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Abstract— We present an optimization-based motion plan-
ning algorithm to compute a smooth, collision-free trajectory
for a manipulator used to transfer a liquid from a source
to a target container. We take into account fluid dynamics
constraints as part of trajectory computation. In order to avoid
the high complexity of exact fluid simulation, we introduce a
simplified dynamics model based on physically inspired approx-
imations and system identification. Our optimization approach
can incorporate various other constraints such as collision
avoidance with the obstacles, kinematic and dynamics con-
straints of the manipulator, and fluid dynamics characteristics.
We demonstrate the performance of our planner on different
benchmarks corresponding to various obstacles and container
shapes. Furthermore, we also evaluate its accuracy by validating
the motion plan using an accurate but computationally costly
Navier-Stokes fluid simulation.

I. INTRODUCTION

Motion planning is a core problem in robotics and has
been studied for many decades. It is typically used to
compute a collision-free path for moving an object from an
initial position to a goal position or for assembly tasks. Some
of the earlier applications of motion planning were restricted
to the handling of rigid or articulated models. Recently,
there has been interest in manipulating highly deformable
objects such as cloth [19], ropes [12], or human tissues [7],
which can have higher physical-simulation complexity. In
this paper, we deal with planning for fluid manipulation tasks
performed using a robot, including liquid transfer where the
main goal is to transfer a liquid from one container to the
other. This problem is important in industrial applications,
where the robots are used to transfer dangerous fluids or
chemicals, as part of handling materials, cleaning tasks, or
using lubricants. Other applications arise in domestic and
service tasks, where robots may be used to refill a cup of
coffee or to pour liquids from a bottle to a glass. Humans
tend to be quite good at learning fluid manipulation tasks
quickly and can easily exploit the physical properties of the
fluid. However, it is non-trivial for the robot to perform such
tasks due to the intrinsic challenges of modeling the fluid
dynamics.

There are many issues that arise in designing such motion
planning algorithms. The first issue arises due to the flexibil-
ity of fluid body. Fluid body can undergo complex topology
changes and large deformations as shown in Figure 2. As
a result, we need to use appropriate data structures that
can provide flexibility, e.g., using a large set of particles.
Unfortunately, these representations, usually parametrize the
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Fig. 1. We highlight some of the challenging environments used to evaluate
the performance of our motion planner. (a): Guided by a simplified dynamics
model, our planner can predict the liquid outflow curve. This enables us
to successfully transfer liquid even when the source container is far away
from the target container, as shown in (b). (c): Our optimization based
motion planner can compute collision-free paths, while performing fluid
manipulation and transfer tasks, e.g. a high block is an obstacle between
the source and the target container, as shown in (d).

fluid body using tens of thousands of variables. It is difficult
for any existing motion planning algorithm to take into
account deforming obstacles specified using so many degrees
of freedom. Moreover, fluid body dynamics is governed by
the Navier-Stokes equation, which is a nonlinear PDE. In
order to model accurate fluid manipulation for planning, this
PDE has to be used to specify appropriate constraints, and
solved during each step of the planning to compute a valid
configuration. However, exact solvers for the Navier-Stokes
equation can be expensive [24].
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Fig. 2. An illustration of the simplified fluid body representation. (a):
Conventionally, a large set of parameters are needed to represent fluid
bodies, e.g., by a set of particles. We assume that each fluid particle’s
streamline is divided into three stages: During the source stage (red) liquid
particle lies within the container. During the free flying stage (green), liquid
particle leaves the container and follows a quadratic curve C. Finally, the
target stage (blue) begins when the particle falls into T. (b): Our simplified
dynamics model parametrizes fluid body using only two global descriptors:
the volume of fluid in the source container vol (blue region), and the mean
outflowing velocity magnitude vout.

