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Figure 1: DoubleEagle Tanker: This 4 gigabyte environment consists of more than 82 million triangles and 127 thousand objects. Our
algorithm can render it 11-50 frames per second on an SGI system with two IR2 graphics pipelines and three 300MHz R12000 CPUs.

Abstract
We present a new parallel algorithm for interactive
walkthrough of complex, gigabyte-sized environments.
Our approach combines occlusion culling and levels-
of-detail and uses two graphics pipelines with one or
more processors. We use a unified scene graph repre-
sentation for multiple acceleration techniques, and we
present novel algorithms for clustering geometry spa-
tially, computing a scene graph hierarchy, performing
conservative occlusion culling, and performing load-
balancing between graphics pipelines and processors.
The resulting system, GigaWalk, has been used to ren-
der CAD environments composed of tens of millions
of polygons at interactive rates on an SGI Onyx system
with two Infinite Reality rendering pipelines. Overall,
our system’s combination of levels-of-detail and occlu-
sion culling techniques results in significant improve-
ments in frame-rate over view-frustum culling or either
single technique alone.
Keywords: Interactive display systems, parallel ren-
dering, occlusion culling, levels-of-detail, Engineering
Visualization.

1 Introduction
Users of computer-aided design and virtual reality ap-
plications often create and employ geometric models

of large, complex 3D environments. It is not uncom-
mon to generate gigabyte-sized datasets representing
power plants, ships, airplanes, submarines and urban
scenes. Simulation-based design and design review
of such datasets benefits significantly from the ability
to generate user-steered interactive displays orwalk-
throughsof these environments. Yet, rendering these
environments at the required interactive rates and with
high fidelity has been a major challenge.

Many acceleration techniques for interactive display
of complex datasets have been developed. These in-
clude visibility culling, object simplification and the
use of image-based or sampled representations. They
have been successfully combined to render certain
specific types of datasets at interactive rates, includ-
ing architectural models [FKST96], terrain datasets
[Hop98], scanned models [RL00] and urban environ-
ments [WWS01]. However, there has been less success
in displaying more general complex datasets due to sev-
eral challenges facing existing techniques:

Occlusion Culling: While possible for certain envi-
ronments, performing exact visibility computations on
large, general datasets is difficult to achieve in real time
on current graphics systems [ESSS01]. Furthermore,
occlusion culling alone will not sufficiently reduce the
load on the graphics pipeline when many primitives are
actually visible.
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Object Simplification: Object simplification
techniques alone have difficulty with high-depth-
complexity scenes, as they do not address the problems
of overdraw and fill load on the graphics pipeline.

Image-based Representations:There are some
promising image-based algorithms, but generating
complete samplings of large complex environments au-
tomatically and efficiently remains a difficult problem.
The use of image-based methods can also lead to pop-
ping and aliasing artifacts.
1.1 Main Results
We present a parallel architecture that enables interac-
tive rendering of complex environments comprised of
many tens of millions of polygons. Initially, we pre-
compute geometric levels-of-detail (LODs) and repre-
sent the dataset using a scene graph. Then at runtime
we compute apotentially visible set(PVS) of geome-
try for each frame using a combination of view frustum
culling and a two-pass hierarchical Z-buffer occlusion
culling algorithm [GKM93] in conjunction with the
pre-computed LODs. The system runs on two graph-
ics rasterization pipelines and one or more CPU pro-
cessors. Key features of our approach include:

1. A parallel rendering algorithm that is general
and automatic, makes few assumptions about the
model, and places no restrictions on user motion
through the scene.

2. A clustering algorithm for generating a unified
scene graph hierarchy that is used for both geo-
metric simplification and occlusion culling.

3. A parallel, image-precision occlusion culling
algorithm based on the hierarchical Z-buffer
[GKM93, Gre01]. It useshierarchical occluders
and can perform conservative as well as approxi-
mate occlusion culling.

4. A parallel rendering algorithm that balances
the computational load between two rendering
pipelines and one or more processors.

5. An interactive system, GigaWalk, to render large,
complex environments with good fidelity on two-
pipeline graphics systems. The graphics pipelines
themselves require only standard rasterization ca-
pabilities.

We demonstrate the performance of our system on two
complex CAD environments: a coal-fired power plant
(Fig. 2) composed of 13 million triangles, and a Dou-
ble Eagle Tanker (Fig. 1) composed of over 82 million
triangles. GigaWalk is able to render models such as
these at 11-50 frames a second with little loss in im-
age quality on an SGI Onyx workstation using two IR2
pipelines. The end-to-end latency of the system is typ-
ically 50-150 milliseconds.

Figure 2:Coal-Fired Power plant: This 1.7 gigabyte envi-
ronment consists of over 13 million triangles and 1200 ob-
jects. GigaWalk can display it 12-37 frames per second on
an SGI Onyx workstation using two IR2 graphics pipelines
and three 300MHz R12000 CPUs.

1.2 Organization
The rest of the paper is organized as follows. We give
a brief survey of previous work in Section 2. Section 3
gives an overview of our approach. In Section 4 we de-
scribe the scene representation and preprocessing steps,
including hierarchy computation. Section 5 presents
the parallel algorithm for interactive display. We de-
scribe the system implementation and highlight its per-
formance on complex models in Section 6.
2 Prior Work
In this section, we present a brief overview of previous
research on interactive rendering of large datasets, in-
cluding geometric simplification and occlusion culling
algorithms, and other systems that have combined mul-
tiple rendering acceleration techniques.
2.1 Geometric Simplification
Simplification algorithms compute a reduced-polygon
approximation of a model while attempting to retain the
shape of the original. A survey of recent algorithms is
presented in [Lue01].

Algorithms for simplifying large environments can
be classified as either static (view-independent) or
dynamic (view-dependent). Static approaches pre-
compute a discrete series of levels-of-detail (LODs)
in a view-independent manner [EM99, GH97, RB93,
Sch97]. Erikson et al. [EMB01] presented an approach
to large model rendering based on the hierarchical use
of static LODs, or HLODs. We also use LODs and
HLODs in our system.

