represented as a binary tree with only the root node. As a
result, the same recursive formulation can be used to handle
the proximity query between the sensor data and either a

mesh or a geometric primitive.

C. Collision Checking with Uncertain/Unknown Regions

The data gathered by various sensors tend to have error
and noise. Many sensors only have limited precision, which
results in sampling error in the sensor data. Often, part of
the environment may not be observed by the sensor, because
sensors only have limited field of view and may have a
large blind spot. Moreover, the camera or laser may not
be perfectly calibrated; thus the generated point clouds may
have systematic bias. It is important to handle the uncertain
or unknown part of the sensor data so that robots can work
robustly in real world scenarios.

The unknown or uncertain regions are usually assumed
to be collision-free, e.g., such an optimistic assumption is
made in [13]. This assumption can cause serious problems in
some cases. In the example shown in Figure 3(a), the sensor
mounted on the robot’s head cannot cover the region near
the robot’s left arm. Therefore, given a path for the left arm
moving through the unknown region, the collision checking
routine will always assume it to be collision-free, even if
obstacles exist in that region. Our solution here is to compute
a set of boxes representing different regions in the unknown
space that intersect with the swept volume of the robot’s
path. Only boxes with the largest occupancy probability are
returned, because they are the most important regions to
check when determining whether the given path is collision
free. Given these boxes as shown in Figure 3(b), users
can implement different strategies according to different
applications. For example, the robot can try to avoid the
unknown regions completely, minimize its motion through
the unknown regions or actively sense the unknown regions
to gain more information about them.

The intersection between the unknown space and the swept
volume of the robot’s path can be performed by checking
the collisions between the octree and a series of samples on
the path. Each collision query can be performed based on a
recursive method similar to Algorithm 1.

V. RESULTS

In this section, we present the performance of our new col-
lision checking and distance computation algorithms when
handling the sensor data.

In the first experiment, we use a synthetic environment.
First, we generate 300 randomly located objects (100
spheres, 100 boxes and 100 cylinders). We then construct a
dynamic AABB tree broad-phase structure to manage these
objects. Next, we randomly generate an octree structure with
7,784 cells to simulate the sensor data. Our task is to perform
collision or distance queries between the dynamic AABB
tree and the sensor data. The reported performance for a
single query is the average of the cost for 1,000 queries.
For all experiments on collision query, we compare the
overall timing when performing 10 and 100 queries. For all
experiments on distance query, we only compare the overall
timing when performing a single query, because distance
query is much more expensive than collision query.



(a) Collision checking only performed
between the planned trajectory and the
regions that are known to be occupied
(the blue part) in the sensor data.

(b) Collision checking is performed
between the planned trajectory and
both the regions that are known to
be occupied (the blue part) and the
unknown regions in the sensor data.

Fig. 3: The environment representation can contain unknown or uncertain
regions in the environment. In the case shown by (a), the sensor on the
robot’s head cannot cover the region near its left arm. Therefore, a path
for the left arm will always appear valid if we ignore unknown regions of
the environment and make an optimistic assumption, even though obstacles
could possibly exist in that region. Our solution is shown in (b), where we
compute a set of boxes (shown in brown) that cover the intersections of
robot links and unknown parts of the environment. Using these boxes, a
notion of cost can be easily defined by the user, e.g., using the sum of the
occupancy probability of all the boxes.

First we compare the performance between our amortized
approach and the traditional non-amortized method and the
results are shown in Table I. We can see that the amortized
approach saves more than 50% of the broad-phase structure
construction time, while the actual collision query is only
slightly slower. According to this result, the amortized ap-
proach is faster than traditional methods when the number
of actual queries is 10 and 100. As a matter of fact, the
amortized approach is faster than traditional methods if the
number of actual queries is smaller than 38,300, which is
much larger than the number of collision queries that can be
performed during one sensor data frame.

Next, we compare the performance between the baseline
pipeline in [13] and our new pipeline. The results for the
collision query are shown in Table II. In Table II(a), all the
objects are represented as primitive shapes; and the octree is
also converted into primitive boxes for the baseline pipeline.
In Table II(b), the objects and boxes generated from octree
are in the form of meshes. In the first case, the actual
collision cost in the new pipeline is about two times the
cost in the baseline pipeline, but the saved overhead cost is
much larger than the actual query cost of a single query. As
a result, the new pipeline performs better than the baseline
pipeline if the actual number of queries is smaller than 300.
In the second case, even the cost of a single query in the new
pipeline is smaller than the baseline pipeline. The results
for the distance query are shown in Table III. As in the
collision case, the overhead cost is saved in distance query,
and the overall performance is improved in the new pipeline.
However, as the distance query is much more expensive than
the collision query, the performance improvement caused by
saving the overhead of data preparation is not as large as
in the collision case. Moreover, note that we assume that
all the steps in both pipelines can share the data efficiently,
and therefore we can ignore the data transmission overhead
between different steps. For distributed robot systems, such
transmission overhead can be large and therefore we under-

estimate the performance improvement caused by the new
pipeline, because the new pipeline has fewer steps than the
baseline pipeline.