Main Results: In this paper, we introduce a simplified
fluid dynamics model, which can be specified by relatively
few parameters that involve only global descriptors: the total
volume of the fluid in the container, and the outflowing ve-
locity magnitude. In this parameter space, we use physically
inspired approximations and system identification techniques
to derive the governing equations for the global descriptors.
As illustrated in Figure 2, this approximation is based on the
observation that, due to the smoothness requirements placed
on the trajectories, the liquid outflow from the container has
strong regularity and it approximately follows a quadratic
curve. This quadratic curve can be parametrized only by
the velocity magnitude and direction, in the container’s local
coordinates.

We combine this simplified dynamics model with an
optimization-based planner that can compute collision-free
and smooth trajectories, and also satisfy the fluid dynamics
constraints. Our planner based on the simplified dynamics
model can achieve more than two orders of magnitude
speedup compared with one that uses an accurate solver.
It can also be easily integrated into current optimization-
based planning approaches [26], [13], [28]. In Figure 1,
we demonstrate the performance of our method based on
using different benchmarks with different shape of obstacles
between the source and target containers. Our simplified
model can reduce the planning time from hours to minutes.

The rest of the paper is organized as follows. After
reviewing some related works in Section II, we give an
overview of our planning algorithm in Section III. We then
present the simplified dynamics model in Section IV. Finally,
we evaluate the accuracy of our simplified model and validate
our motion plan by comparing with results from accurate
Navier-Stoke’s-based simulation in Section V.

II. RELATED WORKS

In this section, we give a brief overview of prior works
on motion planning, fluid dynamics, and planning with fluid

constraints.

A. GENERAL MOTION PLANNING

Robot motion planning can be formulated as a trajectory
search problem under various constraints. Early works of
motion planning [17] focus solely on feasibility under simple
collision-free constraints. Many extensions have been pro-
posed in [32], [29], [5] to handle other types of constraints.
Some of the widely-used algorithms for motion planning are
sampling-based algorithms, but it is hard to integrate some
types of constraint forms into those methods. Recent works
focus more on computing locally-optimal motion plans, see
e.g. [26], [13], [25]. Based on general-purpose numerical
optimization methods, these planners have the advantage
in that they can naturally account for various additional
requirements, such as smoothness, collision-avoidance, etc.
This property makes them especially attractive for object ma-
nipulation tasks, including fluid manipulation. Specifically,
our planning framework uses the optimization approach
described in [28], which is an optimization algorithm that
can exactly satisfy the collision constraints.

B. FLUID DYNAMICS AND PLANNING

In order for a robot to interact with dynamics environ-
mental objects such as fluids, it is important to estimate and
predict their dynamics states. A well-established way for
such estimation is based on computational fluid dynamics
(CFD) [2]. CFD simulators can be categorized by the differ-
ent ways used to represent the fluid body: meshless methods
[34], [3] represent fluids using a set of particles; grid-based
methods [11], [23] represent it as material flowing through
static spatial cells; FEM methods [8] instead use spatial cells
that move with fluid bodies. To represent a small block of
water, e.g. a cup of coffee in a mug, all these methods tend
to use tens of thousands of parameters, taking hours for
even one pass of forward simulation on a desktop PC. This
makes it almost impractical to perform a numerical search for
a solution in such high dimensional spaces. Indeed, earlier
works like [20] take days to control a short fluid simulation
corresponding to an animation sequence.

C. PLANNING WITH FLUID CONSTRAINTS

Prior works on motion planning for fluid manipulation.
We classify these works into three categories: methods using
demonstration and machine learning [16], [18], [1], [33],
methods based on full-featured dynamics models, (i.e. CFD
simulator) [15], [24], and methods using simplified dynamics
models [14], [31]. Machine learning based methods work
around the problem of high dimensionality by generaliz-
ing from a set of already optimized, learned, or captured
“example” trajectories. However, obtaining such example
trajectories for fluid manipulation is usually non-trivial.
Moreover, these methods have difficulties generalizing to
new scenarios, as new datasets are needed. In order to
handle new scenarios automatically, some methods use an
accurate full-featured CFD simulator. Work in [15] uses



evolutionary optimization and work in [24] uses an EM-
like optimization algorithm, first assuming fixed fluid particle
streamlines within each iteration and then correcting those
streamlines using an additional forward CFD simulation.
Both these methods have low computational performance
since they require multiple passes of costly fluid simulations.
In view of this high complexity, works in [14], [31] use a
reduced or simplified dynamics fluid model to achieve higher
planning performance.

