
EUROGRAPHICS ’0x / N.N. and N.N.

(Editors)

Volume 0 (1981), Number 0

gProximity: Hierarchical GPU-based Operations for Collision

and Distance Queries

C. Lauterbach and Q. Mo and D. Manocha

University of North Carolina at Chapel Hill

Abstract

We present novel parallel algorithms for collision detection and separation distance computation for rigid and

deformable models that exploit the computational capabilities of many-core GPUs. Our approach uses thread

and data parallelism to perform fast hierarchy construction, updating, and traversal using tight-fitting bound-

ing volumes such as oriented bounding boxes (OBB) and rectangular swept spheres (RSS). We also describe

efficient algorithms to compute a linear bounding volume hierarchy (LBVH) and update them using refitting meth-

ods. Moreover, we show that tight-fitting bounding volume hierarchies offer improved performance on GPU-like

throughput architectures. We use our algorithms to perform discrete and continuous collision detection includ-

ing self-collisions, as well as separation distance computation between non-overlapping models. In practice, our

approach (gProximity) can perform these queries in a few milliseconds on a PC with NVIDIA GTX 285 card

on models composed of tens or hundreds of thousands of triangles used in cloth simulation, surgical simulation,

virtual prototyping and N-body simulation. Moreover, we observe more than an order of magnitude performance

improvement over prior GPU-based algorithms.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Geometric Algorithms, languages, and systems I.3.5 [Computer Graphics]: Computational

Geometry and Object Modeling—Object hierarchies

1. Introduction

Geometric proximity queries including collision detection

and separation distance computation are widely used in com-

puter graphics, physically-based modeling, virtual reality,

haptics and robotics. In order to perform accurate simula-

tions, it is important to ensure that there are no collisions

or penetrations between the objects or primitives. Moreover,

distance queries are used to estimate the time of collision

and the response force in dynamics simulation. Many ap-

plications, such as haptic rendering, need to perform these

queries at interactive rates (e.g. 1 KHz).

There is extensive literature on proximity queries. Some of

the widely used algorithms use bounding volume hierarchies

(BVHs) to accelerate different queries. These algorithms can

be classified based on the choice of the bounding volumes.

Furthermore, these hierarchies can be reconstructed or up-

dated using incremental methods for deformable models.

In this paper, we address the problem of exploiting mul-

tiple cores on commodity GPUs or many-core processors

for fast proximity queries. Many algorithms have been pro-

posed to perform fast collision queries on current GPUs us-

ing depth or stencil buffer tests [HTG03,KP03,GRLM03] or

compute distance fields by rendering the distance functions

[SOM04,SGG∗06,SGGM06,MRS08]. Essentially, these al-

gorithms exploit the parallel rasterization capabilities of a

GPU and the total work performed is relatively high as com-

pared to CPU-based algorithms that use BVHs. Furthermore,

many prior GPU-based approaches perform these queries at

a discrete or image-space resolution, which may not provide

sufficient accuracy for physically-based simulation.

Main Results: We present novel GPU-based algorithms to

efficiently perform collision and separation distance queries

between rigid and deformable models. We treat GPUs as

throughput many-core processors that can support thousands

of concurrent threads and use them for parallel BVH hierar-

chy construction, hierarchy update and hierarchy traversal.

Our formulation takes into account some of the architec-

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and

350 Main Street, Malden, MA 02148, USA.

C. Lauterbach & Q. Mo & D. Manocha / gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries

tural characteristics of current GPUs and is based on explicit

balancing of work units coupled with very lightweight syn-

chronization between the cores (see Section 2). This makes

it possible to apply our approach to very fine-grained work-

loads such as overlap tests in collision and distance queries

(see Section 3).

We show that throughput GPU-architectures can be ex-

ploited to use tighter fitting bounding volumes, such as ori-

ented bounding boxes (OBBs) and rectangular swept spheres

(RSS) with a very small overhead. The higher culling ef-

ficiency of these tight fitting bounding volumes results in

fewer false positives in terms of primitive or elementary

tests. This is in contrast to the development in CPU-based

algorithms that tend to use simple bounding volumes such

as AABBs for collision and distance computations. In or-

der to improve the performance of distance queries, we

also present efficient methods to compute linear bounding

volume hierarchies (LBVH) of RSS volumes. The parallel

traversal of the LBVHs is improved by using a shallower hi-

erarchy with higher branching factor, as opposed to a binary

tree (see Section 4). The shallow BVH reduces the data de-

pendency between different steps of the hierarchical distance

computation and improves the overall performance. More-

over, our hierarchy update and refitting algorithms are an or-

der of magnitude faster than previous CPU implementations.

