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Abstract

We present a new algorithm to compute a collision-free tra-
jectory for a robot manipulator to pour liquid from one con-
tainer to the other. Our formulation uses a physical fluid
model to predicate its highly deformable motion. We present
simulation guided and optimization based method to auto-
matically compute the transferring trajectory. Instead of ab-
stract or simplified liquid models, we use the full-featured and
accurate Navier-Stokes model that provides the fine-grained
information of velocity distribution inside the liquid body.
Moreover, this information is used as an additional guiding
energy term for the planner. One of our key contributions is
the tight integration between the fine-grained fluid simulator,
liquid transfer controller, and the optimization-based planner.
We have implemented the method using hybrid particle-mesh
fluid simulator (FLIP) and demonstrated its performance on
4 benchmarks, with different cup shapes and viscosity coeffi-
cients.

1 Introduction
Robotic manipulation of non-rigid and physical deformable
objects has been an active area of research. It frequently
arises in industrial and medical applications. Most prior
work in this context has been related to picking flexible ob-
jects, cable placement, surgical procedural planning, fold-
ing clothes, etc. The resulting planners deal with issues re-
lated to collision-free path computation as well as reliable
physics-based simulation of deformable objects.

In this paper, we address the problem of automatically
pouring liquids from one container to the other using robot
manipulators. Pouring liquids is a special case of a fluid ma-
nipulation tasks that frequently arises in manufacturing ap-
plications, corresponding to dispensing of adhesives, clean-
ing of parts, lubricant changes, batch material handling in-
cluding fluids, etc. Other applications include service robots
being used for daily chores such as cooking, cleaning or
feeding at home. One of the main challenges in these ap-
plications is modeling the motion of the fluid and taking
its deformable dynamics constraints into account as part of
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Figure 1: An example of liquid transfer task performed by 7-
DOF ClamArm robot. We use an optimization-based plan-
ner that is tightly coupled with a fluid simulator and fluid
transfer controller.
trajectory planning. In order to accurately model the fluid,
we need to solve the governing nonlinear partial differen-
tial equation, which can be a computationally challenging.
Prior works on motion planning with fluid constraints (Davis
2008; Kuriyama, Yano, and Hamaguchi 2008) use rather
simple fluid models or are based on imitation-based learn-
ing (Langsfeld et al. 2014). However, their capabilities are
limited. No good solutions are known for accurately model-
ing and planning the tasks of fluid pouring using robots.
Main Results: We present a novel algorithm for
optimization-based planning that takes into account
constraints corresponding to pouring liquids. One
of key contributions is the tight integration between
the fine-grained fluid simulator and the optimization-
based planner. We use an accurate particle-based fluid
representation that has been used for accurate and
fine-grained modeling of fluids (Barreiro et al. 2013;
Ihmsen et al. 2014). The complexity of particle-based fluids
can be high and it can take minutes to simulate a single
timestep. However, we design an efficient approach to
minimize the number of simulation passes required.

In our approach, the optimization-based planner tries to
compute a smooth and collision-free robot joint trajectory
that takes into account the liquid dynamics constraints spe-
cific to the task of pouring the liquid from one container to
the other using an end-effector. These constraints are for-



mulated as additional energy terms. To resolve the nonlin-
earity and non-smoothness of the fluid simulation, we de-
sign a heuristic smooth approximation to these terms, so
that conventional local optimization techniques can be used.
We demonstrate the application of our planner to several
challenging pouring tasks. Moreover, we evaluate its perfor-
mance by changing the physical parameters such as viscos-
ity and the size of the containers.

The rest of the paper is organized as follows: after review-
ing some related works in section 2, we formulate our plan-
ning problem in section 3 and present our motion planning
that takes into account fluid constraints in section 4. Finally,
we highlight the performance of our algorithm on complex
benchmarks in section 5.

2 Related Work
In this section, we give a brief overview of prior work in
computational fluid dynamics (CFD), trajectory planning,
and motion planning with liquid constraints.

