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Abstract

We present a real-time algorithm for compressing textures based on
low frequency signal modulated (LFSM) texture compression. Our
formulation is based on intensity dilation and exploits the notion
that the most important features of an image are those with high
contrast ratios. We present a simple two pass algorithm for propa-
gating the extremal intensity values that contribute to these contrast
ratios into the compressed encoding. We use our algorithm to com-
press PVRTC textures in real-time and compare our performance
with prior techniques in terms of speed and quality.
http://gamma.cs.unc.edu/FasTC
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Software Support
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1 Introduction

Textures are frequently used in computer graphics applications to
add realism and detail to scenes. As more applications leverage
the GPU and require high-fidelity rendering, the cost for storing
textures is rapidly increasing. Within the last decade, texture rep-
resentations that provide hardware-friendly access to compressed
data have become a standard feature of modern graphics processors.
The benefits of compressing textures also include power savings by
reducing the number of memory accesses required during render-
ing. These savings have become increasingly important as trends
turn towards low-resource platforms such as mobile GPUs.

Texture compression, first introduced by Beers et al. [1996], ex-
hibits many key differences from standard image compression tech-
niques. The GPU has no way of knowing a priori which texture
pixels, or texels, will be accessed at any given time. This limi-
tation implies that any texture compression scheme must provide
random access to the texels. As a result, most compressed texture
formats provide lossy compression at a fixed ratio. Usually, a better
compression ratio cedes lower quality texture compression. Many
of these trade-offs have been studied in recent texture compression
formats [Iourcha et al. 1999][Fenney 2003][Ström and Pettersson
2007][Nystad et al. 2012].

⇤e-mail:pavel@cs.unc.edu
†e-mail:dm@cs.unc.edu

Figure 1: Real-time texture compression using intensity dilation
applied to typical images used in GIS applications such as Google
Maps. Each of these 256x256 textures was compressed in about
20ms on a single Intel® Core™ i7-4770 CPU. In each pair of im-
ages, the original texture is on the left, and the compressed version
is on the right. A zoomed in version of the detailed areas is given
on the right. Images retreived from Google Maps.

One of the main tenets of a good compression scheme, as intro-
duced by Beers et al. [1996], is the notion that compression can be
offloaded to preprocessing stages and real-time decompression is
performed in hardware. Increasingly GPUs are being used for ap-
plications other than desktop-based 3D games, but continue to make
heavy use of textures. These include geographic information sys-
tems and mapping tools (e.g. Google Maps) that use textures ren-
dered on-the-fly based on level of detail and other factors, as shown
in Figure 1. Cloud-based game services are also emerging where
the user experiences high-quality graphics from the lightweight ren-
dering nature of a browser window. Many of these applications re-
quire uploading texture data across a network and then to the GPU
very frequently. As a result, it is becoming increasingly important
to develop real-time high quality texture compression algorithms.
Such algorithms also accelerate the content-creation pipeline for 3D
games and other real-time applications, allowing developers to bet-
ter iterate on their products. Finally, another recent trend is to sup-
port different texture formats for different GPUs or devices. With
fast texture compression schemes, developers only need to store a
single texture and compress it on-the-fly based on hardware capa-
bilities of the client, significantly saving on storage space.

In this paper we focus on a widely used texture compression method
known as Low-Frequency Signal Modulated Texture Compression
(LFSM) [Fenney 2003]. Up until very recently, this texture com-
pression technique was the only technique supported on popu-
lar iPhone and iPad devices. LFSM leverages the cache-coherent
worst-case scenario of block-based texture compression techniques
such as DXT1 and BPTC [Iourcha et al. 1999] [OpenGL 2010]. It
has been pointed out that LFSM texture compression formats, such
as PVRTC, provide better quality than formats with similar com-
pression ratios (e.g. DXT) on certain classes of textures [Fenney
2003]. However, due to the structure of LFSM formats, fast or real-
time compression algorithms are not as available compared to other
formats [Schneider 2013].

Main Results: We present a novel, fast texture compression algo-
rithm based on intensity dilation for LFSM formats. Our technique
evaluates the intensity values of a 32-bit low dynamic range image

127



to preserve high-contrast areas sensitive to the human visual sys-
tem during compression [Aydin 2010]. We bleed the high-contrast
color information across block boundaries to better represent high
frequency regions. We have evaluated our technique on a variety
of benchmark images and observe 3 – 3.5X speedup over prior
PVRTC algorithms and implementations. We also measure the
quality of compression using both raw energy metrics and human
perception, and notice considerable benefits over prior schemes.