At run-time, rendering algorithms for static LODs
choose an appropriate LOD to represent each object
based on the viewpoint. Selecting the LODs requires
little run-time computation, and rendering static LODs
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on contemporary graphics hardware is also efficient.
View-dependent, dynamic algorithms pre-compute

a data structure that encodes a continuous range of de-
tail. Examples include progressive meshes [Hop96,
Hop97, XESV97] and hierarchies of decimation op-
erations [LE97, ESV99]. Selection of the appropriate
LOD is based on view-parameters such as illumination
and viewing position. Overall, view-dependent LODs
can provide better fidelity than static LODs and work
well for large connected datasets such as terrain and
spatially large objects. However, the run-time overhead
is higher compared to static LODs, since all level-of-
detail selection is done at the individual feature level
(vertex, edge, polygon), rather than the object level.

2.2 Occlusion Culling

Occlusion culling methods attempt to quickly deter-
mine a PVS for a viewpoint by excluding geometry that
is occluded. A recent survey of different algorithms is
presented in [COCS01].

Several effective algorithms have been developed
for specific environments. Examples include cells and
portals for architectural models [ARB90, Tel92] and al-
gorithms for urban datasets or scenes with large, con-
vex occluders [CT97, HMC+97, SDDS00, WWS00,
WWS01]. In this section, we restrict the discussion to
occlusion culling algorithms for general environments.

Algorithms for occlusion culling can be broadly
classified based on whether they are conservative or
approximate, whether they use object space or image
space hierarchies, and whether they compute visibil-
ity from a point or a region. Conservative algorithms
compute a PVS that includes all the visible primitives,
plus a small number of potentially occluded primitives
[CT97, GKM93, HMC+97, KS01, ZMHH97]. The ap-
proximate algorithms identify most of the visible ob-
jects but may incorrectly cull some objects [BMH99,
KS00, ZMHH97].

Object space algorithms can perform culling effi-
ciently and accurately given a small set of large oc-
cluders, but it is difficult to perform the “occluder fu-
sion” necessary to effectively cull in scenes composed
of many small occluders. For these types of scenes, the
image space algorithms typified by the hierarchical Z-
buffer (HZB) [GKM93, Gre01] or hierarchical occlu-
sion maps (HOM) [ZMHH97] are more effective.

Region-based algorithms pre-compute a PVS for
each region of space to reduce the run-time overhead
[DDTP00, SDDS00, WWS00]. This works well for
scenes with large occluders, but the amount of geom-
etry culled by a given occluder diminishes as the region
sizes are increased. Thus there is a trade-off between
the quality of the PVS estimation for each region and
the memory overhead. These algorithms may be overly
conservative and have difficulty obtaining significant
culling in scenes including only small occluders.

2.3 Parallel Approaches
A number of parallel approaches based on multiple
graphics pipelines have been proposed. These can
provide scalable rendering on shared-memory systems
or clusters of PCs. These approaches can by clas-
sified mainly as either object-parallel, screen-space-
parallel, or frame-parallel [HEB+01, SFLS00]. Spe-
cific examples include distributing primitives to dif-
ferent pipelines by the screen region into which they
fall (screen-space-parallel), or rendering only every Nth
frame on each pipeline (frame-parallel).

Another parallel approach to large model rendering
that shows promise is interactive ray tracing [AT99,
WSB01]. The algorithm described in [WSB01] is able
to render the Power Plant model at 4-5 frames a sec-
ond with 640×480 pixel resolution on a cluster of seven
dual processor PCs.

Garlick et al. [GBW90] presented a system for per-
forming view-frustum culling on multiple CPUs in par-
allel with the rendering process. Their observation that
culling can be performed in parallel to improve overall
system performance is the fundamental concept behind
our approach as well.

Wonka et al. [WWS01] presented a “visibility
server” that performed occlusion culling to compute
a PVS at run-time in parallel on a separate machine.
Their system works well for urban environments; how-
ever, it relies on theoccluder shrinkingalgorithm
[WWS00] to compute the region-based visibility. This
approach is effective only if the occluders are large and
volumetric in nature.
2.4 Hybrid Approaches
The literature reports several systems that combine
multiple techniques to accelerate the rendering of large
models. For example, The BRUSH system [SBM+94]
used LODs with hierarchical representation for large
mechanical and architectural models. The UC Berke-
ley Architecture Walkthrough system [FKST96] com-
bined hierarchical algorithms with object-space visibil-
ity computations [Tel92] and LODs for architectural
models.

More recently, [ASVNB00] presented a framework
that integrates occlusion culling and LODs. The crux
of the approach is to estimate the degree of visibility of
each object in the PVS and use that value both to se-
lect appropriate LODs and to cull. The method relies
on decomposing scene objects into overlapping convex
pieces (axis-aligned boxes) that then serve as individ-
ual “synthetic occluders”. Thus the effective maximum
occluder size depends on the largest axis-aligned box
that will fit inside each object.

Another recent integrated approach uses a
prioritized-layered projection visibility approximation
algorithm with view-dependent rendering [ESSS01].
The resulting rendering algorithm seems a promis-
ing approach when approximate (non-conservative)
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visibility is acceptable.
The UNC Massive Model Rendering (MMR) sys-

tem [ACW+99] combined LODs with image-based
impostors and occlusion culling to deliver interactive
walkthroughs of complex models. A more detailed
comparison with this system will be made later in Sec-
tion 6.4.

Various proprietary systems exist as well, such as
the one Boeing created in the 1990’s to visualize mod-
els of large passenger jets. However, to the best of our
knowledge, no detailed descriptions of this system are
available, so it is difficult to make comparisons.

3 Overview
In this section, we give a brief overview of the main
components of our approach. These components are
simplification, occlusion culling, and a parallel archi-
tecture.