We have implemented our approach on a PC with NVIDIA

GTX 285 GPU and evaluated its on several benchmarks with

40K to 250K triangles used in cloth simulation, virtual pro-

totyping, surgical simulation, and N-body simulation (see

Section 5). We observe up to an order of magnitude perfor-

mance improvement over prior GPU-based algorithms that

perform these queries at object-space resolution (see Section

6). We also compare the performance of our algorithm with

prior CPU-based single-core and multi-core algorithms that

use BVHs and highlight the speedups.

2. Background

We first briefly summarize previous work on collision and

distance queries. Next, we provide some background on cur-

rent GPU architectures.

2.1. Collision detection and distance queries

Hierarchical techniques based on BVHs have been widely

used to accelerate collision and distance queries. These in-

clude sphere trees, AABB trees, OBBTrees, K-DOP trees,

etc. [Eri04]. Most recent improvements to these queries has

either come from improved culling techniques [CTM08,

TCYM08] or parallelism [KHeY08]. In terms of separa-

tion distance queries, different algorithms based on bound-

ing volume hierarchies have been proposed [vdB97, Qui94,

LGLM00, JC04]. However, there is less work on using hi-

erarchical collision on GPUs. Instead, one approach has

been to use the GPU for broad-phase collision only [LG07].

Alternatively, many GPU-based collision checking algo-

rithms exploit the rasterization capabilities of GPUs by us-

ing depth or stencil buffer tests at image-space resolution

[HTG03,KP03,GRLM03]. In order to handle complex mod-

els, the hierarchical traversals are performed on the CPUs

[GKJ∗05, SGG∗06] and this results in additional CPU-GPU

data transfer overhead. A similar approach combines both

multi-core CPUs and GPUs [KHH∗09]. The rasterization

capabilities of GPUs have been used for fast distance field

computation [SOM04,MRS08] and they can also be used to

compute separation or penetration distances [SGG∗06].

2.2. GPU architectures

In recent years, the focus in processor architectures has

shifted from increasing clock rate to increasing parallelism.

Some of the most successful instances of throughput archi-

tectures are GPUs, which have become very general proces-

sors with a strong focus on achieving performance through

high parallelism. Current high-end GPUs have a theoretical

peak speed of up to a few Tera-FLOPs, thus far outpacing

current CPU architectures. Specifically, there are several fea-

tures that distinguish GPU architectures from the multi-core

CPU systems and also make it harder to achieve peak per-

formance. First, the GPUs usually have a high number of in-

dependent cores (e.g. the current generation NVIDIA GTX

280 has 30 cores) and each of the individual cores is a vec-

tor processor capable of performing the same operation on

several data elements simultaneously (e.g. 32 or 64 in cur-

rent GPUs). Second, GPUs do not provide a general cache

hierarchy for all memory accesses like CPUs. Instead, each

core can handle several separate tasks in parallel and switch

between them in hardware when one of them is waiting

for a memory operation to complete. This hardware multi-

threading approach is thus designed to hide the latency of

memory accesses to perform some other work in the mean-

time. However, both of these characteristics imply that – un-

like CPUs – achieving high performance in a GPU-based

algorithms depends on two things: (1) Providing a sufficient

number of parallel tasks so that all the cores are utilized; (2)

Providing several times that number of tasks just so that each

core has enough work to perform while waiting for data from

relatively slow memory accesses.

There is considerable literature in parallel computing on the

use of work queues for load balancing, including locking

and non-locking shared queues such as work stealing ap-

proaches [ABP98]. These techniques map very well to hi-

erarchical and recursive operations and have been employed

extensively in parallel systems. However, they have not been

used on GPUs as the overhead of performing communica-

tion between the cores through main memory can be rather

high. Previous techniques for GPU work queues used ex-

plicit compaction methods between kernel calls [ZHWG08,

LGS∗09]. Other methods have explored lock-free queues

and work stealing to parallelize octree construction [CT08]

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

C. Lauterbach & Q. Mo & D. Manocha / gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries

Figure 1: CAD/CAM benchmark: This sequence shows the collision-free path computed by a planner for simulating the

removal of a car seat for virtual prototyping [ZHKM08]. The underlying planner performs distance queries repeatedly to

compute such a path. Both objects are in close proximity configuration, which is a challenging scenario for separation distance

computation. The models consist of 245k triangles with an average query time of 55ms using our approach. It is more than 12

times faster than prior CPU-based algorithms.