The rest of the paper is organized as follows. In Section 2, we
briefly survey existing texture compression formats. In Section 3,
we provide background on LFSM and an analysis of the tractabil-
ity of finding an optimal solution. In Section 4, we describe our
intensity dilation technique and its use for LFSM compression. We
present various performance and quality metrics used to evaluate
the compression scheme in Section 5, and highlight some limita-
tions in Section 6.

2 Related Work
Random-access preserving image compression techniques first
emerged with the Block Truncation Coding (BTC) scheme invented
by Delp and Mitchell [1979]. This technique was used to com-
press 8-bit grayscale images by saving two 8-bit values per 4 ⇥ 4

texel blocks, along with a single bit per texel to index into either
of the two values. Afterward, this idea has been generalized and
improved by others [Nasrabadi et al. 1990] [Fränti et al. 1994].
The most notable improvement was the extension of Campbell et
al. [1986] to color values by providing a 256-bit color palette in-
stead of a grayscale image. Due to hardware costs of multiple
memory lookups, this method is regarded as expensive, even with
hardware support [Knittel et al. 1996].

Although texture compression has been used for almost three
decades [Chandler et al. 1986][Economy et al. 1987], one of the
first texture compression algorithms based on Vector Quantization
(VQ) was presented by Beers et al. [1996]. In this seminal paper,
Beers et al. argue for four main tenets of texture compression: fast
hardware decoding speed, preservation of random-access, compres-
sion rate versus visual quality, and encoding speed. The presented
argument claims that encoding speed could be sacrificed for gains
in the other three, but the need for fast encoding algorithms was rec-
ognized even then, where a Generalized Lloyd’s Algorithm [Gersho
and Gray 1991] was used to produce fast non-optimal encodings.

Many formats based on VQ have emerged and are used extensively
in current GPUs [Iourcha et al. 1999][Fenney 2003][Ström and
Akenine-Möller 2004] [Ström and Akenine-Möller 2005] [Ström
and Pettersson 2007][OpenGL 2010][Nystad et al. 2012]. DXT1,
introduced by Iourcha et al. [1999] is perhaps the most popular for-
mat currently in use. It encodes 4⇥ 4 texel blocks as two 565 RGB
colors with two bit interpolation indices. In ETC1 and ETC2, intro-
duced by Ström et al. [2005][2007], chromatic values are stored us-
ing VQ along with a lookup into a table of intensity values. Over the
past few years, higher quality VQ formats, such as BPTC [OpenGL
2010] and ASTC [Nystad et al. 2012], have emerged that split fixed
blocks into partitions that are encoded separately along with other
features. These newer formats also support encoding high dynamic
range textures to complement similar schemes developed in recent
years [Roimela et al. 2006][Munkberg et al. 2008][Sun et al. 2008].
There are other texture formats based on VQ, but not currently sup-
ported in hardware [Krause 2010].

Fast texture compression has been studied comparatively less than
new compression methods. J.M.P. van Waveren was the first to de-
velop a real-time compression scheme for DXT1 [Waveren 2006].
His technique compressed a 4 ⇥ 4 texel block by using the end-
points of the axis aligned bounding box diagonal in three dimen-
sional RGB space. This technique not only proved effective, but

also opened the doors for similar techniques for normal maps or
YCoCg encoded textures [Waveren and Castaño 2007] [Waveren
and Castaño 2008]. Because formats such as DXT are easily paral-
lelizable, many compression techniques also leverage GPUs to gen-
erate very good results very quickly [Castaño 2007]. Recently, re-
search has also been done on quickly compressing textures into the
newer formats such as BPTC and ASTC [Krajcevski et al. 2013].

3 Low Frequency Signal Modulated Texture
Compression

In recent years, low frequency signal modulated texture compres-
sion has been widely adopted by many mobile devices. Prior to
OpenGL ES 3.0, it has been the only technique available on Ap-
ple’s iPhone and iPad [Apple 2013]. Despite its popularity, there
has not been much work in improving the speed of associated com-
pression techniques. In this section, we give an overview of LFSM
texture compression.