2.1 Computational Fluid Dynamics
CFD is widely studied in computational mathematics and
related areas. A variety of simulation techniques for liquids
are known in the literature (Anderson and Wendt 1995).
In practice, several factors affect the choice of a simulator
for a given application. The first consideration is that the
liquid free surface, i.e. the surface where the liquid meets
the air, tends to be complex and undergoes frequent topol-
ogy changes. As a result, one needs efficient data structures
to represent it (Scardovelli and Zaleski 1999). In our ap-
proach, we represent the liquid as a set of particles, which
has been widely used in coastal engineering (Barreiro et
al. 2013) and computer graphics (Ihmsen et al. 2014). An-
other prominent representation is based on a triangulated
mesh, which is used as the basis for higher-order accu-
rate time integrators (Eymard, Gallouët, and Herbin 2000;
Harlow, Welch, and others 1965). However, these methods
require complex and costly volume tracking algorithm to
maintain the free surface.

Based on the underlying particle representation, one
needs to select the governing equation and its discretized
version so that we can predicate the position and velocity of
the liquid free surfaces at each time step. In our simulator,
we use the time integration scheme proposed in (Zhu and
Bridson 2005), which is a discrete version of Navier-Stokes
equation of first order accurate in both temporal and spatial
domain. This is a hybrid mesh-particle solver that has been
widely used in computer graphics, see (Bridson and Müller-
Fischer 2007) for more details on this method and other liq-
uid simulation techniques. An alternative is to use purely
particle-based methods such as the one described in (Ihmsen
et al. 2014). However, the solver in (Zhu and Bridson 2005)
has better overall performance as it allows larger timestep
size while maintaining stability.

2.2 Trajectory Planning
In earlier works of motion planning, the main goal was to
compute a collision-free path from an initial configuration

to a goal configuration. Later, these techniques have been
extended to handle different kinds of constraints related to
the robot or the underlying environment. Random sampling-
based approaches (Stilman 2007; Berenson et al. 2009) can
be used to compute a trajectory that satisfies various con-
straints using a direct projection of configurations into the
constrained space.

Optimization techniques are used to compute a trajec-
tory that only satisfies some hard constraints (e.g. collision-
free motion), but is also optimal under some specific met-
rics, e.g., smoothness or length. Many techniques based on
numerical optimization have been proposed in the litera-
ture (Betts 2001). Some algorithms start with a collision-
free trajectory and refine or smoothen it as a post-process us-
ing optimization techniques (Brock and Khatib 2002). Other
approaches are used to compute a minimum-jerk trajectory
taking into account the end-effector constraints (Olabi et al.
2010; Gasparetto and Zanotto 2008; Alatartsev et al. 2014).
These methods optimize the trajectory based on an appro-
priate function to model the jerk motion. Some recent ap-
proaches (Ratliff et al. 2009; Park, Pan, and Manocha 2012)
use a numerical solver to compute a trajectory that satisfies
all the constraints. These methods typically represent vari-
ous constraints, e.g. smooth trajectories, as soft constraints
in terms of additional penalty terms of the objective func-
tion, and use numerical solvers to compute the resulting tra-
jectory.

2.3 Planning with Fluid Constraints
There is considerable works on motion planning with de-
formable objects. These include techniques to track and
manipulate elastic bodies such as rubber beam, string or
cloth (Triantafyllou et al. 2015; Li et al. 2015; Lee et al.
2014; Schulman et al. 2013), but there is relatively little
work on handling liquid dynamics constraints. (Davis 2008)
model the liquid pouring task in an abstract and qualitative
manner and (Kunze et al. 2011) present a general framework
for representing high-level information using physics-based
simulation, but do not model fine-grained liquid dynamics.
(Kuriyama, Yano, and Hamaguchi 2008) present an algo-
rithm for a closely related problem: spilling avoidance. In
order to find a feasible trajectory, their algorithm performs
a guided stochastic search. (Langsfeld et al. 2014) present a
solution for the same problem using imitation learning and
use considerable amount of demonstration examples.

3 Overview
In this section, we introduce our problem, give an overview
of our liquid simulator and the planning framework.

3.1 Problem Statement
Given a robot arm whose configuration space C has di-
mension D. Each configuration is represented as a vector
q ∈ R

D. The robot can only move in Cfree = C/Cobs, where
Cobs represents the union of configurations that are in col-
lision with a set of static C-obstacles: {O

s
i ∣i = 1,⋯,M}.