3.1 Model Simplification
Given a large environment, we generate a scene graph
by clustering small objects, and partitioning large ob-
jects to create a spatially coherent, axis-aligned bound-
ing box (AABB) hierarchy. Details of the hierarchy
construction will be discussed in Section 4.

3.2 Parallel Occlusion Culling
At run-time, our algorithm performs occlusion culling,
in addition to view frustum culling, based on the pre-
computed AABB scene graph hierarchy. We use a
two-pass version of the hierarchical Z-buffer algorithm
[GKM93] with a two-graphics-pipeline parallel archi-
tecture. In this architecture, occluders are rendered on
one pipeline while the final interactive rendering of vis-
ible primitives takes place on the second pipeline. A
separate software thread performs the actual culling us-
ing the Z-buffer that results from the occluder render-
ing. The architecture will be presented in detail in Sec-
tion 5.

We chose to use the hierarchical Z-buffer (HZB) be-
cause of its good culling performance, minimal restric-
tions on the type of occluders, and for its ability to per-
form occluder fusion. Moreover, it can be made to work
well without extra preprocessing or storage overhead
by exploiting temporal coherence. The preprocessing
and storage cost of GigaWalk is thus the same as that
of an LOD-only system.

Occluder Selection: A key component of any occlu-
sion culling algorithm is occluder selection, which can
be accomplished in a number of ways. A typical ap-
proach uses solid angle to estimate a small set of good
occluders [ZMHH97, KS00]. However, occluders se-
lected according to such heuristics are not necessarily
optimal in terms of the number of other objects they ac-
tually occlude. The likelihood of obtaining good occlu-
sion can be increased by making the occluder set larger,
but computational costs usually demand the set be as

small as possible.
Our parallel approach, on the other hand, allows

us to take advantage of the temporal coherence based
occluder selection algorithm presented in [GKM93],
which treatsall the visible geometry from the previous
frame as occluders for the current frame. This method
makes use of frame-to-frame coherence and provides a
good approximation to the foreground occluders for the
current frame.

Figure 3:System Architecture: Each color represents a sep-
arate process. The OR and RVG processes are associated
with separate graphics pipelines, whereas the STC uses one
or more processors.

3.3 GigaWalk Architecture
Fig. 3 presents the overall architecture of our run-time
system. It shows the three processes that run in parallel:

1. Occluder Rendering (OR): Using all the visible
geometry from a previous frame as the occluder
set, this process renders that set into a depth buffer.
It runs on the first graphics pipeline.

2. Scene Traversal, Culling and LOD Selection
(STC): This process computes the HZB using
the depth buffer computed by OR. It traverses
the scene graph, computes the visible geometry
and selects appropriate LODs based on the user-
specified error tolerance. The visible geometry is
used by RVG for the current frame and OR for the
next frame. It runs on one or more processors.

3. Rendering Visible Scene Geometry (RVG):
This process renders the visible scene geometry
computed by STC. It uses the second graphics
pipeline.

More details of the run-time system are given in Sec-
tions 5 and 6.
4 Scene Representation
In this section, we present an object clustering-based
algorithm to automatically compute a scene graph rep-
resentation of the geometric dataset.

CAD datasets often consist of a large number of ob-
jects which are organized according to a functional,
rather than spatial, hierarchy. By “object” we mean
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simply the lowest level of organization in a model or
model data structure above the primitive level. The
size of objects can vary dramatically in CAD datasets.
For example, in the Power Plant model a large pipe
structure, which spans the entire model and consists
of more than 6 million polygons, is one object. Simi-
larly, a relatively small bolt with 20 polygons is another
object. Our rendering algorithm computes LODs, se-
lects them, and performs occlusion culling at the object
level; therefore, the criteria used for organizing prim-
itives into objects has a serious impact on the perfor-
mance of the system. Our first step, then, is to redefine
objects in a dataset based on criteria that will improve
performance.
4.1 Unified Scene Hierarchy
Our rendering algorithm performs occlusion culling in
two rendering passes: pass one renders occluders to
create a hierarchical Z-buffer to use for culling, pass
two renders the objects that are deemed visible by the
HZB culling test. Given this two-pass approach, we
could consider using a separate representation for oc-
cluders in pass one than for displayed objects in pass
two [HMC+97, ZMHH97]. Using different representa-
tions has the advantage of allowing different criteria for
partitioning and clustering for each hierarchy. More-
over, it would give us the flexibility of using a differ-
ent error metric to create simplified occluders, one op-
timized to preserve occlusion power rather than visual
fidelity.

Despite these potential advantages, we used a sin-
gle unified hierarchy for occlusion culling and levels-
of-detail based rendering. A single hierarchy offers the
following benefits:
• Simplicity: A single representation leads to a simpler
algorithm.
• Memory And Preprocessing Overhead: A sepa-
rate occluder representation would increase the storage
overhead, and increase the overall preprocessing cost.
This can be significant for gigabyte datasets, depend-
ing upon the type of occluder representation used.
• Conservative Occlusion Culling:Our rendering al-
gorithm treats the visible geometry from the previous
frame as the occluder set for the current frame. In or-
der to guarantee conservative occlusion culling, it is
sufficient to ensure that exactly the same set of nodes
and LODs in the scene graph are used by each process.
Ensuring conservative occlusion culling when different
representations are used is more difficult.
4.1.1 Criteria for Hierarchy
A good hierarchical representation of the scene graph is
crucial for the performance of occlusion culling and the
overall rendering algorithm. We use the same hierarchy
for view frustum culling, occluder selection, occlusion
tests on potential occludees, hierarchical simplification,
and LOD selection. Though there has been consider-
able work on spatial partitioning and bounding volume

hierarchies, including top-down and bottom-up strate-
gies and spatial clustering, none of them seem to have
addressed all the characteristics desired by our render-
ing algorithm. These include good spatial localization,
object size, balance of the hierarchy, and minimal over-
lap between the bounding boxes of sibling nodes in the
tree.