Figure 2: Surgical Simulation: Simulating the motion of

a deformable catheter in the arteries for surgical simula-

tion [MLM08]. The catheter deforms as it passes through

the network of arteries and we use distance queries to per-

form the simulation. The model has around 12K triangles

and the average distance query takes about 28 ms.

and found work stealing to perform best. Overall, the over-

head of these methods makes them efficient only for ap-

plications with relatively high computational intensity and

coarse-grained parallelism such as hierarchy construction.

There are known parallel algorithms to accelerate hierarchi-

cal traversals [RK87,KG94] and they are also applied to par-

allel collision detection [KSTK95, GW07]. Parallel simula-

tions were also investigated in [HGS∗07]. However, most

of these methods either perform fine-grained communica-

tion between the processors or are not suited for GPU-like

architectures.

3. Hierarchy operations on GPU architectures

In this section, we present an overview of our approach for

performing hierarchical operations on GPUs.

3.1. Bounding Volume Hierarchies

BVHs have been widely used for accelerating collision and

distance queries. These include discrete as well as continu-

ous collision detection, including self-collisions. These hi-

erarchies can be characterized by the choice of the BV.

The simplest hierarchies use simple BVs such as spheres or

AABBs, which have a lower storage overhead, lower cost for

updating the hierarchy and performing overlap tests. Other

BVHs use tight fitting BVs such as K-DOPs, OBBs and

RSS. These BVHs have a higher storage overhead and in-

creased cost of overlap test. However, their culling efficiency

is much higher than the BVHs based on simple BVs, i.e. they

result in fewer false positives. In case of rigid models, the

BVHs are computed once and are traversed at run-time to

resolve the query. In this case, some of the fastest collision

algorithms use tight filling BVs such as K-DOPs [KHM∗98]

and OBBs [GLM96] and the fastest separation distance com-

putation algorithms are based on RSS [LGLM00]. However,

for deformable models, the cost of reconstructing or updat-

ing the hierarchy at each step of the simulation can be high.

Therefore, most CPU-based algorithms for deformable mod-

els use AABB or sphere hierarchies (e.g. [CTM08].) How-

ever, these simple BVs can result in a high number of false

positives and the resulting algorithms perform a high num-

ber of elementary tests [CTM08].

3.2. Challenges

In case of hierarchical collision detection and distance

queries, the major challenge is that work is generated dy-

namically as the algorithm progresses and the computa-

tional load on different cores can change significantly. Thus,

any parallel hierarchy-based algorithm needs to address the

problem of load balancing and work distribution in order to

maintain availability of parallelism for all cores. On multi-

threaded CPU architectures, prior approaches have used

work queues and work stealing for operations with hierar-

chies and recursion with similar properties [ABP98]. How-

ever, these techniques do not currently work well on GPUs

for multiple reasons. Primarily, they are based on the as-

sumption that low-latency communication between cores is

possible in order to manage concurrent access to shared data

structures. Unfortunately, this is only possible in a very re-

stricted sense on current GPUs. The main barrier to com-

munication is the latency and lack of a memory consistency

model in the global GPU memory shared by the cores, i.e.

different cores are not guaranteed to see memory writes from

other cores or may not even see them in the same order they

were written. Even though newer GPU architectures provide

atomic operations such as compare-and-swap (CAS) that

could be used for locking operations, the remaining prob-

lem is that previous writes to the memory protected by the

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

C. Lauterbach & Q. Mo & D. Manocha / gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries

Task 0

Task i

Core 1

Task n

Task n+i

Core k

Utilization

Balance
Core 1..k

New kernel call

abort or

continue

abort or

continue

Figure 3: Load balancing for hierarchy computation and

traversal: In our approach, each task keeps its own local

work queue in local memory and can generate new work

units (such as intersection operation) without coordinating

with others. After processing a work unit, each task is either

able to run further or has an empty or completely full work

queue and wants to abort.

lock may not have been executed yet, thus preventing imple-

mentation of work queues or other structures shared by all

cores. Even if memory consistency was not a problem, busy

waiting such as by spinning on a lock variable is relatively

inefficient on an architecture with high memory latency and

hardware multi-threaded execution can also lead to priority

inversion and prevent other threads on the same core from

performing useful work. As a result, one of the major chal-

lenges in terms of hierarchical traversal is to balance the load

evenly among multiple cores on the GPUs.