We assume that all the obstacles are rigid bodies. In addi-
tion, we introduce an additional dynamic C-obstacle Od

(t)



which represents the source container that contains the liq-
uid or fluid and its configuration is denoted as s(t) ∈

R
6. The goal of our planner is to compute a collision-

free robot trajectory that transfers the liquid into the static
target container Os

0. We assume that the robot’s arm is
grasping the source container at the initial configuration,
so that Od is treated as the end-effector. In order to rep-
resent the liquid body L, we use a set of L particles
{pj ∣j = 1,⋯, L} and store the position and velocity for
each of them as illustrated in figure 2. Each configuration
of the liquid body can be represented as a vector p ∈ R

6L.

Figure 2: Particle rep-
resentation of the liq-
uid. As a given bound-
ary condition, no liquid
particle should penetrate
O

s
i ,O

d
(t) so the red par-

ticles are considered as
invalid.

Based on the above rep-
resentation, We define a tra-
jectory as a set of N config-
urations at the discretized
timesteps with a fixed in-
terval. The trajectory of the
robot arm QC ∈ R

DN and
the trajectory of the liquid
QL ∈ R

6LN over a period
of time t ∈ [0, T ] are de-
fined as:

QC = (qT
1 qT

2 ⋯ qT
N )

T

QL = (pT
1 pT

2 ⋯ pT
N )

T
,

where qi,pi are the config-
uration at time t =

i−1
N−1

T

so that pji corresponds to the
jth particle at timestep i.
Note that we haven’t explic-
itly defined the trajectory of the source container Od

(t),
since its trajectory can be computed by end-effector trans-
formation: si = TOd(qi), which is defined by concatenating
the 4 × 4 joint transformations from the base link.

Since liquid particles are subject to the liquid governing
equation: the Navier-Stokes equation, liquid trajectory QL
is computed by running a fluid simulator, given Os

i ,O
d
(t)

as the underlying boundary condition. For each particle set
pi at timestep i, this boundary condition states that no fluid
particle can be in collision with Os

i ,O
d
(t), see figure 2. As

a result, QL is a function of QC and we can define the liquid
simulator QL = S(QC) as:

QL = S(QC) = (pT
1 f(q1,p1)

T
⋯ f(qN−1,pN−1)

T
)
T
,

where f(qi,pi) is the time-stepping function defined in al-
gorithm 2. In our planning algorithm, S is treated as a black
box non-smooth nonlinear function so that we can make no
assumptions except evaluating S for a certain QC , see the
Appendix for more details on our implementation of S .

3.2 Optimization-based Motion Planning
Since we want QC to satisfy several constraints at the same
time, we formulate the motion planning problem as a con-
tinuous numerical optimization problem in the high dimen-
sional robot trajectory spaceQC with the following objective
function:
E(QC) = cobs(QC) + csmooth(QC) + cfluid(QC ,S(QC)). (1)

The first term cobs(Q
C
) imposes the collision avoidance

constraints, and many approaches from robotics can be used
to compute a collision-free trajectory. In our case, the un-
derlying optimization formulation is similar to the one used
in (Kalakrishnan et al. 2011; Park, Pan, and Manocha 2012).
In particular, we first compute an unsigned distance field for
all static obstacles Os

i so that we can perform efficient dis-
tance queries d(x) for any Cartesian point x. Next, a set of
spheres Bi with center xi and radius ri are used to approx-
imate the robot as well as the source container. This rep-
resentation simplifies our energy formulation. Given these
representations, we define:

cobs(Q
C
) = ΣBimax(ε + ri − d(xi),0)∥ẋi∥ +

Σ<Bi,Bj>max(ε + ri + rj − ∥xi − xj∥,0)(∥ẋi∥ + ∥ẋj∥),

which account for both static and dynamic (self-)collision
avoidance. The second term is used to impose smoothness
constraint on QC with Dirichlet boundary conditions:

csmooth(Q
C
) =

1

2
Σi∥qi+1 − qi∥

2.

Finally, the last term cfluid(●,S(●)) is an objective func-
tion that forces the fluid particles pji to go into the target
container. We defer the formulation of cfluid to section 4.
Since S is involved in the formulation of cfluid, this term is
also non-smooth and non-linear. As a result, the gradient of
cfluid is not well defined and continuous optimization tech-
niques cannot be used directly. Moreover, the evaluation of
the function cfluid(●,S(●)) itself is costly. In practice, we
usually have D < 100, while L is of the order 104∼6 and
a single call to algorithm 2 takes 3 seconds and an evalu-
ation of QL with N = 1000 takes roughly an hour in our
implementation. As a result, stochastic optimization tech-
niques such as (Kalakrishnan et al. 2011) are not applicable
because they require a considerable amount of function eval-
uations. Instead, we use a smooth heuristic approximation to
cfluid so that conventional local optimizer can be used and
we ignore the gradient with respect to S so that the number
of calls to S is minimized.