3.1 LFSM compressed textures

Like other texture compression formats, LFSM compressed tex-
tures are stored in a grid of blocks, each containing information for
a n ⇥m grid of texels. As shown in Figure 2, each block contains
two colors along with per-texel modulation data. Each of these col-
ors, referred to as the high color and low color, is used in conjunc-
tion with neighboring blocks to create two low resolution images:
the high image and low image, respectively. In order to lookup the
value for a texel, the high image and low image are upscaled to
the original image size using bilinear interpolation. Once upscaled,
modulation data from the block that contains the texel in question is
used to compute a final color. This bilinear interpolation avoids the
worst-case scenario with respect to memory lookups. By filtering
textures across block boundaries, information from four blocks is
required to decode any texel value.

A good LFSM data compression algorithm needs to determine for
each block b both the best high color, bH , and low color bL and
the modulation data w for each texel. These values must be chosen
such that when decoding a texel ep surrounded by blocks bA, bB ,
bC , bD , the resulting color given by

e
p = w (lAbH,A + lBbH,B + lCbH,C + lDbH,D)

+(1� w) (lAbL,A + lBbL,B + lCbL,C + lDbL,D)

best matches the original texel p, where lk is the appropriate bilin-
ear interpolation weight and 0  wi  1.

In order to better understand the problem of compressing into
LFSM formats, we present an analytic formulation of the global
optimization computation needed for this compression algorithm.
Given a source RGBA image of dimensions ns ⇥ ms and pixels
p = {pR,pG,pB ,pA}, we need to generate a compressed image
with dimensions nc ⇥mc where (nc,mc) = (ns/rn,ms/rm) for
some rn, rm 2 N (typical values are rn = 4 and rm = 4 or 8).
The high and low colors bH and bL of the compressed image will
be treated as 1 ⇥ ncmc vectors. We must also determine modula-
tion values w that correspond to the interpolation weights between
the two bilinearly interpolated endpoints. Each channel of an image
reconstructed from compressed data can be described by a matrix
equation as follows:

f
pk = WQbH,k + (I�W )QbL,k, (1)

where Q is the nsms ⇥ ncmc matrix corresponding to the bilinear
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Figure 2: Representation of low-frequency signal modulated texture data. The compressed data is stored in blocks that contain two colors,
high and low, along with modulation data for each texel within the block. When looking up the color value for texel at location (x, y),
information is used from the blocks whose centers are the four corners of a rectangle that encompass the texel. The high and low colors are
separately used to generate two block sized images using bilinear interpolation, and then the modulation value of the texel’s corresponding
block is used in conjunction with these upscaled images in order to produce the final color.

weights of each pixel given by

Qi,j =

1

rnrm

8
>>>>>>><

>>>>>>>:

0 if |xi � rnxj | � rn or
if |yi � rmyj | � rm,

(rn � lx) (rm � ly) if rnxj  xi and rmyj  yi,

lx (rm � ly) if rnxj > xi and rmyj  yi,

ly (rn � lx) if rnxj  xi and rmyj > yi,

lxly if rnxj > xi and rmyj > yi,

xi = i mod ns yi =

�
i

ns

⌫

xj = j mod nc yj =

�
i

nc

⌫

lx = xi mod rn ly = yi mod rm.

W is the unknown diagonal matrix of dimensions nsms ⇥ nsms

containing the modulation values wi. The product WQ corre-
sponds to both applying modulation weights and bilinear interpola-
tion between the values bH . The values bL are similarly weighted
with the product (I � W )Q. We have four of these systems, one
corresponding to each channel k 2 {R,G,B,A} that are all cou-
pled by W . This formulation gives us nsms + 8ncmc unknowns
(one for each wi and one for each channel in each color bH , bL)
and 4nsms equations. Since (ns,ms) = (rnnc, rmmc), we will
have as many equations as unknowns when 4rnrm � rnrm + 8.
For any reasonable compression format, rn, rm > 2, so a solution
exists in the continuous domain at least.

3.2 High Complexity

The first thing to notice about Equation (1) is that it is a non-linear
system, which is typically solved using iterative solvers. Further-
more, for ns, ms = 256 and rn, rm = 4, the size of our solution
vector will have dimension

nsms + 8ncmc = 2

8
2

8
+ 2

3
2

6
2

6
> 2

16
.

This is too large for any non-linear solver to find a solution to, es-
pecially in real-time.

We can reduce the complexity of the system by first using an ap-
proximation for W . In this case, we can bundle up the problem in
Equation (1) by combining W and Q to get an equation of the form:

p = A


bH

bL

�
. (2)

This becomes a linear system where the resulting matrix A is large,
non-square, and high rank, since each row has 8ncmc elements
and thirty-two non-zero elements. The non-zero elements in row i

are the elements corresponding to the channels in the high and low
colors of the blocks that affect pixel i.