3.3. Lightweight work balancing

In the context of this paper, hierarchy operations include

workloads such as testing a pair of nodes for intersection

or computing a separation distance. As a result of that test,

new pairs of nodes may have to be tested afterward. In the

further discussion, we refer to the specific test to be done

(e.g. references to two nodes) as a work unit, the code run to

perform tests as a kernel and an instance of the kernel exe-

cuted on a core as a task. In order to efficiently parallelize

the hierarchy operation, we describe a novel approach that

distributes these work units between GPU cores and threads

efficiently. The main goal of our technique is to minimize

the amount of synchronization overhead, while performing

actual work. In our approach, we launch a number of paral-

lel tasks that run on separate cores. Every task keeps its own

work queue either in the processor-local memory or global

memory, depending on its size constraints. These queues are

only accessible locally; thus, no synchronization is neces-

sary between cores when reading or writing to queues. Work

kernels can remove an element from the queue and then cre-

ate new ones as well. In order to use the vector processors,

we also provide implementations for data-parallel access to

the queues such that the kernel may work on multiple work

units in parallel. For example, on a 32-wide vector unit, at

each step up to 32 work elements are dequeued, processed

and then some number of new units is pushed back onto the

queue. To perform parallel queue operations, there are two

options: first, data parallel prefix sum operations can provide

a way to compute an offset to store each new element in the

queue. Second, some GPUs also provide atomic operations

on memory and thus it is also possible to just atomically in-

crease a queue pointer to store elements. We have found the

latter option to be faster on current hardware.

The main step that ensures that all cores have work is the

balancing step (also see Fig. 3). Synchronization is only

performed on one global counter that holds the number of

cores that cannot do further work (i.e. the queue is empty

or full). Whenever a task reaches that state, it atomically

increases the variable and terminates the kernel. After ex-

ecuting a work unit, each task tests the current value of the

variable and compares it against a user-specified threshold

of idle tasks. If higher, then it terminates and writes back

its local queue to the global memory; otherwise, it contin-

ues. After all cores have either finished or aborted, we run

a kernel that examines the work queues from all the cores,

then assigns a roughly equal number of work units to each. If

there are unprocessed work units left, then the work kernel

for the current hierarchy operation is called again and the

process repeats. Note that the number of actual tasks is in

fact larger than the total number of GPU cores, to allow for

hardware multi-threading. Therefore, even if some percent-

age of tasks has been stopped, the core it was scheduled on

may not be idle but just processing another task. In practice,

we have found a threshold of 50% idle tasks for balancing

works well on current GPU architectures.

4. Collision and distance queries

In this section, we present our novel parallel algorithms to

perform collision and distance queries.

4.1. Hierarchy traversal for collision detection

We use BVHs to check for collisions between two disjoint

objects (inter-object collisions) as well as self-collisions

for deformable objects (intra-object collisions). We assume

that each object is composed of triangles and we do not

make any assumptions about their connectivity. As a spe-

cial case, self-intersection involves checking whether any

of the non-adjacent triangles of an object intersect each

other, as is needed in cloth simulation or surgical simula-

tion. Since many triangles can be small with large aspect

ratios, overlaps can be missed if discrete collision check-

ing is used. Therefore, continuous collision detection algo-

rithms are used to check whether there is a collision between

the discrete time instances, and is more expensive than dis-

crete collision checking as the elementary tests involve find-

ing roots of cubic polynomials. The BVH is built on top

of each object’s triangle or the swept volume between the

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

C. Lauterbach & Q. Mo & D. Manocha / gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries

time instances. During each step of the simulation, we use

the hierarchies to compute the potentially colliding pairs and

only perform triangle-triangle overlap tests on those candi-

date pairs.

4.1.1. Simultaneous hierarchy traversal

The traversal algorithm starts with the two BVH root nodes

and tests the BV for overlap in a recursive manner. If the

BVs overlap, then all possible pairings of their children are

recursively tested for intersection. If both of the nodes are

leafs, then the two corresponding triangles are tested for ex-

act overlap. If only one of the two nodes is a leaf, then it

is tested against the children of the other node. This can be

seen as traversing a tree of possible bounding volume node

pairs, also called the bounding volume test tree [LGLM00]

(BVTT.) Implicitly, our algorithm is performing a parallel

traversal of a BVTT.

The main work units are pairs of BVH nodes and for a binary

tree each intersection test can generate up to four new pairs.

All intersection tests between the node of the hierarchy can

be performed independently. The intersection kernel can be

run using the vector units to process several intersections in

parallel and push the resulting new intersection pairs on the

work queue or in a separate result queue for actual triangle

pairs. After this traversal, the overall list of triangle pairs is

then used as input for an intersection test kernel that tests

for actual overlap. Because all potential intersections can be

performed in parallel, this step is simple to implement by

starting enough tasks for all the pairs.

