
A Fast Method for Local Penetration Depth Computation
Appendix

Stephane Redon and Ming C. Lin

Department of Computer Science
University of North Carolina at Chapel Hill

Abstract
In this appendix, we provide some details on the data struc-

tures used to cluster the intersection segments. Although
the data structures are fairly classical (a heap, a grid and
a hashtable), we pay attention to the implementation details
to ensure that the segment clustering is performed in almost
linear time.

1 Intersection segment clustering

1.1 Overview
This section describes the first stage of our algorithm to

compute the local contact information. We assume that the
collision detection algorithm has output a list of ns inter-
section segments, where each segment corresponds to a non-
degenerate intersection between two non-coplanar triangles.
This assumption corresponds to the usual output of a trian-
gle/triangle intersection test. More precisely, each intersec-
tion segment is described by its two endpoints p1 and p2.

In the first stage of our algorithm, we attempt to deter-
mine locally coherent penetration regions by clustering these
intersection segments into intersection curves. Since we do
not make any assumptions on the object’s topology, there is
no guarantee that the intersection segments should be or even
can be clustered into coherent intersection curves. This is typ-
ically the case for models consisting of non-manifold surfaces
and even for “soups of polygons”. Thus, we design a technique
that works well in practice for most cases.

Even for simple objects, the problem of clustering the inter-
section segments into intersection curves is difficult, mainly
because we do not assume any knowledge of the object geom-
etry or topology. In particular, the intersection curves could
be open, if the intersecting objects themselves are not closed,
or contain loops. Moreover, due to finite precision computa-
tions, two adjacent intersection segments on an intersection
curve might not have a common endpoint. Also, some numer-
ical issues in the collision detection stage might lead to some
missing intersection segments, and thus result in incomplete
sets of intersection segments for the penetration depth com-
putation stage.

The simple yet effective technique we present proceeds as
follows. Assume c − 1 curves have already been determined,
and we want to determine a c-th curve from the remaining in-
tersection segments, i.e. the free intersection segments. One
of these free intersection segments is selected and arbitrar-
ily oriented (i.e. the beginning and the end of the segment

are arbitrarily set). This segment is the first one in the c-th
curve, and is also the current end segment of the curve. We
build the curve by repeatedly appending a free intersection
segment to the current end segment of the curve. Precisely,
we append the free intersection segment for which one of the
two endpoints is the closest to the end endpoint of the current
end segment. This closest segment is removed from the list of
the free segments, and becomes the new current end segment.
The construction of the c-th curve continues as long as there
exists a free intersection segment that is sufficiently close to
the current end segment. When the construction of the c-th
curve stops, the algorithm stops, provided that there is no
free intersection segment left. Otherwise, a new free intersec-
tion segment is selected and arbitrarily oriented, and a new
curve, the c + 1-th one, is constructed.

As can be seen in the following pseudo-code, this algorithm
is simply composed of two loops:

curveIndex=1

WHILE there is a free intersection segment {

// begin the curve curveIndex

Select a free intersection segment S

// build the curve by appending free
// intersection segments

DO {

ADD S to the curve curveIndex
SET currentEndSegment = S
SET S = the closest free intersection

segment to currentEndSegment

}
WHILE a close enough segment S was found

// proceed to the next curve

curveIndex=curveIndex+1

}

Despite its simplicity, a naive implementation of this algo-
rithm would yield a quadratic complexity in the number of
intersection segments, essentially due to the proximity query
step, which determines the closest segment to another seg-

1



1 Intersection segment clustering 1.3 The hashtable

ment. Another reason for the quadratic complexity is in the
management of the list of free intersection segments, when
proper care is not taken. This is not practical when many
intersection segments have been output by the collision de-
tection functions, as we must perform the penetration depth
estimation in real time for many interactive applications (e.g.
games, VR, etc).

In order to achieve a nearly linear runtime complexity in
the number of intersection segments, we use a combination
of a hashtable and a heap. The hashtable is used to perform
the proximity queries in nearly linear time, while the heap
is used to manage the list of free intersection segments. The
rest of the section describes how to carefully design these data
structures to achieve a linear-time performance. To enhance
the presentation clarity, we use pseudo-code or even C++
code bits throughout the description.

Assume an intersection segment is stored in the following
class:

class cTContact {

public :

cVector3f intersectionPoint[2];
cVector3f contactNormal;
float penetrationDepth[2];

};

where intersectionPoint stores the two (known) endpoints
of the intersection segment, contactNormal will contain the
estimated contact normal, and penetrationDepth will con-
tain the estimated penetration depth for the two endpoints
of the intersection segment. The class cVector3f implements
a 3-dimensional vector of floats. In the following, we assume
that the ns intersection segments are numbered from 0 to
ns − 1.

1.2 The segment heap
In order to perform constant-time access and deletion of

an intersection segment from the list of free intersection seg-
ments, the heap is implemented as a doubly-linked list stored
in an array. More precisely, each element of the array is an
object of the class cHeapCell:

class cHeapCell {

public :

cTContact *contactPointer;

int parentIndex;
int childIndex;

};

where contactPointer is a pointer to an intersection seg-
ment, parentIndex is the index of the parent (previous) cell
in the doubly-linked list, and childIndex is the index of the
child (next) cell in the doubly-linked list.

During the initialization, the ns intersection segments are
stored in the heap as follows. For each i, 0 6 i < ns, the
i-th intersection segment is stored in the i-th element of the

array. Its childIndex value is set to i−1 and its parentIndex
value is set to i + 1. By convention, an element index equal
to −1 is used to denote the beginning and the end of the
heap. We use the ns-th element of the array as the root of the
heap, whose child is always the top element of the heap during
the clustering. When the heap is initialized, the childIndex
value at the root of the heap is thus set to ns − 1, while its
parentIndex value is set to −1 and its contactPointer value
is set to NULL.