Finally, the biggest impediment to using this formulation to com-
pute an efficient solution is the fact that the solution to our problem
must be stored within an LFSM data format, which necessitates
discretizing our values. Quantization of the solution to the Ax = b

problem from the real numbers to integers does not provide an opti-
mal solution in general. This means that the aforementioned prob-
lem becomes an integer programming problem, which is known to
be NP-Complete [von zur Gathen and Sieveking 1978]. As a result,
computing the optimal solution is impractical.

3.3 State of the Art

The only known hardware implementation that uses LFSM texture
compression is Imagination’s PowerVR architecture, giving the for-
mat the name PVRTC (PowerVR Texture Compression) [Imagina-
tion 2013]. Currently, PVRTC compressors use a two stage process.
In the first stage, they provide an initial approximation of low and
high images and modulation data. In the second stage, they contin-
ually refine their initial approximation of the low and high images
and modulation data until they reach a fixed point with respect to
improving compression quality against the original image.

The initial approximation of per-block color values is determined
by first applying a low-pass filter to the image. Next, the differ-
ence between the filtered image and the original is analyzed using
principal component analysis. The principal component of the dif-
ference vectors, treated as three dimensional vectors in RGB space,
are used to generate the high and low block color values for the im-
age. While this scheme provides a good approximation, computing
the principal components can be expensive and the low pass filter
may remove image details that tend to preserve fidelity.

The refinement steps take the approximation and generate an ini-
tial value for the W matrix from Section 3.2. This initial value of
W is used to look at a smaller version of the linear system given
in Equation (2) that corresponds to 2 ⇥ 2 blocks and the pixels
that they influence while treating the blocks outside of these four
as fixed. This constrains the problem to a 121⇥ 8 sized linear sys-
tem, which is solved using singular value decomposition. Fenney
mentions that 2-4 iterations of this refinement is enough for good
quality results [Fenney 2003].
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Original
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Intensity Labels Forward
Dilation
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Final
Compressed
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Figure 3: The different stages of the algorithm. Original texture: the texture we are compressing explicitly marked with an area of interest
which is depicted in the zoomed in versions. Intensity: original image and zoomed in region in grayscale. Labels: labeled image and zoomed
in region of texels with intensity values larger than their neighbors (green) and lower than their neighbors (blue). Forward dilation: after the
first pass of the algorithm, both the high image containing local intensity maxima (top) and the low image containing local intensity minima
(bottom) have been dilated forward. Backward dilation: after the second pass of the algorithm, both of the images have been completely
dilated. High/Low image generation: Downscaled images that resulted from averaging all of the texels in a block of the dilated images.
Modulation: computed optimal modulation values for the original image and the zoomed in region, given the computed high and low images.
Final compressed texture: The resulting compressed texture and the corresponding zoomed in region. Original image retreived from Google
Maps.
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Figure 4: A red and blue texture is compressed using LFSM com-
pression. Green positions are block centers. Since the border be-
tween blue and red areas aligns with block borders, the optimal
compression is to store one color as the high color of each block,
and another color as the low color of each block. The modulation
data is used to reconstruct the original image.

4 LFSM compression using Intensity Dilation

Given the high complexity of computing the optimal solution of
Equation (1), we present an alternative technique for real-time tex-
ture compression. The basis for our approach resides in the well
studied foundations of the human visual system’s sensitivity to con-
trast [Aydin 2010] [Thompson et al. 2011]. In particular, our algo-
rithm takes advantage of localized areas of an image that have high
contrast ratios. For most textures, these areas are those that contain
edges between high intensity and low intensity regions.

Due to the way that LFSM compressed textures store the com-
pressed data, as in Figure 2, there is an inherent filtering procedure
that takes place during retrieval of texel data. During the bilinear
upscale of the colors stored per block, adjacent blocks must main-
tain the extreme values in order to preserve the edges. In Figure 4,
the optimal compression scheme to preserve the edge would be to
store each color, red and blue, in all four blocks that cover the edge.
The modulation can be used to choose the appropriate pixels from
either of the two images. If any of the blocks have either red or blue
as both high and low colors, then the result would never be able
to fully encode the edge because the edge pixels would be blurred
from the bilinear upscale. In order to fully encode areas of high con-
trast, such as edges across very different colors, the high and low
intensity texels must be represented in all blocks that influence that
region during decompression. In this section, we cover the basic
principles behind the full intensity dilation algorithm, and present a

two-pass approximation algorithm that performs the encoding.