In the second experiment, we perform collision or distance
queries between a PR2 robot and the sensor data. The PR2
robot has 88 links, some in the form of primitive geometric
shapes (e.g., cylinders and spheres) and others represented
as meshes. The sensor data is an octree with 24,803 cells.
For collision queries, the PR2’s average penetration depth
into the obstacles is 2.8 cm. For distance queries, the PR2’s
average distance to the obstacles is 3.4 cm. Note that collision
or distance queries are slow in case of small penetration
depth or small distance to the obstacles, since the AABB
cannot perform culling effectively in such cases. As a result,
the scene is challenging for both collision and distance
queries. The results are shown in Table IV; we observe
similar performance improvements on real-world sensor data
with the PR2 robot, as in the synthetic case.

From these results, we can see the difference between
the baseline pipeline using the amortized approach and
the new pipeline. The amortized approach only reduces
the overhead instead of completely avoiding it, but the
performance reduction on a single actual query is small. The
new pipeline completely avoids the overhead, but the time
cost for one actual query may be notably larger than the
traditional pipeline. As a result, the amortized approach is
more suitable for cases where the number of actual queries
per sensor frame is large, e.g., when the environment does
not change frequently and the sensor frame rate is small;
or when there are only a few obstacles in the environment.
The method using the new pipeline is more suitable for
dynamic environments with high sensor data frame rates, or
for environments with many obstacles. Moreover, we have
observed that the collision query benefits more from our new
pipeline than the distance query, since the distance query is
usually more expensive and the initialization overhead is less
significant. Finally, the speedup caused by the new pipeline
is more considerable for scenarios with many obstacles,
since the initialization overhead increases with the number
of obstacles.

T1 Tq T1 +10 ·Tq T1 +102 ·Tq
non-amortized 2.07 4.49 ·10−3 2.11 2.52

amortized 0.92 4.52 ·10−3 0.96 1.37

TABLE I: Performance comparison between baseline pipeline with and
without amortized broad-phase structure construction (in ms). The high-
quality broad-phase structure computed by non-amortized algorithm im-
proves the total computation only when there are more than Nmin = 38333
collision queries for one frame of sensor data, and the total time required
for Nmin queries is 174 ms, which is much longer than sensor data’s update
period (30 ms for data arriving at 30 Hz).

VI. CONCLUSIONS

We have presented two approaches for efficiently perform-
ing collision and distance queries on sensor data. The first
method amortizes the sensor data pre-processing overhead
over all the queries, and is suitable for static or simple
environments. The second method shortens the traditional



T1,1 T1,2 Tq T1 +10 ·Tq T1 +102 ·Tq
baseline pipeline 2.283 5.389 0.022 7.89 9.872

our pipeline 0 0 0.048 0.48 4.8

(a) Objects and boxes are in the form of geometric primitives

T1,1 T1,2 Tq T1 +10 ·Tq T1 +102 ·Tq
baseline pipeline 2.697 5.465 0.317 11.3 39.9

our pipeline 0 0 0.075 0.75 7.5

(b) Objects and boxes are in the form of meshes

TABLE II: Collision query performance comparison between the baseline
pipeline in [13] and our new pipeline (in ms). In both pipelines, the 300
objects in the environment are in the form of primitive geometric shapes or
meshes. For the baseline pipeline, the boxes generated from the octree are
also represented as primitive boxes or meshes, respectively. When objects
are in the form of primitive geometric shapes, the broad-phase structure
computed by the baseline algorithm improves the total computation only
when there are more than Nmin = 2959 collision queries for one frame of
sensor data, and the total time required for Nmin queries is 72.77 ms, which
is much longer than sensor data’s update period (30 ms for data arriving at
30 Hz). When objects are in the form of meshes, the average query time
given by our new pipeline may even be faster the the average query time
provided by the baseline pipeline.

T1,1 T1,2 Tq T1 +Tq
baseline pipeline 2.665 5.381 23.98 32.03

our pipeline 0 0 17.40 17.40

(a) Objects and boxes are in the form of geometric primitives

T1,1 T1,2 Tq T1 +Tq
baseline pipeline 2.871 5.413 68.03 76.31

our pipeline 0 0 61.86 61.86

(b) Objects and boxes are in the form of meshes

TABLE III: Distance query performance comparison between the baseline
pipeline in [13] and our new pipeline (in ms). In both pipelines, the 300
objects in the environment are in the form of primitive geometric shapes
or meshes. For the baseline pipeline, the boxes generated from the octree
are also represented as primitive boxes or meshes, respectively. In this
experiment, our new pipeline not only avoids the initialization overhead
and also behaves better than the baseline pipeline on average distance query
time. This is due to the fact that the octree structure may perform distance
culling more efficiently than the hierarchy tree structure.

pipeline by directly performing queries between the robot
links and an octree that represents sensor data. This ap-
proach completely avoids the data pre-processing overhead,
and is suitable for dynamic or complex environments. We
demonstrated the performance of the two methods on syn-
thetic benchmarks and on environments constructed using
the RGB-D sensor mounted on the PR2 robot. Our new
approach also supports collision queries for sensor data with
uncertain or unknown regions. In summary, the techniques
we propose in this paper will make collision checking
and distance queries with real sensor data more efficient;
will improve the reactive behavior of robots operating in
unstructured environments; and will allow them to deal better
with uncertain information about the environment.