4.1.2. BVTT traversal

One problem with this approach is that there is a lack of

available parallelism while testing the higher levels of the hi-

erarchy that can reduce the overall performance of the algo-

rithm. However, it is possible to exploit temporal coherence

in the traversal and drastically increase the level of paral-

lelism. In many interactive applications there is considerable

temporal or spatial coherence between successive time steps.

This can be exploited for front tracking [KHM∗98, EL01].

We keep track of the front in the BVTT which consists of all

the intersecting leaf node pairs of the BVTT as well as ev-

ery non-intersecting node pair for which a sibling overlaps.

This simple list of node pairs can be generated during BVH

traversal. For the next frame, we use this list as input for

the kernel and use the same pairs as the starting work units.

The traversal kernel for processing this front is a modified

version of the standard traversal algorithm: for each initial

node, the intersection test is performed again with the up-

dated BVs. If the pair had an overlap during the last frame

and intersects again, then the triangle pair is written to the

intersection queue. If the pair did not intersect last frame,

but does now, then new work units are created as in the nor-

mal traversal. Finally, if the pair does not intersect, then the

kernel loads the parents of both the nodes and tests them

for overlap. If they still intersect, then we have at least one

sibling that must still overlap and the node pair is kept in

the front. Otherwise, the front is moved upwards by adding

the pair of parent nodes to the work queue for the next step.

However, since all the siblings belong to the front by def-

inition, the parent pair would be added to the list multiple

times, which need to be avoided. Instead, we check whether

the pair is the leftmost child in the BVTT and only add the

parent pair if that is the case, and thereby avoid duplicates.

4.2. Hierarchy traversal for distance queries

The distance computation algorithms also traverse the BVHs

but in a different manner than a collision query. When

traversing the BVH for a distance query between a pair of

objects, the distance between the two root nodes of the re-

spective BVHs is computed and stored as the initial value

of the minimum distance. Based on this minimum distance

value, which is updated throughout the traversal, a decision

is made to descend one or both of the BVHs if the distance

between the nodes at the higher levels is found to be smaller

than the stored minimum distance. In this case the global

bound on the minimum distance is updated. If, on the con-

trary, higher level nodes are found to be farther apart than

the current minimum distance bound, there is no need to de-

scend further down to those nodes. Unlike collision detec-

tion, it is not possible to prune all the branches at any given

level of the hierarchy since there will be at least one path for

which the traversal needs to go down to the leaf level of each

BVH, and the final result of the minimum distance is com-

puted based on the triangle pairs at the leaf level. Moreover,

the decision to descend further down the hierarchy depends

on the minimum value among all the previous distance com-

putation results, which makes the algorithm highly depen-

dent on the relative configuration of the objects between the

steps. Our traversal algorithm addresses those two issues and

makes it amenable for parallel computation.

In order to increase the level of parallelism during hierar-

chy traversal, we replace the binary BVH with a tree with a

larger branching factor. In this case, each node within the hi-

erarchy has more than two children. These hierarchies offer

some additional benefits in terms of parallel tree traversal.

Our first observation is that there is no early exit that enables

skipping of the lower level nodes in the hierarchy during the

distance query traversal. During each parallel traversal step

the algorithm will descend at most one level. As a result, it

helps to have a shallower hierarchy rather than a deep hierar-

chy so that traversing to the bottom level will have a shorter

path.

Another observation is that the distance queries require

maintaining a minimum distance value computed so far dur-

ing the traversal. This is used to avoid descending paths

whose parent nodes are farther apart than the current mini-

mum distance. The only way to keep this minimum distance

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

C. Lauterbach & Q. Mo & D. Manocha / gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries

value most up-to-date is to either update it atomically when-

ever a distance is computed between a pair of nodes, or to

periodically examine all the distances computed since the

last query and compute the minimum. The first method can

be very expensive on GPU-like parallel architecture, and will

end up serializing the operations in the worst case. The sec-

ond method requires periodic synchronization followed by

a reduction, so in order for it to work efficiently we need

to have enough computation load between the synchroniza-

tion points and these computations should be useful work

towards the final result. By having larger branching factors

within the hierarchy more pair-wise distance computations

can be carried out in one parallel step, before the results are

compared to the stored minimum distance all at once and the

stored value gets updated. In this manner we also maximize

the pruning efficiency at each step of the traversal by having

many pairs of nodes evaluated at each level and obly pre-

serving the closest pairs. One thing to note is that by using

branching factor larger than two seems to be contradicting

previous approaches that used binary trees to get the best

distance query results. This can be explained by the fact that

most work on BVHs has been on collision detection, object

intersection, or other similar scenarios that have the possi-

bility of performing an early exit in the hierarchy. However,

the separation distance queries do not share this property. If

we have higher memory resources on the parallel architec-

ture, we may even use higher branching factors. However, on

current GPUs where the number of simultaneous execution

threads is limited by shared memory resources, the choice

of branching factors becomes a trade-off between the mem-

ory cost and the pruning efficiency benefit brought by wide

branches. There exists a theoretical optimal setting based on

the parameters of a parallel architecture, and we report em-

pirical results that 8-way trees give us best performance after

experimenting with a range of branching factors in our im-

plementation.