4.1 Intensity Labeling

In order to preserve the contrast within textures, the first step in our
compression scheme is to determine the high and low intensity val-
ues that produce the contrast. We start by using the definition for lu-
minosity derived from the Y value of the CIE XYZ color space due
to its speed and simplicity of calculation [Smith and Guild 1931]

I(x) = Rx ⇤ 0.2126 +Gx ⇤ 0.7152 +Bx ⇤ 0.0722.

Other luminance values, such as the L channel of CIE L*a*b are
also viable alternatives for computing the luminance. For textures
with alpha, we premultiply the alpha channel across each color
channel before performing the luminance calculation.

There are many ways to determine the local minima and maxima
of intensity, including searching for a near-zero magnitude gradient
or evaluating the eigenvalues of the Hessian. A simple alternative
is to simply look at the intensity value of each of the neighboring
pixels. If all of the neighbors have higher intensity values or all of
the neighbors have lower intensity values, then the pixel in question
is a local minimum or local maximum, respectively. Once we have
determined these local minima and local maxima, we can separate
them into two images, one representing all local minima, and the
other representing all local maxima.

4.2 Intensity Dilation

In order to capture the contrast features of an image, we propose
the use of a technique from mathematical morphology known as
dilation [Serra 1983]. Usually applied to binary images, dilation is
the use of a small kernel shape, such as a 3⇥3 pixel box, to expand
a region of pixels. Figure 5 shows how a star can be dilated by
using a small disk to create a larger star with rounded corners. In
LFSM texture compression, the input textures have at least three 8-
bit channels that must be dilated. When an empty pixel is adjacent
to two or more non-empty pixels there must be a strategy for how
to perform the dilation. In our method, as shown in Figure 5, we
have chosen to average adjacent pixel values in order to preserve the
color range that corresponds to a block. This reduces the amount
that noise affects our choice of block colors. One alternative is to
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Figure 5: Examples of dilation. Left: a red star is dilated by a
smaller circle into the green star with rounded corners. Right: Two
pixels, denoted in green, are dilated three times using a 3⇥ 3 pixel
box. If an empty pixel p is to be filled during dilation from multiple
pixels qi of different values, then the value stored for p will be the
average of the qi. The picture is labeled with the values that the
pixels would take after dilation of the initial pixels. The pixels that
have fractional labels denote the value that they would have taken
between labels one and two.

take the texel with the higher or lower intensity based on the image
being dilated, but this causes problems with noisy images.

In order to completely capture the important features of a texture,
the intensity labels of the image (Section 4.1) must be dilated until
they influence neighboring block values. In LFSM, blocks cover
rn ⇥ rm pixel regions. This implies that any pixel p at location
(px, py) affected by a block b centered at (bx, by) is at most d units
away, where d is defined as

d = sup

p
x

,p
y

{||b� p||1 : |bx � px| < rn and |by � py| < rm} .

In order to properly influence the colors of a block that covers a
given labeled pixel, we must dilate each of the extrema d times.

Once dilated, each block will represent the major local influences of
either low or high intensity depending on the image. The resulting
block color will be the average of the intensities within the block
boundaries. Certain areas, such as color gradients, contain very
few local minima or maxima and may not have any dilated texels.
In order to prevent these areas from being influenced by texels rela-
tively far from the block center, we fill empty texel values with the
corresponding extrema color. Once we have the high and low col-
ors corresponding to a given block, we are free to compute optimal
modulation values to match our original pixel colors. We compute
the modulation values by locally decompressing the high and low
colors and bilinearly upscaling them to get the proper interpolation
extremes. We then choose the optimal interpolation weight based
on the restrictions imposed by the format. For a complete overview
of the algorithm, see Figure 3.

4.3 Two Pass Algorithm

In the previous sections, we present an approach which requires
eight stages with a simple implementation. One to convert the im-
age to intensity values, one to label the maxima/minima, and three
to perform the dilation for each image containing intensity minima
and maxima. In this section, we propose a scheme to approximate
this pipeline using two passes: a forwards and a backwards pass.
For each pixel p, we store a per-pixel cache that lazily stores an
intensity value, a high label, and a low label. In other words, we
do not compute the intensity value until it is needed, at which point
we store it for future use. Each label has a distance value dist (p),
and a list of indices into the pixels that correspond to the maxima
or minima that the current pixel is dilated from.
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Figure 6: Our fast approximate dilation strategy. We perform the
extrema calculation and dilation in two passes. Top Left: First
pass, traverse the pixels from left to right, top to bottom labeling
and dilating extrema in the order of traversal as we encounter them.
Top right, bottom left, bottom right: Second pass, traverse the pixels
from right to left, bottom to top. At each pixel, assign the label
corresponding to the average of the pixels with the lowest distance
to their respective labels.