For future work, we are interested in further improving
the collision checking and distance query implementations.
We are also interested in applications of this work to motion
planning and active sensing, e.g., we would like to design
strategies for gaining more information about uncertain or
unknown parts of the environment.

REFERENCES

[1] E. Coumans, “Bullet,” http://bulletphysics.org/.

T1 Tq T1 +10 ·Tq T1 +102 ·Tq
baseline pipeline 0.131 0.00127 0.1437 0.258

our pipeline 0 0.00131 0.0131 0.131

(a) PR2 collision

T1 Tq T1 +Tq
baseline pipeline 0.163 0.039 0.202

our pipeline 0 0.048 0.048

(b) PR2 distance

TABLE IV: Collision and distance query performance comparison between
the baseline pipeline in [13] and our new pipeline on the PR2 robot (in
ms). For collision query, the broad-phase structure computed by the baseline
algorithm improves the total computation only when there are more than
Nmin = 3275 collision queries for one frame of sensor data, and the total time
required for Nmin queries is 4.29 ms. For distance query, the broad-phase
structure computed by the baseline algorithm improves the total computation
only when there are more than Nmin = 18 collision queries for one frame
of sensor data, and the total time required for Nmin queries is 0.87 ms.

[2] “Open dynamics engine,” http://www.ode.org.
[3] T. C. Hudson, M. C. Lin, J. Cohen, S. Gottschalk, and D. Manocha,

“V-COLLIDE: accelerated collision detection for VRML,” in Proceed-
ings of Symposium on VRML, 1997, pp. 117–124.

[4] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: a hierar-
chical structure for rapid interference detection,” in Proceedings of
SIGGRAPH, 1996, pp. 171–180.

[5] “Box2d,” http://box2d.org.
[6] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Close-range

scene segmentation and reconstruction of 3d point cloud maps for
mobile manipulation in domestic environments,” in Proceedings of
International Conference on Intelligent Robots and Systems, 2009, pp.
1–9.

[7] M. Muja, R. B. Rusu, G. Bradski, and D. G. Lowe, “REIN - a
fast, robust, scalable recognition infrastructure,” in Proceedings of
International Conference on Robotics and Automation, 2011, pp.
2939–2946.

[8] K. M. Wurm, A. Hornung, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: A probabilistic, flexible, and compact 3D map
representation for robotic systems,” in Proceedings of the ICRA 2010
Workshop on Best Practice in 3D Perception and Modeling for Mobile
Manipulation, 2010.

[9] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in Proceedings of International
Conference on Robotics and Automation, 2012, pp. 3859–3866.
[Online]. Available: http://gamma.cs.unc.edu/FCL

[10] C. Ericson, Real-Time Collision Detection. Morgan Kaufmann, 2004.
[11] D. J. Tracy, S. R. Buss, and B. M. Woods, “Efficient large-scale sweep

and prune methods with aabb insertion and removal,” in Proceedings
of the IEEE Virtual Reality Conference, 2009, pp. 191–198.

[12] S. Bandi and D. Thalmann, “An adaptive spatial subdivision of the
object space for fast collision detection of animating rigid bodies,”
Computer Graphics Forum, vol. 14, pp. 259–270, 1993.

[13] R. B. Rusu, I. A. Şucan, B. Gerkey, S. Chitta, M. Beetz, and L. E.
Kavraki, “Real-time perception guided motion planning for a personal
robot,” in In Proceedings of International Conference on Intelligent
Robots and Systems, 2009, pp. 4245–4252.

[14] A. Leeper, S. Chan, and K. Salisbury, “Point clouds can be repre-
sented as implicit surfaces for constraint-based haptic rendering,” in
Proceedings of International Conference on Robotics and Automation,
2012, pp. 5000–5005.

[15] J. Pan, S. Chitta, and D. Manocha, “Probabilistic collision detection
between noisy point clouds using robust classification,” in Proceedings
of International Symposium on Robotics Research, 2011.

[16] B. Alexe, T. Deselaers, and V. Ferrari, “What is an object?” in
Proceedings of International Conference on Computer Vision and
Pattern Recognition, 2010, pp. 73–80.

[17] I. A. Şucan, M. Kalakrishnan, and S. Chitta, “Combining planning
techniques for manipulation using realtime perception,” in Proceedings
of International Conference on Robotics and Automation, 2010, pp.
2895–2901.

[18] G. Morton, “A computer oriented geodetic data base and a new
technique in file sequencing,” IBM Ltd, Ottawa, Canada, Tech. Rep.,
1966.