3.3 The Algorithm Overview
Our planning approach is illustrated in figure 3. The method
first tries to find an initial guess QC . It then iteratively finds
a heuristic approximation c∗fluid to cfluid and computes new
QC by optimizing:

E∗
(QC) = cobs(Q

C
) + csmooth(Q

C
) + c∗fluid(Q

C
),

until the function converges or reports failure after a fixed
number of iterations. In the next section, we refine the details
of how cfluid, c

∗

fluid are defined.

4 Planning with Fluid Constraints
In this section, we present our planning algorithm that takes
into account the fluid dynamics constraints. Our formulation
is based on using an energy formulation, cfluid(●,S(●)),
and computing its approximation c∗fluid(●) to accelerate the
computations. Finally, we combine it with our optimization
approach to compute a trajectory for the end effector and the
manipulator.
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Figure 3: Overview of the various components of our motion
planning algorithm for pouring liquids. The symbols used in
this figures are the same as those used in algorithm 1.

4.1 Trajectory Initialization

cOs
0

cOd

Figure 8: The local
coordinate system and
the center of the opening
for source/target con-
tainer, used to define
the objective function
equation 2.

The optimization algorithm
needs a good initial trajec-
tory and refines it iteratively
in the high-dimensional
configuration space. This
boils down to computing
an initial trajectory QC

from the initial pose q1

following some qualitative
observations of human
manipulators. These ob-
servations are integrated
into cfluid and the initial
trajectory is computed by
optimizing equation 1.
First, for each of container Os

0,O
d, we perform a simple

shape analysis to extract the center point of the opening
on top of the container cOs

0
,cOd attached with a frame,

as illustrated in figure 8. We perform this computation by
using a watershed algorithm (Roerdink and Meijster 2000)
on the voxelized container to extract the opening and then
compute the centroid. We assume that Z = (0 0 1)

T is the
negative gravity direction.

We divide the pouring task into two phases: the moving
phase P1 where robot orients Od properly to let liquid pour
out; and then the pouring phase P2, where the robot tries
to avoid spilling by making small perturbations to the ori-
entation of Od. The time periods of these two phases are
given as input parameters to the algorithm. We assume q1∼P

belongs to P1 and qP+1∼N belongs to P2. During P1, the
robot moves cOd close to cOs

0
as well as gradually turns Od

by an angle, e.g. 90○, along a horizontal axis. We formulate
this as an energy term:

corientfluid (qP ) = ∥ (ZT 0)TOd(qP ) (
Z
0

) ∥
2.

Note that we only apply the orientation constraint to
timestep P so that robot won’t move after timestep P since
the term csmooth discourages any movement. In addition, we
want the opening of Od to be always pointing at cOs

0
. This

observation introduces an additional term:

cdirfluid(qi) = ∥((cOs
0
− TOd(qi)cOd) ×

2
(TOd(qi) (

Z
0

))∥
2,

where a ×2 b is the 2D cross product of the first 2 × 1 sub-
vectors of a, b. We introduce no additional energy terms for
P2. So that to get the initial trajectory, we use the following
cfluid:

cfluid(Q
C
) = corientfluid (qP ) +Σi=1∼P cdirfluid(qi) + c

hint
fluid, (2)

where the last term is a hint to guide the optimizer across
highly non-linear regions:

chintfluid(Q
C
) = w∥cOs

0
− TOd(qP )cOd∥

2,

which requires that the two opening centers are as close as
possible. We set w = 1E3 to guide the optimizer in a first
pass of optimization. And then we reduce w to 0.1 as a reg-
ularization and run a second optimization. An example of
the initial trajectory computed using our algorithm is shown
in figure 9.

4.2 Simulation-Guided Trajectory Refinement

pj

P
j
S1

P
j
S2

P
j
S3

Figure 10: Three stages in the
streamline of a single particle
pj : S1 in red, S2 in green and
S3 in blue.