Forward Pass: We traverse pixels from left to right starting at the
top-left corner of the image. At each pixel p, we determine whether
or not it is an extrema by looking at neighboring intensity values.
Whenever an intensity value is computed, it is subsequently cached
to avoid further computation. If the pixel is a local maximum or
local minimum, we set dist(p) = 0, and continue. If the pixel is
not a local extrema, we investigate the values to the left and above
the pixel to determine its distance from a local extrema. We need
not look at any other neighbors due to the direction of this iteration.
We also assume the painter’s algorithm, so that if two or more local
extrema conflict, they will be overwritten (see Figure 6).

Backward Pass: After we have labeled the pixels with their lo-
cal extrema in one direction, we may proceed to dilate the pixels
in the opposite direction. We dilate backwards by starting in the
bottom right corner and proceed from right to left. At each pixel
p, both labeled and unlabeled, we find the set of neighbors of p,
{c}, that have the least value d = dist(c). If d is already the max-
imum number of dilations or dist(p) < d+ 1, then we ignore this
texel. If dist(p) = d + 1, then we concatenate {c} to the list for
p. Otherwise, we simply change the list for p to be {c} and set
dist(p) = d+ 1.

After both passes, the list of indices stored at each pixel are ap-
proximately those pixels that would contribute to the final color of
the pixel during a decoupled dilation of the extrema. This approx-
imation can be seen in the difference between the final labels in
Figures 5 and 6. During backwards dilation of a pixel p, we do not
have the proper information yet about whether or not pixels have
dilated to the left above p. This problem is most noticeable by the
missing pixels in the bottom row of the bottom-right image in Fig-
ure 6. This can be mitigated by handling the special case whenever
we place a non-maximally distant label above a label with a larger
distance.

Once both passes are complete, at each pixel we have stored the
intensity, and the closest minimum and maximum intensity pixels.
When averaging the pixels in each block of the high and low im-
ages, we can simultaneously find the minimum or maximum inten-
sity for the block. For a n ⇥ m block with N non-labeled pixels,
we store as block colors the sum of each averaged label weighted
with 1

nm
and the pixel corresponding to the minimum or maximum
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PSNR: 1 PSNR: 26.547 PSNR: 26.550 PSNR: 26.609
SSIM: 1.0 SSIM: 0.9884 SSIM: 0.6940 SSIM: 0.6640
Figure 7: Problems with using PSNR as the only metric. Each
image above has a similar PSNR to the original image on the far
left. Images courtesy of Zhou Wang [2004].

intensity weighted with N
nm

.

5 Results

The only LFSM texture compressor known to the authors is Imag-
ination’s PVRTexTool [2013], which we use to compare the speed
and quality of our algorithm. It incorporates the two stage com-
pression technique described by Fenney et al. [2003] and reviewed
in Section 3.3. The following comparisons all use the fastest set-
ting for the compressor and are not focused on quality compres-
sion. They do not represent the best possible quality achievable by
PVRTC or LFSM in general. Also, our results focus on the 4bpp
version of PVRTC, but similar methods should be useful for both
2bpp and future iterations of PVRTC. Although the compressor is
closed source, the decompressor provided with the SDK was used
to verify the results [Imagination 2013].

5.1 PSNR vs SSIM

Classically, the quality of texture compression techniques have al-
ways been measured with Peak Signal to Noise Ratio (PSNR) [Fen-
ney 2003][Ström and Pettersson 2007][Nystad et al. 2012][Kra-
jcevski et al. 2013]. This metric originates from signal process-
ing and corresponds to the amount of absolute difference between
pixel values. When compressing textures, such a metric can be use-
ful, such as when we need to encode a 2D function as a texture.
However, in LFSM compressed textures, decompression focuses
on a filtered representation of the compressed data and is mostly
designed for textures that will be consumed visually. As shown in
Figure 7, PSNR does not correlate with visual fidelity.

For this reason, we also include SSIM, a metric developed by Wang
et al. [2004] that captures differences of two images as perceived by
the human visual system. The metric is defined as

SSIM(Ix, Iy) =
(2µxµy + C1)(2�xy + C2)

(µ

2
x + µ

2
y + C1)(�

2
x + �

2
y + C2)

,

where µ is the mean intensity and � is the standard deviation, and
�xy is defined as

�xy =

1

N

NX

i=1

(xi � µx)(yi � µy).