Bottom-up hierarchies lead to better localization and
higher fidelity LODs. However, it is harder to use
bottom-up techniques to compute hierarchies that are
both balanced and have minimal spatial overlap be-
tween nodes. On the other hand, top-down schemes are
better at ensuring balanced hierarchies and bounding
boxes with little or no overlap between sibling nodes.
Given their respective benefits, we use a hybrid ap-
proach that combines both top-down partitioning and
hierarchy construction with bottom-up clustering.
4.2 Hierarchy Generation
In order to generate uniformly-sized objects, our pre-
processing algorithm first redefines the objects using a
combination of partitioning and clustering algorithms
(see Fig. 5). The partitioning algorithm takes large ob-
jects and splits them into multiple objects. The cluster-
ing step groups objects with low polygon counts based
on their spatial proximity. The combination of these
steps results in a redistribution of geometry with good
localization and emulates some of the benefits of pure
bottom-up hierarchy generation. The overall algorithm
proceeds as follows:

1. Partition large objects into sub-objects in the ini-
tial database (top-down)

2. Organize disjoint objects in and sub-objects into
clusters (bottom-up)

3. Partition again to eliminate any uneven spatial
clusters (top-down)

4. Compute an AABB bounding volume hierarchy
on the final redefined set of objects (top-down).

Next, we present the algorithms for clustering and par-
titioning in detail.
4.2.1 Partitioning Objects
We subdivide large objects based on their size, as-
pect ratios and polygon count into multiple sub-objects,
since long, thin objects with large bounding boxes are
less likely to be occluded. The algorithm proceeds as
follows:

1. Check if an object meets the splitting criteria :

• the number of triangles is above a threshold
t1, and,

• the size (bounding box diagonal) is greater
than a thresholds1, or
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(a) Partitioning & Clustering on Power
Plant

(b) Original Objects in Double Eagle (c) Partitioning & Clustering on Double
Eagle

Figure 4:The image on the left shows the application of the partitioning and clustering algorithm to the Power Plant model.
The middle image shows the original objects in the Double Eagle tanker model with different colors. The right image shows
the application of the clustering algorithm on the same model. Each cluster is shown with a different color.

• ratio of largest dimension of bounding box to
smallest dimension is above a thresholdr1.

2. Partition the object along the longest axis of the
bounding box. If that results in an unbalanced par-
tition, choose the next longest axis.

3. Recursively split the child objects in the same
manner.

See Section 6.3.1 for the parameter values used for this
and the subsequent stages of our preprocess.
4.2.2 Clustering
Many approaches for clustering disjoint objects are
based on spatial partitioning, such as adaptive grids or
octrees. However, they may not work well for complex,
irregular environments composed of a number of small
and large objects. Rather we present an object-space
clustering algorithm extending a computer vision algo-
rithm for image segmentation [FH98]. The algorithm
uses minimum spanning trees (MST) to represent clus-
ters. It uses local spatial properties of the environment
to incrementally generate clusters that represent global
properties of the underlying geometry. The resulting
clusters are neither too coarse nor too fine. The algo-
rithm imposes this criteria by ensuring that it combines
two clusters only if the internal variation in each cluster
is greater than its external variation (by using Hausdorff
metric). In each cluster, the maximum weight edge
(which denotes the internal variation) of the MST rep-
resenting the cluster denotes the maximum separation
between any two “connected” objects in the cluster. A
minimum weight edge connecting two different clus-
ters (which denotes the external variation between the
two clusters) estimates the separation between objects
of one cluster with those of the other. In other words,

it denotes the minimum radius of dilation necessary to
connect at least one point of one cluster to that in an-
other. The algorithm is similar toKruskal’s algorithm
[Kru56] for generating a forest of minimum spanning
trees. The overall algorithm proceeds as follows:

1. Construct a graphG(V,E) on the environment
with each object representing a vertex in the graph.
Construct an edge between two vertices if the dis-
tance between the two vertices (objects) is less
than a thresholdD. The distance function is de-
fined as the shortest distance between the bound-
ing boxes of the two objects. If the two boxes are
overlapping, then it is zero.

2. SortE into π = (o1, o2, . . . , ok), oi ∈ E, i =
1, . . . , k in a non-decreasing order based on edge
weights,w(oi). Start with a forestF 0 where each
vertexvi represents a cluster.

3. Repeat Step4 for the set of edgesoq =
o1, . . . , ok, k = ‖E‖.

4. Construct forestF q from F q−1 as follows. Let
oq = (vi, vj), i.e., edgeoq connects verticesvi
andvj . If there is no path fromvi to vj in F q−1

andw(oq) is small compared to the internal vari-
ation of components containingvi andvj , and if
the bounding volume of the resultant component is
less than a maximum volume threshold, then add
oq to F q−1 to obtainF q, otherwise add nothing.
Mathematically, ifCq−1

i 6= Cq−1
j andw(oq) ≤

MI(Cq−1
i , Cq−1

j ), thenF q = F q−1 ∪ oq where

Cq−1
i denotes the cluster containing vertexvi in

F q−1 andCq−1
j is the cluster containing vertexvj .
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Figure 5: Our clustering and partitioning process applied to a 2D example. Each different color represents a
different object at the end of a stage. (a) The model’s original objects. This object distribution captures a number
of features common in CAD models in which objects are defined by function rather than by location. (b) The initial
partitioning stage serves to split objects with large bounding boxes. This prevents objects like3, whose initial
bounding box intersects most of the others, from causing clustering to generate just one large cluster. (c) After
clustering, the group of small objects around1 have all been merged to form1∗. The row of objects,2, have also
been merged into one cluster,2∗, as well, but one which has a poor aspect ratio. (d) The final partition splits2∗
into two separate objects.

elseF q = F q−1, where

MI(C1, C2) =
min(I(C1) +K/‖C1‖, I(C2) +K/‖C2‖)

and
I(C) = max

e∈MST (C,E)
w(e) (1)

The K/‖Ci‖ terms bias the results toward clusters
of cardinality bounded byO(K), where K is user-
specified. We set a maximum volume thresholdV to
ensure final clusters are not too large in size. It is rea-
sonably fast in practice and generates good spatial clus-
ters. Fig. 4 shows its application to the Power Plant and
Double Eagle models.