Although the initial
trajectory is smooth
and satisfies various
qualitative criteria
for the liquid pouring
task, the brute-force
guess by chint(Q

C
)

may not be able
to guide the fluid
into Os

0 due to the
unknown hydro-
dynamic behavior of
liquid. As a result,
the planning algo-
rithm tries to adjust
QC iteratively until
convergence, which
is guided by our

liquid simulator.
Specifically, we first run the fluid simulator to get QL =

S(QC) and then replace chint(Q
C
) with a liquid guid-

ing term cguidefluid(Q
L
). To define this term, we make use

of the particle streamline. Each particle pj is associated
with a streamline Pj

= {pji ∣i = 1,⋯,N} illustrated in fig-
ure 10. An intuitive requirement for successful transfer is
that every Pj should pass through cOs

0
. As a result, we

have cguidefluid(Q
L
) = Σjdist(P

j
(S(QC)),cOs

0
). Now the big

problem is that we don’t have the gradient information for
S(QC), so that the optimization of cguidefluid(Q

L
) requires nu-

merical differentiation or stochastic optimization algorithms
such as (Kuriyama, Yano, and Hamaguchi 2008), which usu-
ally require a lot of costly evaluation of S .

Instead, we use a heuristic smooth approximation to
cguidefluid(Q

L
) by performing a simple analysis of Pj . We as-

sume that Pj is comprised of three stages. During the first



QC2 , i = 860 QC2 , i = 930 QC2 , i = 1060 QC2 , i = 1230

QC3 , i = 860 QC3 , i = 930 QC3 , i = 1060 QC3 , i = 1230

Figure 4: Different timesteps i of the optimized robot trajectory QCk and simulated liquid trajectory S(QCk) after k iterations of
algorithm 1. We use small dynamic viscosity coefficient µ = 0.01 for the liquid in this benchmark. After only one iteration, the
flow becomes center around the target opening cOs

0
.

QC2 , i = 1740 QC2 , i = 1910 QC2 , i = 2310 QC2 , i = 2480 QC2 , i = 2590

QC7 , i = 1740 QC7 , i = 1910 QC7 , i = 2310 QC7 , i = 2480 QC7 , i = 2590

Figure 5: Different timesteps i of the optimized robot trajectory QCk and the simulated liquid trajectory S(QCk) after k iterations
of algorithm 1. We use a large dynamic viscosity coefficient µ = 0.5 for the liquid. The error reduction is slower and even after
5 iterations the flow is still not well centered around the target opening cOs

0
.

stage S1, the particle lies within the container Od and it
is the pressure/viscosity terms that affects Pj

S1. During the
phase S2, the particle leaves the container and the gravity
term dominates its motion so thatPj

S2 should roughly follow
a quadratic curve (this assumption is verified in section 7).
Finally, during S3 the particle is in Os

0 and Pj
S3 is again

dominated by pressure/viscosity terms. These stages are il-
lustrated in figure 10.

Overall the near quadratic curve Pj
S2 has the most effect

in cguidefluid . Indeed, cOs
0

can never pass through Pj
S1 or Pj

S3,
because they are both within the container. So thatPj

S2 alone
already provides sufficient information to adjust the position
of Od. In order to avoid gradient evaluation, we can simply
ignore the dependency of Pj

S2 on QC to get the zeroth-order
approximation of S to define:

cguide∗fluid = Σjdist(TOd(qS2)P
j
S2,cOs

0
),

where the function dist(P,cOs
0
) returns the closest point

from cOs
0

to a piecewise linear curve segment, whose gra-
dient can be locally evaluated. Note that Pj is replaced
with Pj

S2 and it is assumed to be independent of S(QC) so
that we don’t need to evaluate the gradient of S. Instead,

we introduce a heuristic assumption that Pj
S2 is rigidly at-

tached to the container at the beginning timestep of S2.
Here TOd(qS2)P

j
S2 is defined by transforming each vertex

of Pj
S2 by TOd(qS2). This is a reasonable assumption be-

cause we can only control the particle when it is still within
the containerOd, so that we control it at the last moment be-
fore it leaves Od, which is the beginning of stage S2. Now
we can formulate cfluid as:

c
∗

fluid(Q
C
) = c

orient
fluid (qP ) +Σi=1∼P c

dir
fluid(qi) + c

guide∗
fluid

(Q
C
). (3)