III. OVERVIEW

In this section, we formulate our problem, introduce the
notation, and give an overview of our approach.

A. PROBLEM DEFINITION

In order to deal with a coupled planning problem that
handles the constraints of the robot and the fluid body, we
use the notion of an augmented parameter space: C × L.
Here C is the robot’s kinematic configuration space: Each
point q ∈ C consists of all the joint variables characterizing
the position of each rigid link. L is the set of parameters
representing a fluid’s dynamics state: each point p ∈ L
consists of all the variables characterizing the position as well
as the velocity of the fluid body. We formulate the motion
planning problem as an optimization over the space of valid
trajectories < Q(t),P(t) >. Here Q(t),P(t) are robot and
fluid trajectories respectively, functions mapping t ∈ [0, τ] to
C,L (τ is the duration of the trajectory). Both these trajectory
functions are discretized using finite difference with timestep
size ∆t = τ/(N − 1).

Q = [qT1 ,⋯,qTN ]T P = [pT1 ,⋯,pTN ]T ,

are the set of discrete trajectory samples where qi =
Q((i − 1)∆t),pi = P((i − 1)∆t). In order to model the
dynamics of environmental objects, consecutive trajectory
samples pi,i+1 are related by additional governing PDEs and
spatial/temporal boundary conditions, e.g. the Navier-Stokes
equation is used in [24]. We can encode this relationship as
a function:

pi+1 = f(pi,qi+1), (1)

where f takes the dynamics state pi at last timestep and the
boundary condition qi+1 at current timestep and integrates
the governing PDE over time ∆t to compute the dynamics
state at the current timestep pi+1 as illustrated in Figure 3.
Other planning problems with dynamics environmental ob-
jects can also fit in such a framework, but we use a different
function f to represent the physics constraints. A common
assumption taken by previous works [9], [18] is that the
magnitude of end-effector velocity is much smaller than
the characteristic rate of energy dissipation due to fric-
tion or damping, so that dependencies between consecutive
timesteps can be ignored. And we can use a simplified
relationship pi+1 = f(qi+1). Since most fluid materials have
a low energy dissipation rate (i.e. small viscosity), we can’t
use this assumption in our formulation.

f(pi,qi+1)

t=iΔt t=(i+1)Δt

Fig. 3. An illustration of augmented parameter space of our fluid model and
the governing PDE that highlights the relationship between the parameters
of consecutive timesteps.

B. COMPLEXITY OF FLUID MANIPULATION

L is usually of a much higher dimension than C. If we use
a particle based representation as illustrated in Figure 2, each
particle introduces an additional 6 dimensions (3 for position
and 3 for velocity) to L. As a result, time integration of the
governing PDE over a small timestep ∆t can take minutes,
and updating the whole P will therefore take hours on a
desktop computer. Furthermore, an optimization algorithm
needs to perform multiple updates of P. In order to overcome
this complexity, we use a simplified dynamics model for fluid
manipulation.

C. OPTIMIZATION PIPELINE

Given the specification of the parameters and the (discrete)
trajectory space, work in [28] plans the motion of the robot
using numerical spacetime optimization over the vector space
< Q,P > under various non-linear constraints. It can be
posed as:

argminV Cobj(Q,P) +Creg(Q)
s.t. Ccoll(Q) ≥ 0 Crobot(Q) = / ≥ 0

Cpde(Q,P) = 0.