Overall, the clustering algorithm successfully
merges small objects into larger groups with good lo-
calization. It improves the performance of the culling
algorithm as well as the final image fidelity.
4.2.3 Partitioning Clusters
We finally repartition clusters with an uneven distribu-
tion of geometry, splitting objects about their center of
mass. This is similar to the partitioning algorithm pre-
sented in Section 4.2.1. However, we use higher thresh-
olds for the size and triangle count to avoid splitting
clusters back into small objects, but tighter bounds for
the aspect ratio to force splitting of uneven clusters.
4.2.4 Hierarchy Generation
We compute a standard AABB bounding volume hi-
erarchy in a top-down manner on the set of redefined
objects generated after clustering and partitioning. The
bounding boxes are assigned to left and right branches
of the hierarchy using their geometric centers to avoid
overlap. The redefined objects become the leaf nodes
in the AABB hierarchy.

4.3 HLOD Generation
Given the above scene graph, the algorithm computes
a series of LODs for each node. The HLODs are
computed in a bottom-up manner. The HLODs of the
leaf nodes are standard static LODs, while the HLODs
of intermediate nodes are computed by combining the
LODs of the nodes with the HLODs of node’s children.
We use a topological simplification algorithm to merge
disjoint objects [EM99].

The majority of the pre-computation time is spent in
LOD and HLOD generation. The HLODs of an inter-
nal node depend only on the LODs of the children, so
by keeping only the LODs of the current node and its
children in main memory, HLOD generation is accom-
plished within a small memory footprint. Specifically,
the memory usage is given by

main memory footprint ≤ sizeof(AABBHierarchy)
+ max
Ni∈SG

(sizeof(Ni) +∑
Cj∈Child(Ni)

sizeof(Cj))

4.4 HLODs as Hierarchical Occluders
Our occlusion culling algorithm uses LODs and
HLODs of nodes as occluders to compute the HZB.
They are selected based on the maximum screen-space
pixel deviation error on object silhouettes.

The HLODs our rendering algorithm uses for oc-
cluders can be thought of as “hierarchical occluders”.
A hierarchical occluder associated with a nodei is an
approximation of a group of occluders contained in the
subtree rooted ati. The approximation provides a lower
polygon count representation of a collection of object-
space occluders. It can also be regarded as object-space
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occluder fusion.
5 Interactive Display
In this section, we present our parallel rendering ar-
chitecture for interactive display of complex environ-
ments. Here we describe in detail the operations per-
formed by each of the two graphics pipelines and each
of the three processes: occluder rendering (OR), scene
traversal and culling (STC) and rendering visible ge-
ometry (RVG), which run synchronously in parallel (as
shown in Fig. 6).
5.1 Run-time Architecture
The relationship between different processes and the
tasks performed by them is shown in Fig. 3.
5.1.1 Occluder Rendering
The first stage for a given frame is to render the oc-
cluders. The occluders are simply the visible geometry
from a previous frame. By using this temporal coher-
ence strategy, the load on the two graphics pipelines is
essentially balanced, since they render the exact same
geometry, just shifted in time. The culling and LOD
selection performed for displaying framei naturally re-
sults in an occluder set for framei + 1 that is of man-
ageable size. A brief pseudo-code description is given
in Algorithm 5.1.

Occluder Render(δ,framei)
• get current instantaneous camera position
(camerai)
• while (more nodes on node queue from STC (i-1))
∗ pop next node off the queue
∗ select LOD/HLOD for the node according to

error tolerance,δ, using camerai
∗ render that LOD/HLOD into Z-bufferi
• read back Z-bufferi from graphics hardware
• push Z-bufferi onto queue for STCi
• push camerai onto queue for STCi

ALGORITHM 5.1: OccluderRender.

Since the list of visible geometry for rendering
comes from the culling stage (STC), and STC gets its
input from this process (OR), a startup procedure is re-
quired to initialize the pipeline and resolve this cyclic
dependency. During startup, the OR stage is bypassed
on the first frame, and STC generates its initial list of
visible geometry without occlusion culling.
5.1.2 Scene Traversal, Culling and LOD Selection
The STC process first computes the HZB from the
depth buffer output from OR. It then traverses the
scene graph, performing view-frustum culling, occlu-
sion culling and LOD error-based selection in a recur-
sive manner. The LOD selection proceeds exactly as
in [EMB01]: recursion terminates at nodes that are ei-
ther culled, or which meet the user-specified pixel-error
tolerance. A pseudo-code description is given in Al-
gorithm 5.2. The occlusion culling is performed

SceneTraversal Cull (ε, framei)
• get Z-bufferi from ORi via Z-buffer queue
• build HZB i
• get camerai from ORi queue
• push copy of camerai onto queue for RVGi
• set NodeList[i] = Root(SceneGraph)
• while (NotEmpty(NodeList[i]))
∗ node = First(NodeList[i])
∗ set NodeList[i] = Delete(NodeList[i],node)
∗ if (View Frustumculled(node)) then next;
∗ if (OcclusionCulled(node)) then next;
∗ if HLOD Error Acceptable(ε,node) then
− push node onto queue for ORi+ 1;
− push node onto display queue for RVGi;
∗ else
set NodeList[i] = Add(NodeList[i],

Children(node));

ALGORITHM 5.2: SceneTraversalCull.

by comparing the bounding box of the node with the
HZB. It can be performed in software or can make use
of hardware-based queries as more culling extensions
become available.
5.1.3 Rendering Visible Scene Geometry
All the culling is performed by STC, so the final render
loop has only to rasterize the nodes from STC as they
are placed in the queue. See Algorithm 5.3.