4.3. Hierarchy construction and refitting

For both distance and collision queries we do not only need

an efficient way to traverse the hierarchy, but we also need

to construct or refit the hierarchy as the model undergoes

deformation. Traditional construction methods use a divide-

and-conquer, top-down approach where a set of objects is re-

cursively split into smaller groups. In order to provide max-

imum culling for our applications, this is performed until

the leaf nodes in the hierarchy refer to only one object. Our

hierarchy construction is built on a parallel algorithm for

GPUs described in [LGS∗09]. However, that algorithm was

designed to build a hierarchy of axis-aligned bounding boxes

(AABBs) for ray tracing, and we use tighter-fitting boxes for

collision and distance tests.

We separate the construction algorithm into two phases, a

splitting phase followed by a fitting phase. In the splitting

phase all the underlying primitives are grouped into nodes

that are placed in the hierarchy. The bounding volumes that

are associated with each node, however, are not constructed

in this phase. We use the fast and approximate LBVH con-

struction method from [LGS∗09] to perform the grouping

and organize the nodes in the splitting phase. After the hier-

archy structure is computed in terms of all the splits, we fit

our BVs around the primitives within each node to complete

the hierarchy construction. Because the nodes are already

organized in the splitting phase, the fitting phase can be per-

formed across all the nodes in parallel. Note that the LBVH

algorithm is highly parallelizable, since the main computa-

tion is performed using an efficient radix sort.

Refitting of bounding boxes is performed by using a bottom-

up traversal of the tree. Starting at the leafs, the bounding

boxes are computed from the actual geometric primitives,

and that information is propagated upwards while merging

the volumes from all the node’s children. To perform this

computation in parallel, we store the tree in an array ar-

ranged by the levels, which can be obtained directly from

the LBVH construction. Next, we process all the nodes at

each level of the tree in parallel across all the GPU cores

and on each vector unit. We call the refitting kernel once per

level, but it would also be possible to use just one kernel call

using a global barrier between the levels and ensure memory

consistency.

4.4. Tight fitting bounding volumes

The tight fitting bounding volumes have been shown to

provide much higher culling efficiency during distance and

collision queries [GLM96, KHM∗98, LGLM00]. However,

most recent CPU-based algorithms for deformable models

tend to use simple BVs such as AABBs because of compact

storage and lower cost of refitting or hierarchy computation.

However, this trade-off may not hold on GPU architectures,

due much higher ratio of computational power to memory

latency.

In order to perform collision queries, we use OBBs (and

compare against AABBs) in our implementation. We use

the fitting method based on principal component analysis as

well as the separating axis overlap test [GLM96]. OBBs are

merged in the refitting process. Even though these operations

involve using about 1−2 orders of magnitude more instruc-

tions than AABB tree updates, the overall parallel compu-

tation and higher culling efficiency of OBBs results in im-

proved overall performance.

For distance queries we adopt rectangular swept spheres

(RSS) as the building block of our BVHs [LGLM00].

RSS volumes are constructed and represented by taking the

Minkowski sum of a sphere with certain radius and a arbi-

trarily oriented rectangle. Similar to OBBs, RSS are able to

bound the underlying primitives more tightly than simpler

BVs such as spheres or AABBs. In addition, RSS has the

superior property of having an elegant and robust way of

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

C. Lauterbach & Q. Mo & D. Manocha / gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries

R

Figure 4: Rectangular swept spheres (RSS) are constructed

by augmenting an oriented box with a sphere around the bor-

ders.

Model Tris Build Refit

Collision AABB OBB AABB OBB

Flamenco 49k 22 27 1.73 4.6

Princess 40k 20 24 1.4 3.9

Sphere/Cloth 92k 31 39 2.5 7.9

Balls 146k 56 68 3.2 11.5

Figure 6: Parallel hierarchy computations: The benchmark

scenes used in this paper, and timings (in ms) for our con-

struction and refitting algorithm both for AABB and OBB hi-

erarchies. Note that the overhead for creating and refitting a

hierarchy with more complex bounding volumes is relatively

low.

computing pair-wise distance by calculating the distance be-

tween the embedded rectangles and then subtracting the sum

of the sphere radius, as illustrated in Fig. 4.