The remaining problem is to find the timestep index corre-
sponding to the beginning of S2. To do this we make use of
the fact that PS2 should approximate a quadratic curve and
solve the following least square problem:

argminv0,c0Σi∈W∥xji − (

1

2
gt2i + v0ti + c0)∥

2, (4)

where g is the gravity, ti = i−1
N−1

T and W is a sliding win-
dow through all consecutive K timesteps in Pj from which
we pick theW with minimum error. Next, we propagate the
curve by greedily expand the window W by one time step
until the relative error is above some threshold ε. The begin-
ning of S2 is then identified with the beginning of W . Our
overall pipeline is illustrated in algorithm 1.



QC2 , i = 780 QC2 , i = 910 QC2 , i = 1080 QC2 , i = 1340

QC3 , i = 780 QC3 , i = 910 QC3 , i = 1080 QC3 , i = 1340

Figure 6: Different timesteps i of the optimized robot trajectory QCk and simulated liquid trajectory S(QCk) after k iterations of
algorithm 1. We use small dynamic viscosity coefficient µ = 0.01 for this liquid. Again, the flow is centered around the target
opening cOs

0
but there is some splash at the beginning i = 780 which cannot be reduced by further iterations.

QC2 , i = 1740 QC2 , i = 1950 QC2 , i = 2330 QC2 , i = 2500 QC2 , i = 2640

QC6 , i = 1740 QC6 , i = 1950 QC6 , i = 2330 QC6 , i = 2500 QC6 , i = 2640

Figure 7: Different timesteps i of the optimized robot trajectory QCk and the simulated liquid trajectory S(QCk) after k iterations
of algorithm 1. We use a large dynamic viscosity coefficient µ = 0.5 for the liquid. Same as the case with figure 5, error
reduction is slower. After 4 iterations, robot moves Od back and forth, trying to make the viscous liquid fall inside Os

0.

Figure 9: An example of the initial trajectory for the bench-
mark of figure 4 at timestep i = 250/1000,700/1000, which
is found using our two-stage algorithm.

5 Implementation and Results
In this section, we present the implementation details and
highlight the performance of our trajectory planning algo-
rithm on challenging benchmarks. We use ROS (Quigley
et al. ) with 7-DOF ClamArm as the underlying manipula-
tor. All the optimization computations are performed using
the Augmented Lagrangian algorithm, with L-BFGS algo-
rithm as the sub-problem solver. In terms of fluid dynamics,

Parameter Value (Unit)

Avg. Particle Radius 0.0075(m)

Gravity −9.81Z(m/s)
∆t = T /N 0.01(s)
No. Particles (Long Bottle) 60000
No. Particles (Cup with Handle) 56000
T 15(s)
TP1 6(s)

Table 1: Parameters used in our liquid simulator: Average
particle radius, gravity, time step size, number of particles
need to fill the long bottle, number of particles to fill the cup
with handle, total sequence duration, duration of P1.

our implementation follows the outline of (Zhu and Bridson
2005) combined with (Batty, Bertails, and Bridson 2007) for
boundary handling. We precompute a signed distance field
for both Od and Os

0 as the solid boundaries, and we assume
that there is no collision between the robot and liquid parti-
cles.



Algorithm 1 Liquid Pouring Trajectory Optimization Algo-
rithm
Input: Center of opening cOs

0
,cOd , initial pose q1

Output: QC to transfer water from Od to Os
0

1: ▷ Run a first pass of initialization
2: Set w = 1E3 and set qi = q1 as initial guess
3: QC1 = argmin (1) with (2)
4: ▷ Run a second pass of initialization
5: Set w = 0.1 and QC1 as initial guess
6: QC2 = argmin (1) with (2)
7: ▷ Main iteration
8: Set k = 3
9: while true do

10: Run liquid simulation QL = S(QC)
11: ▷ Find the beginning of S2 for each particle pj
12: for all j do
13: Find Pj

S2 by solving equation 4
14: end for
15: ▷ Update the trajectory
16: Set QCk−1 as initial guess
17: QCk = argmin (1) with (3)
18: ▷ exit if the difference is small
19: if ∥QCk−1 −Q

C

k∥ < ε then
20: Return QCk
21: end if
22: Set k = k + 1
23: end while

The performance of planning highly depends on the use
of appropriate mesh data-structure for liquid pressure com-
putation. A simple implementation can be based on uniform
grid whose memory complexity is O(V /V 0) where V is
the volume of bounding box and V 0 is the volume of each
mesh cell. However, since particle distribution is highly ir-
regular, a uniform grid can be inefficient in terms of mem-
ory footprint. Instead, we use an adaptive data structure: the
DT-grid (Nielsen and Museth 2006) which only assign mesh
cells around particles so that the complexity becomes O(L)
where L is the number of particles.