Render Visible SceneGeometry(framei)
• get camerai from STCi queue
• while (more nodes on queue from STCi)
• pop node off queue
• render node

ALGORITHM 5.3: RenderVisible SceneGeometry.

5.2 Occluder Selection
Ideally, the algorithm uses the visible geometry from
the previous frame (i− 1) as the occluders for the cur-
rent frame to get the best approximation to the cur-
rent foreground geometry. However, using the previous
frame’s geometry can lead to bubbles in the pipeline,
because of the dependency between the OR and STC
stages: STC must wait for OR to finish rendering the
occluders before it can begin traversing the scene graph
and culling. Fortunately, using the visible geometry
from two frames previous can eliminate that depen-
dency, and still provides a good approximation to the
visible geometry for most interactive applications.
5.3 Trading Fidelity for Performance
The user can trade off fidelity for better performance in
a number of ways. The primary control for achieving
higher frame rates is the allowable LOD pixel error (see
Figure 7).

Our system has been designed primarily to offer
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Figure 6: Timing relationship between different processes. The arrows indicate data passed between processes during the
computation of frame 2. Along with the other data indicated, viewpoints also travel through the pipeline according to the
frame numbers. This diagram demonstrates the use of occluders from framei− 2 rather thani− 1 (see Section 5.2).

(a) Pixel Error =0 (b) Pixel Error =20 (c) Difference Image

Figure 7: The Engine Room in the Double Eagle Tanker displayed without and with HLODs. The inset shows a
magnification of one region. Original resolution 1280×960.

conservative occlusion culling, and we report all of our
results based on this mode of operation. Our system can
guarantee conservative culling results for two reasons:
1) the underlying HZB algorithm used is itself conser-
vative, and 2) for a given framei we choose the exact
same set of LODs for both OR and STC stages. By
choosing the same LODs, we ensure that the Z-buffer
used for culling is consistent with the geometry it is
used to cull. Without this selection algorithm, conser-
vativity is not guaranteed.

We have also modified our run-time pipeline in a
number of ways to optionally increase frame rate or
decrease latency, by allowing the user to relax the re-
striction that occlusion culling be performed conserva-
tively:

• Asynchronous rendering pipeline: Rather than
waiting for the next list of visible geometry from the
culling stage (STC) to render framei + 1, the ren-
der stage (RVG) can instead proceed to render another
frame, still using the geometry from framei, but us-
ing the most recent camera position, corresponding to
the user’s most up-to-date position. This modification

eliminates the extra frame of latency introduced by our
method. The main drawback is that it may introduce
occlusion errors that, while typically brief, are poten-
tially unbounded when the user moves drastically.

• Nth Farthest Z Buffer Values: The occlusion
culling can be modified to use not the farthest Z val-
ues in building the depth pyramid, but the Nth far-
thest [Gre01], thereby allowing for approximate “ag-
gressive” culling.

• Lower HZB resolution for occluder rendering:
The pixel resolution of the OR stage can be set smaller
than that of the RVG stage. If readback from the depth
buffer or HZB computation is relatively slow, this can
improve the performance. However, using a lower res-
olution source for HZB allows for the possibility of
depth buffer aliasing artifacts that can manifest them-
selves as small occlusion errors. In practice, however,
we have not been able to visually detect any such errors
when using OR depth buffers with as little as half the
RVG resolution.
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(a) Polygon Count =202666 (b) Polygon Count =3578485 (c) Polygon Count =61771

Figure 8:Comparison between different acceleration techniques from the same viewpoint. (a) Rendered with only HLODs.
(b) Rendered with only HZB occlusion culling. (c) Rendered with GigaWalk using HLODs and HZB occlusion culling.

Figure 9:Comparison of different acceleration algorithms on a path in the Power Plant model (left) and Double
Eagle (right). The Y-axis shows the instantaneous frame rate. The combination of HLODs + occlusion culling
results in 2-5 times improvement over using only one of them.

6 Implementation and Performance
We have implemented our parallel rendering algorithm
on a shared-memory multiprocessor machine with dual
graphics rasterization pipelines: an SGI Onyx work-
station with 300MHz R12000 MIPS processors, Infi-
nite Reality (IR2e) graphics boards, and 16GB of main
memory. Our algorithm uses three CPUs and two
graphics pipelines.

All of the inter-process communication is imple-
mented using a simple templated producer-consumer
shared queue data structure of under 100 lines of C++
code. Each stage (OR,STC,RVG) is connected with the
others using one or more instances of this queue data
structure. Synchronization between the processes is ac-
complished by pushing sentinel nodes onto the shared
queues to delimit the data at the end of a frame. The
scene graph resides in shared memory, and is accessi-
ble to all processes.

We have tested the performance of GigaWalk on
two complex environments, a coal-fired Power Plant

(shown in Fig. 2) and a Double Eagle Tanker (shown
in Fig. 1). The details about these environments are
shown in Table 1. In addition to the model complexity,
the table also lists the object counts after the clustering
and partitioning steps.

6.1 Improvement in Frame Rate

GigaWalk is able to render our two example complex
environments at interactive rates from most viewpoints.
The frame rate varies from 11 to 50 FPS. It is more than
20 frames a second from most viewpoints in the scene.
We have recorded and analyzed some example paths
through these models (as shown in the video). In Fig. 9,
we show the improvement in frame rate for each envi-
ronment. The graphs compare the frame rate for each
individual rendering acceleration technique alone and
for the combination. Table 2 shows the average speed-
ups obtained by each technique over the same path. The
comparison between the techniques for a given view-
point is shown in Fig. 8.
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Object Count
Env Poly Init Part1 Clust Part2

×106 ×104 ×104 ×103 ×105

PP 12.2 0.12 6.95 3.33 0.38
DE 82.4 12.7 2.21 2.31 1.2

Table 1: A breakdown of the complexity of each envi-
ronment.Poly is the polygon count.Init is the number
of objects in the original dataset. The algorithm first
partitions (Part1) objects into sub-objects, then gener-
ates clusters (Clust), and finally partitions large un-
even spatial clustersPart2. The table shows the object
count after each step.