C1 and C2 are application-defined constants to avoid numerical in-
stability. One limitation of SSIM is that it only measures a single
channel. In the subsequent comparisons, we measure SSIM by first
converting both the original and compressed image to grayscale.

5.2 Compression Speed

The main benefits of using intensity dilation over previous tech-
niques is in compression speed. Looking at Table 1, we observe
a 3.1x speedup over the previous fastest implementations. Similar
to other texture compression algorithms, we optimize away areas

Figure 8: Investigation of areas with high detail in some common
mobile graphics images. We notice that the texture compressed us-
ing intensity dilation maintains the smoothness of many image fea-
tures, while the original PCA based approach leaves blocky streaks.
Images courtesy of Google Maps and Simon Fenney.

of homogeneous pixels with precomputed lookup tables [Waveren
2006][Krajcevski et al. 2013]. Furthermore, textures that contain
a lot of homogeneity such as the ’streets’ texture in Table 1 gain a
small benefit from the instruction cache since intensity calculations
will reuse texel values. However, as we will see in Section 5.3, we
suffer from aggressive averaging artifacts in these areas. Most im-
ages do not have large homogeneous areas, and consequently com-
pression speed is tightly correlated with the size of the texture.

A majority of the speedups in our method come from minimizing
the number of times that we traverse the entire texture. In doing so,
we minimize the number of penalizing cache misses. Furthermore,
during the optimized dilation step described in Section 4.3, the per-
pixel cache that stores list of indices to pixels means that we are
not averaging pixels until the very end. This also has the benefit of
being cache friendly by avoiding costly memory lookups during the
dilation process.

5.3 Compression Quality

Compressing textures using intensity dilation, we observe an in-
crease in the SSIM index for a majority of textures and maintain
similar results in PSNR. Most notably, we can see that certain low
frequency features are retained in the compressed versions of many
textures with high entropy. In Figure 8, the differences between the
two methods are noticeable. Due to intensity dilation, the averaging
during dilation around the edges of the roof prevents compression
artifacts from arising due to local extrema. This is noticeable across
all images that have low frequency features, such as photographs or
billboard textures.

Although our technique is useful for this class of textures, we also
observe a class of textures that perform poorly with intensity dila-
tion. These textures correspond to the relatively low entropy texture
’mountains’ (Table 1) generated from vector graphics and used in
some modern day geomapping applications. We measure entropy
using the common formula from 8-bit intensity values [Shannon
1948]:

E = �
X

pi log pi,

where pi is the number of pixels with intensity i divided by the total
number of texels. This is not a steadfast metric of when our algo-
rithm performs poorly due to the metric’s lack of spatial coherence,
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bricks satellite gradient streets mountains lorikeet gametex
256⇥256 256⇥256 256⇥256 256⇥256 256⇥256 512⇥512 512⇥512

Image Compression Speed (ms) SSIM Peak Signal to Noise Ratio EntropyOur Method PVRTexTool Our Method PVRTexTool Our Method PVRTexTool
streets 17.76 63.74 0.9666 0.9850 33.63 32.35 1.546

gradient 20.30 65.11 0.9797 0.9673 30.17 30.97 7.528
satellite 20.93 64.92 0.9488 0.9180 32.09 30.43 6.963

mountains 21.77 66.63 0.9138 0.9620 30.01 34.47 3.960
bricks 21.91 65.45 0.9476 0.9331 27.44 26.35 7.468

gametex 97.25 264.68 0.9531 0.9225 30.20 29.80 6.552
lorikeet 97.39 263.14 0.9455 0.9111 30.75 31.37 7.386

Table 1: Various metrics of comparison for LFSM compressed textures using intensity dilation versus the existing state of the art tools. All
comparisons were performed using the fastest quality settings of the February 21st 2013 release of the PVRTexTool [Imagination 2013]. For
both metrics, higher numbers indicate better quality. The above results were generated on a single 3.40GHz Intel® Core™ i7-4770 CPU
running Ubuntu Linux 12.04. Images courtesy of Google Maps, Simon Fenney, and http://www.spiralgraphics.biz/

Context Original PVRTexTool Our Method
Figure 9: Detailed investigation of areas with high pixel homo-
geneity. Unlike the images in Figure 8, we notice that the texture
compressed using intensity dilation suffers from artifacts arising
from aggressive averaging of nearby intensity values, while the
PCA based approach has relatively good quality compression re-
sults. Original image retreived from Google Maps.