All the results were generated on a desktop computer with
i7 − 4790 8-core CPU 3.6GHz and 8GB of memory. table 1
lists the parameters used within our liquid simulator. Ac-
cording to the CFL condition (Bridson and Müller-Fischer
2007), there is a maximum allowable time step size as a
function of particle velocity. This is not considered in our
current implementation. But no violations of CFL conditions
are observed. The overall performance of our algorithm is
shown in table 2. The underlying liquid simulator is the most
expensive step in the overall computation.

We have evaluated our approach on two sets of bench-
marks with different Od shapes and fluid viscosity. figure 4
illustrates several timesteps of the manipulator and fluid mo-
tion trajectory. In this case, we use small viscosity coeffi-
cient, µ = 0.01. The flow becomes centered around cOs

0
after

only 1 iteration of algorithm 1 and converged after 2 itera-
tions. We then increase the viscosity to µ = 0.5, which corre-
sponds to some sticky material such as mud or honey. In this

Substep Computation Time (Unit)

One step of fluid simulation 3.3(s)
One pass of fluid simulation 0.9(h) for N = 1000
Computing QC1 and QC2 < 10(s)
Computing QCk>2 < 3(s)

Table 2: Performance of each sub-step in algorithm 1.

case, the problem of motion planning with fluid constraints
becomes more challenging, since the liquid simulation op-
erator S plays an important role as µ increases. However,
our algorithm is still able to guide liquid into Os

0 after six
iterations, as illustrated in figure 5. Note that the flow is less
centered around cOs

0
compared with figure 4.

In the previous benchmarks, the source container Od is a
bottle with a small opening, so that the particle outflow ve-
locity distribution is highly concentrated. We relax this as-
sumption in the next benchmark shown in figure 6, where
we use the handled cup as Od to allow a wider opening.
Our iterative algorithm works well and can reduce the er-
ror in a few iterations. Again we then run the algorithm on
a highly viscous fluid with µ = 0.5. The result is shown in
figure 7. Same as the case in figure 5, more iterations are
needed. After five iterations, the robot does some back and
forth adjustment to make the viscous sheet falls in the cup.

6 Conclusions, Limitations and Future Work
In this paper, we present a novel algorithm for trajectory
planning for pouring liquids. Our formulation takes into ac-
count collision-free, smoothness, and dynamics constraints
of the robot combined with fluid simulation constraints. In
particular, we use fine-grained liquid simulator to guide the
trajectory optimization for the robot manipulator, and inte-
grate them into optimization-based motion planning frame-
work. Given the nonsmoothness and nonlinearity of the liq-
uid simulation procedure, we use a heuristic approximation
to guide the robot manipulator towards the desired goal con-
figuration. We have demonstrated our approach with differ-
ent container shapes and the physical parameters of the fluid
(e.g. viscosity).

Our approach has several limitations. Our current planner
and liquid transfer controller are specifically designed for
pouring tasks. We also assume that the environment is static
and the target container is fixed and oriented in an upright
configuration. We also assume that the liquid model is the
single-phase incompressible Navier-Stokes model and ig-
nore the air pressure surrounding fluid particles.The energy
based approximation considerably speeds up the computa-
tion, but may not always find a good trajectory that can sat-
isfy all the constraints, including fluid dynamics. The com-
plexity of the approach increases with the number of parti-
cles used to approximate the fluid and we use low resolution
particle approximation for efficiency reasons.

There are many avenues for future work. Besides over-
coming these limitations, we would like to evaluate our plan-
ner in complex scenarios and finally test its performance on a
real robot hardware. It would be useful to perform other fluid



manipulation tasks and design appropriate motion planning
strategies. We would like to accelerate the computations us-
ing parallel algorithms that exploit multi-core CPUs and
many-core GPUs.