Model Average FPS
OCH HLOD+VFC OCC+VFC VFC

PP 30.67 9.55 9.48 1.15
DE 29.43 9.76 3.27 0.02

Table 2:Average frame rates obtained by different ac-
celeration techniques over the sample path.FPS =
Frames Per Second,HLOD = Hierarchical levels of
detail,OCH = Occlusion culling with HLOD,OCC =
Occlusion Culling,VFC = View Frustum Culling

6.2 System Latency
Our algorithm introduces a frame of latency to render-
ing times. Latency can be a serious issue for many in-
teractive applications like augmented reality. Our ap-
proach is best suited for latency-tolerant applications,
namely walkthroughs of large synthetic environments
on desktop or projection displays. The end-to-end la-
tency in our system varies with the frame rate. It is
typically in the range 50-150 ms. The high end of this
range is achieved when the frame rate dips close to
10 frames a second. This latency is within the range
that most users can easily adapt to (less than 300 ms)
without changing their interaction mode with the model
[EYAE99].

In many interactive applications, the dominant
component of latency is the frame rendering time
[EYAE99]. Through the use of our two-pass occlusion
culling technique, our rendering algorithm improves
the frame rate by a factor of 3-4. As a result, the overall
system latency is decreased, in contrast to an algorithm
that does not use occlusion culling.

6.3 Preprocessing
This section reports the values we used for the prepro-
cessing parameters mentioned in Section 4 and gives
details about the amount of time and memory used by
our preprocess.

6.3.1 Preprocessing Parameters
For Partition-I (Sec. 4.2.1), empirically, we
have obtained good results witht1=1000,

s1=0.1×model dimension, r1=2.5.
For Clustering (Sec. 4.2.2), we useD = 0.1 ×

max bounding box dimension. We can also work
on a complete graph but choosing a threshold
in general works well and reduces the computa-
tional complexity. We chooseV = 10−3 ×
total scene bounding box volume as the maxi-
mum volume threshold. ForK we use 1500, which pre-
vents too many closely-packed objects from all merg-
ing into a single cluster.

For Partition-II (Sec. 4.2.3) we uses2 = 2s1 and
triangle countt2 = 10t1, but tighter bounds for the
aspect ratior2 = 0.5r1.
6.3.2 Time and Space Requirements
The preprocessing was done on a single-processor
2GHz Pentium 4 PC with 2GB RAM. The preprocess-
ing times for the Double Eagle model were: 45 min for
Partition-I, 90 min for Clustering, 30 min for Partition-
II, 32.5 hours for out of core HLOD generation and 12
min for the AABB hierarchy generation. The size of
the final HLOD scene graph representation is 7.6GB
which is less than 2 times the original data size. The
AABBTree hierarchy occupies 7MB space.

The main memory requirement for partitioning and
clustering is bounded by the size of the largest ob-
ject/cluster. For the Double Eagle it was less than
200MB for partitioning, 1GB for clustering and 300MB
for out of core HLOD generation.
6.4 Comparison with Earlier Approaches
A number of algorithms and systems have been pro-
posed for interactive display of complex environments.
These include specialized approaches for architectural,
terrain and urban environments, as highlighted in Sec-
tion 2. Given low depth complexity scenes, or scenes
composed of large or convex occluders (e.g, architec-
tural or urban models), our general approach is not
likely to perform any better than special-purpose algo-
rithms designed specifically to exploit such features. In
the rest of this section, we compare GigaWalk with ear-
lier systems that can handle general environments.

Some of the commonly used algorithms for general
environments are based on a scene graph representation
and using a combination of LODs or HLODs at each
node [Clar76]. The SGI’s Performer toolkit [RH94]
and IBM’s BRUSH system [SBM+94] provided this
capability. The BRUSH system used the LODs gen-
erated by a vertex clustering algorithm [RB93] that did
not provide good error bounds on the quality of result-
ing approximations. Cohen et al. [Cohe96] used LODs
generated using the “simplification envelopes” algo-
rithm and integrated them into the Performer frame-
work. However, the resulting algorithm was unable to
compute drastic simplifications of large environments.
Erikson et al. [EMB01] used a combination of LODs
and HLODs computed using GAPS [EM99] for differ-
ent nodes in the scene graph. However, none of these
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approaches performed occlusion culling. As a result,
they were unable to render high depth complexity mod-
els at interactive rates with good fidelity. GigaWalk also
uses GAPS to compute LODs and HLODs of objects.
However, our approach for computing a unified hierar-
chy that is used for LOD and HLOD selection at run-
time, and occlusion culling is quite different from that
presented in [EMB01].

The MMR system combined LODs and occlusion
culling for near-field geometry with image-based tex-
tured meshes to approximate the far-field, in a cell-
based framework [ACW+99]. While the combina-
tion of techniques proved capable of achieving inter-
active frame rates, the system had some drawbacks.
No good algorithms are known for automatic compu-
tation of cells for a large and general environment.
The MMR system used some model-dependent features
(e.g. walkways in the Powerplant) for cell computa-
tion. On the other hand, the preprocessing and scene
graph computation in GigaWalk is fully automatic. The
image-based far-field representations used in the MMR
system can result in dramatic popping and distortion
when switching between different cells. Moreover, the
memory overhead and preprocessing cost of creating
six meshes and textures per-cell was quite quite high.
The MMR system used a single graphics pipeline for
occlusion culling as well as rendering the visible geom-
etry and textured meshes. It used some preprocessing
techniques to estimate the depth complexity of near-
geometry in each cell and only used occlusion culling
when the viewer is in a cell with high depth complex-
ity. However, the overall benefit of occlusion culling
was rather limited because of these heuristics and a sin-
gle graphics pipeline based implementation. The cell
based spatial decomposition in the MMR system re-
sulted in a simple out-of-core rendering and prefetching
algorithm. The runtime memory footprint was much
smaller than the total size of the model and associated
data structures (e.g. LODs and image-based represen-
tations). On the other hand, GigaWalk assumes that
the entire scene graph and the LODs and HLODs are
loaded in the main memory.