During clustering, when the i-th intersection segment must
be removed from the heap, the contactPointer value of the i-
th element of the array is set to NULL, to indicate that the i-th
intersection segment is no longer free, and the parentIndex
and childIndex values are used to remove the element from
the doubly-linked list in constant time. Figure 1 shows an ex-
ample of this heap structure for six free intersection segments
at the initialization (Fig. 1b), and after one free intersection
segment has been removed from the heap (Fig. 1c). Note that
the heap is empty when the childIndex value of the root of
the heap header becomes −1.

Figure 1: An example of the heap structure for six free inter-
section segments. (a) a single heap element; (b) the heap at the
initialization; (c) the heap after the fourth free intersection seg-
ment has been removed.

1.3 The hashtable
To perform the proximity queries between the endpoints

of the intersection segments, we use a spatial partitioning
method. Basically, we subdivide the region surrounding the
intersection segments into uniform grids and we store the non-
empty space cells in a hashtable, to reduce the memory con-
sumption. Although the method is well-known, we carefully
design the data structures so as to be able to perform in-
sertion in the hashtable in constant time, and the proximity
queries in nearly constant time.

Consider again the list of ns intersection segments, num-
bered from 0 to ns − 1. Roughly, we begin by specifying an
axis-aligned three-dimensional grid which encloses the end-
points of the intersection segments. The limits of the grid
correspond to the smallest axis-aligned bounding box which
encloses the intersection segments, and the number of subdi-
visions in the grid is chosen by a heuristic. We would like
to restrict the proximity queries to those endpoints which
are contained in the same grid cells. More precisely, when

Journal of Graphic Tools 2



1 Intersection segment clustering 1.4 Clustering algorithm

a proximity query is performed to determine the closest free
intersection segment to the end of the current end segment,
the grid is used to perform the search on those segments for
which one of the endpoints at least has been stored in the
same grid cell.

Instead of allocating memory for all the grid cells, however,
we only store the grid cells which contain at least one endpoint
of an intersection segment in a hashtable, implemented as an
array of hash cells. More precisely, we define a cHashCell
class:

class cHashCell {

public :

int segmentIndex;
int segmentExtremity;
int cell[3];
int nextIndex;
int lastIndex;

};

where segmentIndex is the index indicating the location
of the intersection segment in the heap (remember that
the knowledge of this index allows to remove the segment
from the list of free intersection segments in constant time),
segmentExtremity is either 0 or 1 depending on which end-
point of the intersection segment has been stored in the cell,
cell[0], cell[1] and cell[2] contains the three integer co-
ordinates of the grid cell which contains the beginning or the
end of the intersection segment.

Figure 2: Constant-time insertion in the hashtable at location
1. Before the insertion, the hashtable contains three endpoints at
the position 1, one in the hash table and two in the collision table.
The non-empty cells that are not relevant to the example have
been shadowed. (a) A table element (hash table or collision table);
(b) the hash table and the collision table before insertion; (c) an
endpoint has been inserted in the hashtable at location 1. Because
this location already contained three elements, the reference to
the endpoint is stored in the first free collision cell. Note how the
pointer to the end of the linked list is updated from 2 to 4.

The two integers nextIndex and lastIndex are used to
handle collisions in the hashtable, which occur when two end-
points have to be stored in the same grid cell, or when the
hash function returns the same hashtable location for two
different grid cells. More precisely, they allow us to build
linked lists which store the endpoints located in the same
hash cell. During clustering, when a proximity query has to
be performed, the linked list which contains all the endpoints

stored in the hash cell is traversed to determine the closest
endpoint.

Because we can not know in advance how many collisions
might occur for each cell, we use a single pre-allocated array to
store all possible collisions. We thus pre-allocate two arrays
to implement the hashtable structure - one for the original
hashtable, and one to handle collisions:

// the hashtable

cHashCell hashTable[HASHTABLESIZE];

// the collisions table

int nCollisions;
cHashCell collisionTable[COLLISIONTABLESIZE];

The integer nCollisions contains the number of collisions
that have occurred when inserting endpoints in the hashtable,
while the array collisionTable fills up as the number of col-
lisions in the hashtable increases. The nextIndex values in
the hash cells and the collision cells allow to build and tra-
verse the linked lists of endpoints stored in the grid cell, while
the lastIndex value of the hash cells always point to the last
element of their associated linked list, to perform constant-
time insertion. Figure 2 shows an example of insertion in
the hashtable. The second hash cell (position 1), where the
endpoint is to be inserted, already contains three endpoints:
one in the hash cell, and two in the collision table (positions
0 and 2). The third element (position 2) of the collision ta-
ble is the current end of the linked list of endpoints. The
lastIndex value of the second hash cell indicates the location
of this current end, thus allowing us to perform the insertion
in constant-time, by filling up the collision table.

1.4 Clustering algorithm
Using these data structures, we can now perform the clus-

tering of the intersection segments in nearly linear time in the
number of intersection segments. When a new set of intersec-
tion segments has to be clustered, each segment is stored in
the heap, while each of its endpoints is stored in the hashtable.
When the algorithm tries to determine the closest free end-
point to a specific endpoint e, the hashtable is used to traverse
the list of endpoints which are contained in the same grid cell
as e and determine the closest one. Assuming each grid cell
contains at most a few endpoints, the clustering is performed
in linear time.

3 Journal of Graphic Tools


	Intersection segment clustering
	Overview
	The segment heap
	The hashtable
	Clustering algorithm