We briefly review the terms used in our planning algorithm.
Ccoll requires each qi to lie in Cfree (the subspace of C
where no collision occurs between the robot and obstacles).
To satisfy this requirement, we perform discrete collision
checking between all pairs of objects and robot links at
each timestep i to find a set of Ki invalid penetrations
{aj(qi), bj(qi), nj , dj ∣j ∈ 1,⋯,Ki}, where aj(qi), bj(qi)
are a pair of points in contact, nj is the contact normal and
dj is the penetration depth. These constraints are imposed
by setting Ccoll =< nj , aj(qi) − bj(qi) > −dj . In order to
reduce the problem size, we only retain the deepest pair of
penetrations for each pair of colliding objects. Crobot is the
set of inherent constraints in the robot, like the kinematic
and dynamics constraints. In this work, we only consider the
joint limits and the maximum velocity constraints. Finally,
Cpde corresponds to the constraints that the relationship
in Equation 1 is satisfied exactly. Creg corresponds to the
smoothness characteristics of the trajectory space. We use
the formulation in [13], [25] and use a Laplacian penalty
term in the joint space:

Creg =
1

2
Σi∥qi−1 − 2qi + qi+1∥2.



Finally, Cobj encodes the high level goals of transferring
liquid from a source to a target container. We give its
definition in the next section. With a smooth and differen-
tiable Cobj ,Cpde, this optimization can be performed using
local linearization. However, this may not be the case with
fluids, where f and Cpde are usually non-smooth even for
our simplified model. Therefore, we follow the approach in
[24] and decouple the planning problem: first fixing P and
updating Q by solving the subproblem:

argminV Cobj(Q) +Creg(Q)
s.t. Ccoll(Q) ≥ 0 Crobot(Q) = / ≥ 0.

We then update P by applying Equation 1 repeatedly.
In order to solve this sub-problem numerically, we use

sequential quadratic programming (SQP) with a trust region
algorithm in the outer loop. The trust region is adjusted
using the Levenberg-Marquardt algorithm according to [21].
Special care is needed in the inner loop. Since conflicting
constraints may be returned by collision checking, directly
linearizing each collision constraint Ccoll will sometimes
result in an infeasible QP problem. Therefore, we impose
Ccoll as a soft penalty:

C1
collP = ηΣiti s.t. t ≥ 0 t ≥ −Ccoll

C2
collP = µ∥Ccoll − s∥22 − λT (Ccoll − s) s.t. s ≥ 0,

(2)

where the first formulation is the L1-penalty used in [28]
and the second formulation is the Augmented Lagrangian-
penalty. Either formulation requires additional parameters η
or µ,λ to be adjusted according to [22]. The final optimiza-
tion pipeline is summarized in Algorithm 1. Contrasted to
[24] where P is updated in the outer loop (before Line 4),
we can update P more frequently in the inner loop (Line 6),
due to the lower computational overhead of the simplified
dynamics model.

IV. SIMPLIFIED DYNAMICS MODEL

The goal of liquid transfer is to move liquid material
from a source container S to a target container T. In this
work, we make several assumptions: the source container
is assumed to be an axial symmetric rigid body, the target
container T is fixed and the source container S is attached
to the end-effector of a robot arm. In this section, we derive
the formulation of our simplified governing PDE f and
the objective function Cobj . Plugging these definitions into
Algorithm 1 corresponds to the overall planning algorithm.

A spectrum of governing PDEs have been developed to
model the motion of a fluid body, working under various
assumptions and data-structures, see e.g. [2]. The choice
of appropriate governing PDE is critical to the success of
a liquid transfer planner. The most general governing PDE
for the fluid body is the Navier-Stokes equation. Although
a direct discretization of this equation is also possible, it
introduces a large number of parameters to represent the
dynamics state of fluid body. In view of this, previous work
[24] assumes the streamline of each fluid particle doesn’t
change within the inner loop of Algorithm 1. As a result, a

Algorithm 1 Spacetime Optimization Algorithm
Input: Robot/Environment, Cpde,Cobj
Input: Initial k, η, µ, λ,Q0,P0

Output: Locally optimal Q,P
1: while k = 1,⋯ do
2: Do collision checking to find Ccoll
3: Set Qk =Qk−1

4: while true do
5: ▷ Update P from Q
6: Compute Pk by applying Equation 1
7: ▷ Define the QP problem objective at Qk

8: Local quadratic expansion of objective
9: Cobj +Creg +C∗

collP (η,µ, λ) ≈
10: 1

2
QTHQ + bTQ + c

11: Apply trust region by setting H =H + kI
12: ▷ Define the QP problem constraints at Qk