7 Appendix: Liquid Simulator
The liquid simulator S used in our planner proceeds by re-
peatedly applying the time integrator: pi+1 = f(qi,pi). The
governing equation of our solver is the single-phase incom-
pressible Navier-Stokes equation:

Du

Dt
= µ∇ ⋅ (∇u +∇uT ) + g −∇p

∇ ⋅ u = 0, (5)

where u is the velocity field inside the liquid body. On the
right hand side are three body force terms that drive the liq-
uid particles: the isotropic viscosity force with coefficient µ,
the gravity force g, and the pressure force p. The dynamic
viscosity coefficient µ describes how sticky the liquid is.
For example, oil and honey have a larger µ as compared
with water. Moreover, we introduce additional constraints
∇ ⋅ u = 0, which essentially imply that the volume of fluid is
conserved, so that the unknown pressure can be identified as
the Lagrangian multiplier and the resulting system is closed.

There are many ways to discretize equation 5, our simu-
lator is based on (Zhu and Bridson 2005), and it is described
in algorithm 2. This is essentially a time-splitting integrator
that accounts for each of the three terms separately. In this
formulation, ∇⋅(∇u+∇uT )(x), is the evaluation of the dif-
ferential operator ∇ ⋅ (∇u + ∇uT ) at x and ∇ ⋅ u(x) is the
evaluation of∇⋅u at x. In order to perform these evaluations,
we use a background grid and a finite difference scheme.
These two terms require solving a globally coupled linear
system and that becomes the computational bottleneck of
the resulted simulator. For more details, we refer the readers
to (Bridson and Müller-Fischer 2007).

Algorithm 2 The time integrator pi+1 = f(qi,pi)

Input: All particle pji ’s position xji and velocity uji
Output: New positions xji+1 and velocities uji+1

1: ▷ Apply gravity force
2: for all j do
3: uj∗i = uji + g∆t
4: end for
5: ▷ Apply viscosity force
6: for all j do
7: (uj∗∗i − uj∗i ) = ∆tµ∇ ⋅ (∇u∗∗ +∇u∗∗T )(xji )
8: end for
9: ▷ Apply pressure force

10: for all j do
11: (uji+1 − u

j∗∗
i ) = −∆t∇pj , ∇ ⋅ u(xji ) = 0

12: end for
13: ▷ Particle position update
14: for all j do
15: xji+1 = x

j
i + u

j
i+1∆t

16: end for

i = 1 i = 2 i = 3 i = 4 i = 5

Figure 11: We ran 5 passes of 2D fluid simulations with
same initial setting: pouring a cup of water. For each larger
i, we double the resolution and halve the particle radius. A
mesh is reconstructed for each timestep in each simulation
(purple).
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Figure 12: Left: Error plot for mesh(i, t), i = 1,⋯,4 with
respect to timestep t. As i increases, the error is approxi-
mately halved. Right: Number of particles whose streamline
can be approximated by a quadratic curve with error less
than ε, plotted against the total number of particles used in
simulation. We choose ε equals to particle radius in all the
experiments.

To work with a motion planner, it is important for this
fluid simulator to be convergent. Here we briefly verify
the first order spatial-temporal convergence property of our
fluid simulator. To do this, we perform 5 passes of 2D
simulations of pouring a cup of water as illustrated in fig-
ure 11, under different resolutions. For each timestep in
each simulation, we reconstruct a mesh to get 5 sequences
of meshes denoted as mesh(i, t), where i is the sequence
id and t is the timestep id. To investigate the conver-
gence property, we treat i = 5 as the groundtruth simula-
tion and define the error metric as: Error(mesh(i, t)) =

dm(mesh(i, t),mesh(5, t)), where dm is the mean error
defined in (Aspert, Santa Cruz, and Ebrahimi 2002). With
this definition, the error plot for mesh(i, t), i = 1,⋯,4 is il-
lustrated in figure 12, where it is obvious that the mean error
is approximately halved as we double the resolution.

In addition, our objective function equation 4 is based
on the assumption that particle streamlines can be approx-
imated as quadratic curves. For each of the 5 simulation
passes, we can verify this assumption by counting the num-
ber of particles whose streamline can be approximated by a
quadratic curve with error smaller than ε, and plot it against
the total number of particles used in simulation. From the
resulting figure 12, we are confident that it is safe to make
such assumption for at least half of the particles.
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