The LBVH algorithm was originally designed for AABBs

[LGS∗09]. We found it more useful for a RSS hierarchy to

apply one transformation step before using LBVH: In the

original LBVH method, the Morton code is derived directly

from the primitives coordinates in the world space, while for

RSSs we first fit an RSS around all the primitives to find out

the optimal orientation of the coordinates, and then the Mor-

ton code is computed from primitive positions transformed

into this oriented space. This way the hierarchy construc-

tion start from a closer-to-optimal orientation and conforms

better to the set of underlying primitives. As compared to

AABBs, it is much easier to apply rigid transformation on

RSSs, therefore the constructed hierarchy does not need to

be updated unless the objects deform.

5. Results and analysis

We have implemented our approach using a Intel Core2

Duo system at 2.83 GHz on 4 cores. We use CUDA on a

NVIDIA GTX 285 GPU that has a total of 30 processing

cores and 1 GB of memory. We use a standard algorithm

for discrete triangle-triangle intersection and solve the cubic

equation [Pro97] for each of the 15 elementary vertex/face

and edge/edge tests to compute the first time of contact for

continuous triangles.

We use several commonly benchmark scenes for collision

and distance queries and compare their performance with

prior methods (see Fig. 5, Fig.1, and Fig.2). These models

range from 12k to 245k triangles each and can have multi-

Model Discrete Continuous

AABB OBB AABB OBB

Flamenco 27 22 37 34

Princess 17 22 26 29

Sphere/Cloth 28 36 42 38

Balls 78 70 91 74

Figure 7: Performance results: This table highlights the

performance of our collision detection algorithm, which

checks for inter-object and intra-object collisions. All the

numbers are in milli-sec. and include the time for refitting,

front-based traversal and pairwise triangle intersections.

Model Triangles Distance Refitting Construction

Catheter 12k 40 3 30

Letters 5.5k 25 2 25

Car/Seat 245k 55 7 164

Figure 8: Distance query results: Results for our distance

query algorithm. All numbers in milliseconds.

ple triangle pairs in close proximity. For example, the Fla-

menco model has several cloth layers very close together,

representing a hard case for culling for collision detection

algorithms. Figure 6 summarizes the results for our parallel

GPU construction and refitting algorithms. We also compare

the timings for building a AABB BVH to show the overhead

of OBBs. Since refitting cost is about an order of magnitude

lower than construction, it is a good choice for handling de-

formable models and animation sequences with no topolog-

ical changes.

The collision detection algorithm’s performance is summa-

rized in Fig. 7. We provide results for discrete as well as con-

tinuous versions using either AABB or OBB bounding vol-

umes. In addition, we show the impact of exploiting tempo-

ral coherence by using our front-based traversal implemen-

tation of the same algorithms. All the numbers are averaged

over the whole animation. Note that AABBs are slightly

faster on most benchmarks for discrete collision detection

where pairwise intersection tests are relatively cheap. How-

ever, for continuous collisions where pairwise tests are far

more expensive, OBBs provide better performance despite

their higher cost for maintenance and traversal. The front-

based traversal generally results in a speedup compared to

full traversal, although the result is model-dependent.

The performance of distance query is listed in Fig. 8. We also

list the time needed for refitting (between each frame) and

initial RSS construction (first frame only). For all queries,

we used a tree with branching factor 8 which proved the

fastest for our tests. Note that on the smaller models our

algorithm is noticeably slower. We ascribe this to the fact

that for only a few thousand triangles it is unlikely that the

traversal for separation distance can provide sufficient par-

allel work units to come close to utilizing all GPU cores.

On the Car/Seat benchmark, the complexity of the query is

much higher and many more paths in the hierarchy can be

evaluated in parallel.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

C. Lauterbach & Q. Mo & D. Manocha / gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries

Figure 5: Benchmarks: The benchmark models used for collision detection in this order: Princess cloth simulation (40K

triangles); Flamenco cloth simulation (49K triangles), Cloth dropping on sphere (92K) and n-body simulation (146K). Our

algorithm can perform interactive continuous self-collisions using OBB hierarchies and pairwise elementary tests on all of

these models in tens of milliseconds, almost 7−12 faster than prior methods.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Discrete OBB Discrete AABB Continuous

OBB

Continuous

AABB

Triangle Test

Balance

Traverse

Refitting

Figure 9: Split-up of timings: The fraction of time spent

in the parts of the algorithm differ based on whether con-

tinuous or discrete collision detection is performed and the

choice of the BV. In general, the use of OBBs results in more

time spent in refitting and traversing, but less in intersection

tests due to higher culling efficiency.