13: Add constraints for t, s (Equation 2)
14: ▷ Robot kinematic, dynamics constraints
15: Local linear expansion of Crobot
16: Solve semi-definite QP for Q∗

17: if ∥Q∗ −Qk∥0 < ε then
18: Break
19: end if
20: Set Qk =Q∗

21: ▷ Update collision penalty stiffness
22: if C∗

collP = C1
collP then

23: Update η ([22])
24: end if
25: if C∗

collP = C2
collP then

26: Update µ,λ ([22])
27: end if
28: end while
29: if ∥Qk −Qk−1∥0 < ε then
30: Break
31: end if
32: ▷ Update trust region
33: Update k ([21])
34: end while

forward simulation in the outer loop is needed to correct the
streamline. This method simplifies the optimization problem
but the repeated costly forward simulations in the outer loop
considerably slow down the overall performance. With these
limitations, most planning algorithms instead use simplified
or reduced fluid models, e.g., the pendulum model [31].
Although this is easy to implement, cheap to compute and
accurate when S is undergoing only a slight perturbation, this
method cannot account for significant container movements,
e.g. when pouring the liquid from S to T.

In this paper, we present a simplified dynamics model
designed exclusively for the liquid transfer tasks. Our design
guideline is to reduce the number of parameters as much
as possible, while at the same time to retain the ability of
predicting the locus of fluid particles that leave the container
S. In addition, we want to account for variations in the
environment, such as different container shapes and different



liquid materials.
As illustrated in Figure 2, we first simplify the problem

by dividing the streamline of each fluid particle into three
stages: during the source stage a fluid particle lies within
the bounding volume of S; it then leaves S and follows a
quadratic curve C, which is the free flying stage; finally the
target stage begins when it falls into the bounding volume
of T. In this work, we ignore the dynamics of the third
stage, assuming no spilling after the particle falls into T. As
a result, the objective of our planner is to ensure that the
quadratic curves C passes through the center of opening of
T. Since C is a quadratic curve, it is characterized by the
outflowing velocity of the fluid and global orientation of S
at each timestep i.

A. THE DYNAMICS MODEL

We first formulate our parameter set. The dimension of
L is reduced drastically to only two in our model. The
components of p ∈ L are:

p = ( vol(m3)
vout(m/s) ) ,

where vol is the remaining volume of liquid left in the
container’s bounding volume and vout is the magnitude of
the velocity that represents the mean outflow. In order to
formulate the timestepping equation of f(pi,qi+1), we use
forward Euler integration voli+1 = voli −Ai+1vouti+1∆t, where
Ai+1(m2) is the outflow cross-section area. For a given
source container S, we assume A is a function of the leaning
angle θ and volume vol, as illustrated in Figure 9. This
function A(θ, vol) is precomputed for each given source
container S and stored as a lookup table. To populate
the table, we sample θ at an interval of 1○, then run a
watershed algorithm [27] at each θ, while adding a table
entry (A, θ, vol) at each water level. Partial derivatives of
this function are approximated using finite differences. An
example is given in Figure 4. Note that the leaning angle θ
is a function of q, which is not a part of p.

Finally in order to determine the magnitude of the mean
outflowing velocity vout, we combine two physically inspired
approximations. The first approximation is based on the
Bernoulli equation [6]. This equation states that if the fluid
body is steady, inviscid and incompressible, then over each
particle streamline, we have:

p + gh + v
outvout

2
= constant,

where p is the pressure, g is the gravity and h is the position
of the point on the streamline along gravity’s direction.
Although the assumptions made by the Bernoulli equation
are not satisfied exactly, we can still apply it to the two
endpoints of the dashed streamline shown in Figure 5. The
result implies that vout is related to

√
2g∆h. Here ∆h is

a function of θ and vol computed in the same way as
A(θ, vol), using lookup table. For a 3D source container S,
∆h is computed for its axial symmetric cross section. The
second approximation is based on simple rigid body dynam-
ics. According to Figure 5, when θ > π/2, a single particle
moving along the wall of the source container S will gain