but it does provide a good intuition for when intensity dilation may
not produce favorable results. Many spatially correlated areas of
moderate homogeneity result in overaggressive extrema labeling.
The problem arises from the fact that in homogeneous regions of
pixels, there is no maximum or minimum. In these instances, ei-
ther no maximum or minimum exist, and the high and low images
will take the maximum and minimum intensity pixel, which is the
same value, or every pixel is a maximum and a minimum, so the
dilation aggressively eliminates small scale image features. In the
worst case, this problem occurs when there are very few colors in
a block’s region: on the order of two or three. Then every pixel
becomes labeled as both a maximum and a minimum, and blurring
occurs which removes image detail, as shown in Figure 9.

6 Limitations and Future Work

Limitations: Although intensity dilation provides good results at
3.1 times the speed of conventional LFSM compression techniques,
there are still some problems to contend with. Recently, trends in
mobile devices are supporting multiple compression formats, such
as DXT1 and ETC, where much faster, higher quality texture com-
pression techniques may be available, as shown in Table 2.

Using intensity dilation for LFSM formats should be used to fo-
cus on devices that exclusively support LFSM texture compression,
such as Apple’s iPhone and iPad. However, we have bridged the
gap between fast texture compression techniques for certain for-
mats, such as PVRTC and ETC1 [Geldreich 2013]. These times do

Image Speed (ms) Quality (PSNR)
DXT1 PVRTC ETC1 DXT1 PVRTC ETC1

satellite 0.5 20.9 21.7 32.1 30.4 33.9
mountains 0.5 21.8 18.3 33.3 30.0 36.6
gametex 2.1 97.3 90.3 31.2 30.2 33.2

Table 2: Fastest available compression speeds (including our in-
tensity dilation for PVRTC) for a variety of formats with similar
compression ratios.

not reflect any multi-threaded or GPU based techniques. Devoting
an entire GPU to compress a texture will likely have certain ben-
efits, but will also likely consume more power on mobile devices,
which is ultimately undesirable.

Future Work: Although intensity dilation is a good technique for
fast PVRTC compression, it does not try to optimize the amount of
compression quality afforded by LFSM formats. For example, ad-
ditional investigation is required to determine the effects of gamma-
corrected images versus raw RGB. Furthermore, in most compres-
sion techniques, an initial approximation is refined to gain better
quality, as described in Section 3.3. We believe that intensity di-
lation serves as a better initial approximation to these refinement
techniques than the previous state of the art and that developing
fast techniques for refinement is a ripe area of research. Addition-
ally, we can use the multi-pass formulation of intensity dilation, as
introduced in Sections 4.1 and 4.2, to come up with a paralleliz-
able algorithm that exploit both SIMD and multiple cores, such as
consumer GPUs.

In this paper, we have presented a new technique, intensity dilation
for compressing textures into LFSM formats. This allows real-time
graphics applications that require fast access to on-the-fly gener-
ated textures to benefit from texture compression on devices that
support LFSM. We believe that, with the rise of distributed graph-
ics applications, compressing textures on the fly will help decrease
server side storage costs, and provide overall greater flexibility for
developers.
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STRÖM, J., AND PETTERSSON, M. 2007. ETC2: texture com-
pression using invalid combinations. In Proceedings of the 22nd
ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware, Eurographics Association, GH ’07, 49–54.

SUN, W., LU, Y., WU, F., AND LI, S. 2008. DHTC: an effective
DXTC-based HDR texture compression scheme. In Proceedings
of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on
Graphics hardware, Eurographics Association, GH ’08, 85–94.

THOMPSON, W., FLEMING, R., CREEM-REGEHR, S., AND STE-
FANUCCI, J. K. 2011. Visual Perception from a Computer
Graphics Perspective, 1st ed. A. K. Peters, Ltd.

VON ZUR GATHEN, J., AND SIEVEKING, M. 1978. A bound on
solutions of linear integer equalities and inequalities. Proceed-
ings of the American Mathematical Society 72, 1, pp. 155–158.

WANG, Z., BOVIK, A., SHEIKH, H., AND SIMONCELLI, E. 2004.
Image quality assessment: from error visibility to structural sim-
ilarity. Image Processing, IEEE Transactions on 13, 4 (april),
600–612.

WAVEREN, J. M. P. V., AND CASTAÑO, I. 2007. Real-time
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