7 Conclusions and Lessons Learned
We have presented an approach to rendering interactive
walkthroughs of complex 3D environments. The algo-
rithm features a novel integration of conservative oc-
clusion culling and levels-of-detail using a parallel al-
gorithm. We have demonstrated a new parallel render-
ing architecture that integrates these acceleration tech-
niques on two graphics pipelines and one or more pro-
cessors. Finally, we have presented novel algorithms
for partitioning and clustering, and generating an inte-
grated hierarchy suitable for both HLODs and occlu-
sion culling. We have demonstrated the performance of
our system, GigaWalk, on two complex CAD environ-
ments. To the best of our knowledge, GigaWalk is the

first system that can render such complex environments
at interactive rates with good fidelity, i.e. no popping or
aliasing artifacts.

There are many complex issues with respect to
the design and performance of systems for interac-
tive display of complex environments. These include
load balancing, extent of parallelism and scalability
of the resulting approach, the effectiveness of occlu-
sion culling and issues related to loading and managing
large datasets.

7.1 Load Balancing
There is a trade-off between the depth of scene graph,
which is controlled by the choice of minimum clus-
ter size, and the culling efficiency. Smaller bound-
ing boxes lead to better culling since more boxes can
be rejected, so less geometry is sent to RVG. On the
other hand, more boxes increases the cost of scene
graph traversal and culling in STC. In our system, scene
traversal and object culling (STC) operate in parallel
with rendering (OR and RVG). If our performance bot-
tleneck is the rendering processes (RVG and OR), we
can shift the load back to the culling (STC) process by
creating a finer partitioning. Conversely, we can use
a coarser partitioning to move the load back to RVG
and OR. Thus, the system can achieve load balancing
between different processes running on the CPUs or
graphics pipelines by changing the granularity of par-
titioning.

7.2 Parallelism
Parallel graphics hardware is increasingly being used
to improve the rendering performance of a walkthrough
system. Generally, though, the speed-up obtained from
usingN pipelines is no more than a factor ofN . Using
a second pipeline for occlusion culling (i.e.N = 2),
however, enables GigaWalk to achieve more than two
times speed-up for scenes with high depth complexity.
For low depth complexity scenes there is little or no
speed-up, but there is no loss in frame rate as the oc-
clusion culling is performed using a separate pipeline.
However, our parallel algorithm introduces a frame of
latency.

Note also that other parallel approaches [HEB+01,
SFLS00] are fundamentally orthogonal to our ap-
proach, and could potentially be used in conjunction
with our architecture as black-box replacements for the
OR and RVG rendering pipelines.

7.3 Load Times
One of the considerations in developing a walkthrough
system to render gigabyte datasets is the time taken to
load gigabytes of data from secondary storage, which
can be many hours. To speed up the system we have
implemented an on-demand loading system. Initially
the system takes a few seconds to load the skeletal
representation of the scene graph with just bounding
boxes. Once loaded, the user commences the walk-
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through while a fourth, asynchronous background pro-
cess automatically loads the geometry for the nodes in
the scene graph that are visible. We have found that
adding such a feature is very useful in terms of system
development and testing its performance on new com-
plex environments.

8 Limitations and Future Work
Our current implementation of GigaWalk has many
limitations. The current system works only for static
environments, and it would be desirable to extend it to
dynamic environments as well, perhaps with a strategy
similar to the one proposed in [EMB01].

The memory overhead of GigaWalk can be high. In
the current implementation, viewing an entire model re-
quires loading the scene graph and HLODs. It would
be useful to develop an out-of-core rendering system
that uses a finite memory footprint and uses prefetch-
ing techniques to load the visible nodes.

The preprocessing time for our largest dataset, the
Double Eagle, was also higher than desired. Since
most nodes in the scene graph are non-overlapping, the
LODs can be generated independently. Thus the al-
gorithm could compute the LODs and HLODs in par-
allel, using multiple threads. This could improve the
preprocessing performance considerably, reducing the
32.5 hours spent on the Double Eagle to overnight.

One interesting possibility for further increasing the
efficiency of GigaWalk would be to use speculative ren-
dering in the RVG process to eliminate any time lost
to pipeline stalls when RVG needs to wait for visible
nodes from the STC process. Since we know that the
geometry rendered during the last frame is likely to still
be visible in the current frame, the RVG process could
proceed to render nodes from the old list whenever the
STC is not ready with new data. It would also be
useful to use a progressive occlusion culling algorithm
[GKM93], as opposed to a two-pass HZB algorithm. It
may need extra support from the graphics hardware.

The algorithm described in this paper guarantees im-
age quality in terms of a bound on screen-space LOD
error, but there are no guarantees on the frame rates.
The current system would be improved by the addition
of a target-frame-rate rendering mode. Furthermore,
the current system’s use of static LODs and HLODs
leads to some popping when switching between de-
tail levels. We would like to explore view-dependent
or hybrid view-dependent/static LOD-based simplifica-
tion approaches that can improve the fidelity of our ge-
ometric approximations without increasing the polygon
count, while decreasing popping artifacts.

Finally we are interested in adapting GigaWalk to
a distributed system architecture using two graphics-
capable PCs, connected using a standard network. We
expect that the network bandwidth requirement will be
less than 10-megabits per second, enabling the system
to run over a standard ethernet LAN. Our current imple-

mentation runs on a shared-memory SGI workstation.
We believe that taking advantage of the performance of
current commodity PC graphics hardware will both im-
prove the rendering performance and enable wider use
of the resulting system.
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