A

vo
l

θ

vol
Δh

θ

A

(a) (b)

(c) (d)

Fig. 4. (a): Illustration of function A(θ, vol). (b): Illustration of function
∆h(θ, vol). (c,d): More examples for containers of different shapes. A
watershed algorithm is used to extract the interior of S (blue) and to populate
the lookup table of A(θ, vol) (colormap). The same procedure is used to
precompute ∆h(θ, vol) on the axial symmetric cross section.
velocity with magnitude proportional to

√
sin(θ − π/2)gl,

where l is the length of the wall. This approximation tells us
that vout should be related to sin(θ − π/2). Unfortunately,
we don’t know exactly what the best relationship model
between vout and these two terms is. So that we use system
identification to combine their contributions, by making the
assumption that:

vout ≜g(θ, vol) = a
√

2g∆h
1
+ b
√

2g∆h
2
+ c
√

2g∆h
3
+

dsin(max(θ − π/2,0)) + esin(max(θ − π/2,0))2+

fsin(max(θ − π/2,0))3,

(3)

where the coefficients a, b, c, d, e, f are found by solving the
linear regression:

argmina,b,c,d,e,f
1

T

T

∑
i=1

∥vouti+1 − g(θi+1, voli)∥2, (4)

using a set of training data acquired from CFD simulation.
One issue with this setting of coefficients is that vout can be
negative, although this never happens in our experiments. In
summary, our governing PDE f is posed as:

f(pi+1,qi) = ( voli+1
vouti+1

) = ( voli −A(θi+1, voli)vouti+1∆t
g(θi+1, voli)

) . (5)

This simplified model works well if the source container S
is moving slowly and smoothly, which is consistent with the
goal of the smoothness objective Creg . See Section V for
more discussion.

B. LIQUID TRANSFER OBJECTIVE FUNCTION

Given the governing PDE from Section IV-A, we can now
formulate our objective function Cobj . In principle, Cobj
requires the free-flying stage curve C to pass through the
center of the opening of the target container, denoted as OT .
We assume that the mean flow follows a quadratic curve,
parametrized by:

C(t) = g
2
t2 + V outi t +Ei, (6)
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Fig. 5. The two physically inspired approximations. (a): The Bernoulli
equation is used between two end points of the dashed streamline. (b): A
single fluid particle sliding down the wall of the container.

Δh

Fig. 6. A snapshot of the cross section of fluid simulation, the extracted
quadratic curves (red) for particles leaving S at current timestep. Their
tangents are averaged to compute vout, and the cubic curve fitted to the
free surface (blue). This is used to compute ∆h by evaluating the free
surface position at boundary of S.
and we penaltize the distance between C(t) and OT when
they are at the same altitude. Therefore, our objective func-
tion can be defined as:

Cobj =∑
i

A(θi, voli)∥
g

2
t2 + V outi t +Ei −OT∥2, (7)

where t is computed by solving < g,C(t)−OT >= 0, which
is the time when the curve reaches the same altitude as OT;
V outi maps vouti in local frame of S to the global frame and
Ei is the centroid of cross section area A(θi, voli). More
details of their derivation are given in Appendix VII. Note
that this term is weighted by the cross section area, so that it
only takes effect when the outflow flux is nonzero. However,
this objective alone is not sufficient because in our initial
trajectory A(θ, vol) is zero in every timestep. As a result, we
add a guiding term: ∥θN − θfinal∥2 to enforce a fixed final
leaning angle. We use θfinal = 90○ in all the experiments.

V. EXPERIMENTS AND RESULTS

In this section, we give details of our implementation and
highlight the performance of our planner. We also evaluate
the accuracy and efficacy of our simplified model.

In order to find the unknown coefficients involved in our
simplified model, we need to solve the linear regression
Equation 4 from a set of training data. The dataset is acquired
from full-featured exact fluid simulations. Our simulator is
implemented as a low order discretization of the Naiver-
Stokes equation proposed in [34], [4]. The fluid body in
the simulator is represented by a set of particles as shown
in Figure 2. For each mesh of container S and each fluid
material setting, we need to solve for a separate set of
coefficients a, b, c, d, e, f . In order to compute the training
data, we ran 127 3D fluid simulations of pouring liquid out of
a container by leaning it from θ = 0○ to θ ∈ [90○,150○] using
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Fig. 7. For two simulated testing trajectories and two container shapes,
we plot changes of the five variables vout,

√

2gh, θ,∆h, g(θ, vol) over
time. Both testing and training trajectories are generated by simulating the
liquid while turning the container according to a random, monotonically
increasing θ curve shown in orange. The green curve is the groundtruth
vout, the outflowing velocity magnitude; the gray curve is the groundtruth
∆h, and the yellow curve is the prediction of vout made by the Bernoulli
equation

√

2g∆h; Finally, the blue curve is the predicted vout generated
using our simplified dynamics model g(θ, vol). The error between vout

and g(θ, vol) is small over the effective range where vout > 0.
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Fig. 8. Predicted liquid trajectory P computed using Equation 5, for the two
container shapes. Over time, the leaning angle θ increases monotonically
(orange) while the total volume decreases accordingly (yellow). Note that
the change of vout (green) closely resembles the groundtruth data (Figure 7
green): for the cylindrical container, vout is always increasing while for the
oval-shaped container, vout first increases and then decreases.
a random θ̇. This results in approximately 20000 training
samples, each of which is a tuple < vout, θ,∆h >. To extract
these samples, for the set of particles in every timestep of
the simulation, We extract their 2D axial symmetric cross-
section. In this cross section, we compute vout by averaging
the magnitude of velocity of all particles that leave the
container S at current timestep. These particles should be
inside the bounding volume of S in the previous timestep,
but outside it in the current timestep. We also compute the
characteristic height ∆h, which is found by fitting a cubic
curve to the free surface and evaluate it at the step boundary.
A snapshot of the training data is illustrated in Figure 6.

After solving for the coefficients, we want to evaluate
the accuracy of our simplified model. We plot the change
of several related variables with respect to physical time
in Figure 7. We note from the Figure 7 (c,d) that, for the
oval-shaped container, the Bernoulli approximation

√
2g∆h

can already achieve acceptable accuracy. However, for the
cylindrical container, Bernoulli approximation leads to large
error when θ ≥ π/2. In these cases, sin(max(θ − π/2)) is
a better approximation to vout. By combining the six terms
in Equation 3, we can achieve much better agreement with
the groundtruth vout. And by plugging the function g into
Equation 5, we can even predict the entire liquid trajectory,
i.e. predicting P given Q. Two of such predicted trajectories



BENCHMARK VISCOSITY
TIME

PLANNING
TIME

VALIDATION QUALITY

Figure 1 (a) µ = 0.01 5min 2.1h 95.7%
Figure 1 (a) µ = 0.001 5min 2.5h 89.5%
Figure 1 (c) µ = 0.01 7min 1.9h 93.2%
Figure 1 (c) µ = 0.001 7min 2.2h 87.1%

TABLE I
FROM LEFT TO RIGHT: BENCHMARK ENVIRONMENT, VISCOSITY OF

FLUID, TIME SPENT RUNNING ALGORITHM 1, TIME SPENT RUNNING

FORWARD CFD SIMULATION FOR VALIDATION AND QUALITY OF

PLANNED TRAJECTORY. THE QUALITY IS MEASURED BY THE FRACTION

OF PARTICLES THAT FALL INSIDE T.are illustrated in Figure 8. Our model is flexible enough to
account for different container shapes. Note that Bernoulli
approximation can result in some false predictions when
∆h = 0 (and thus A = 0), e.g. the yellow dots in the early
timesteps of Figure 7, but this will not cause any problems
since our objective function in Equation 7 does not take into
effect such degenerate cases.

To evaluate the motion planning pipeline, we plug the
functions f and Cobj into Algorithm 1. This algorithm is
implemented on ROS [30] platform. In order to implement
the trust region SQP optimizer, we use the OOQP lib [10]
to solve each QP subproblem. For collision constraints,
although work in [28] used C1

collP , we use C2
collP in all our

experiments because C2
collP introduces half the number of

constraints in the QP problem. These constraints correspond
to the box constraints that the OOQP algorithm can handle
efficiently. Our simulated robot is the 9-DOF low cost
ClamArm. All the experiments are setup on a single desktop
computer with i7-4790 8-core CPU 3.6GHz and 8GB of
memory. We evaluated the system on two liquid transfer tasks
with different sets of obstacles in the environment. For each
benchmark, we use two sets of fluid materials that differ only
in their viscosity (µ = 0.01,0.1), so that two trained models
are needed for each material and each source container S.
We sample each trajectory with 100 nodes (N = 100).

Several timesteps are illustrated in Figure 1, to validate
the quality of these trajectories. We replace the simplified
dynamics model with a full-featured CFD simulator and
our quality measure is the fraction of fluid particles that
fall inside the target container T. These quality measures
and time cost of planning are summarized in Table I. Each
execution of Line 6 in Algorithm 1 takes less than 5 seconds,
while a full-featured CFD simulation in [24] takes more than
2 hours. Thus we achieve at least two orders of magnitude
speedup using our simplified dynamics model, as opposed to
an exact fluid simulator and achieve comparable accuracy.

VI. CONCLUSION, LIMITATIONS, FUTURE WORK
In this paper, we present an optimization based motion

planning algorithm for liquid transfer. Our formulation uses
an optimization-based planner and uses a simplified dynam-
ics model to for the fluid constraint. The iterative procedure
allows us to handle the non-smooth governing equation f ,
while the simplified dynamics model can be used to replace
full-featured CFD simulation. This avoids introducing a large
set of parameters to represent the fluid model, thereby lead-
ing to a large speedup. We have evaluated the accuracy of our

A

e

vout

X

Y

Z

ϑ
φ

vout

vout

Fig. 9. Left: An illustration of the orientation related parameter for source
container S. The cross section area A is the shaded region with centroid e.
The outflowing velocity has magnitude vout. Right: The outflow direction
is horizontal when θ < 90○. Otherwise, it is along the tangent direction.
simplified model and the planning algorithm by comparing
them with fluid simulation groundtruth data. The result shows
that our model is able to predict the mainflow location when
moving and leaning source container at mild speed.

The limitations of current work are due to various as-
sumptions, such as the symmetry of the source container
and the fixed position of target container. More importantly,
our simplified parameter set and the dynamics model is
restricted to the particular task of liquid transfer at mild
speed. For example, when the end-effector is moving too
fast, the predicted curve C can be far from the groundtruth
and the planned trajectory P may not be physically correct.

In terms of future works, we would like to introduce addi-
tional constraints on the spacetime optimization formulation,
such that our simplified model’s prediction error is below
some threshold. Another possible extension is to use more
accurate, but still reduced parameter set and dynamics model,
e.g. using convolutional neural network.

VII. APPENDIX: THE CONTAINER GEOMETRY

To characterize the quadratic curve C, we need the
centroid Ei of cross section area Ai. Also, we need the
relationship between V outi and vouti . Since we assume the
source container S to be axial symmetric, its orientation
can be characterized by two parameters θ, φ as illustrated
in Figure 9. Given these parameters we have:

Ei =
⎛
⎜
⎝

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

⎞
⎟
⎠
ei

V outi =
⎛
⎜
⎝

cosφ −sinφ 0
sinφ cosφ 0

0 0 1

⎞
⎟
⎠

⎛
⎜
⎝

vouti sin[max(θ, π
2
)]

0
vouti cos[max(θ, π

2
)]

⎞
⎟
⎠
,

where ei is the centroid of Ai in the local coordinates
of S, which is again assumed to be a function e(θ, vol)
precomputed in the same way as A(θ, vol). The max
operator in V outi is critical to the accuracy of our dynamics
model. When the leaning angle is less then 90○, we assume
the outflow direction to be horizontal, see bottom Figure 9.
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