We also highlight a breakdown of timings within the colli-

sion detection algorithm, i.e. refitting, traversing, balancing

and triangle intersection (see Fig. 9), in the Flamenco model.

The results show that a large part of the time is spent in the

traversal part while intersection tests account for a smaller

percentage, mostly due to the fact that it runs with optimal

parallel utilization given that all intersections can be per-

formed independently. Refitting takes a relatively constant

fraction of overall time. For distance queries, only a few pair-

wise distance queries are performed and thus almost all of

the time is spent in the hierarchy traversal.

6. Analysis and comparison

6.1. Analysis

The performance results show interesting implications for

the choice of BVs for collision detection on GPUs. Current

CPU approaches use AABBs since they provide very fast in-

tersection and refit operations and are relatively compact in

memory. Our results show that for discrete collision detec-

tion AABBs can provide improved performance over OBBs

in many cases. However, for continuous collision detection

this situation is reversed and OBBs provide faster perfor-

mance. We have found that OBB intersection and refitting

benefits from having much higher compute density that is

a good match to the high computational power of GPUs.

In particular, OBBs use 2.5 times the memory of AABBs,

but operations such as computing an OBB from triangles or

intersecting two OBBs take about two orders of magnitude

more instructions. For example, AABB-AABB intersection

needs just 6 comparison operations and needs to load 12 co-

ordinates to do so. In contrast, OBB-OBB intersection test

loads 30 coordinates, but then needs to perform 15 sepa-

rating axis tests, resulting in hundreds of operations. This

will be slower on a low-latency CPU architecture with less

compute power, but fast on a GPU architecture where high-

latency memory accesses are expensive and computational

power is high. Further, these separating axis tests can be per-

formed in parallel. Similarly, RSS bounding volumes for dis-

tance queries also have more computationally intensive op-

erations and thus work well on a GPU architecture.

Limitations: Our approach has some limitations. Firstly,

getting high performance or speedup for collision detection

and distance queries depends on having a relatively large

front in the BVTT traversal tree. Unlike self-collision, inter-

object collision between two different hierarchies, e.g. de-

formable models, may exhibit a much smaller front unless

the objects are very close such that there are many BVs over-

laps. For very small models, available parallelism may be

limited. In this case, handling multiple object queries in par-

allel will be a better solution to exploit the capabilities of a

GPU. In general, even though our approach tries to imple-

ment very lightweight synchronization, we are still limited

by inherent memory latency of GPUs for communication. To

achieve better scaling, our approach could benefit from hav-

ing a low-latency communication channel between the cores

on GPU architectures. This would allow the implementation

of algorithms such as work stealing during kernel execution,

which based on our experiments can already be implemented

on current GPU architectures, but are very slow. Future GPU

architectures that have coherent caching could also improve

performance significantly.

6.2. Comparison

Other approaches for work distributions on GPUs have ex-

plored lock-free work queues and work stealing approaches

[CT08]. We have found that these methods work well as long

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

C. Lauterbach & Q. Mo & D. Manocha / gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries

Model Balancing Work stealing

AABB OBB AABB OBB

Flamenco 40 38 124 81

Princess 27 34 105 116

Sphere/Cloth 47 43 208 124

Balls 99 81 337 178

Figure 10: Balancing vs. work stealing: Results for con-

tinuous collision detection both for our work balancing and

ABP work stealing [ABP98] such as used in previous work

[CT08]. Although more efficient than global queues, the

overhead from memory latency still dominates the traversal

operation in work stealing. Note that for the more complex

models OBBs provide much higher performance due to the

reduction in traversal steps.

as parallel tasks are relatively heavy-weight, such as the oc-

tree construction in [CT08], and our results for BVH con-

struction are that work stealing provides roughly equivalent

or slightly faster execution time compared to work balanc-

ing. However, for our collision and distance queries each

operation is far more fine-grained and even efficient work

queue methods have overhead that dominates the overall

computation as shown in Fig. 10.

Collision detection: Some of the fastest CPU-based algo-

rithms for continuous self-collision use feature-based hier-

archies and other culling methods (e.g. normal cone tests) to

reduce the number of pairwise intersection tests. As an ex-

ample, the representative triangle algorithm [CTM08] takes

about 200ms per frame on a single core for continuous self-

collision detection on the Flamenco model, as compared to

our algorithm that takes about 35ms to perform a query. Note

that these culling approaches are orthogonal to our work and

could be integrated into our framework as well. Some recent

algorithms have implemented the hierarchical CCD test on

multi-core CPU systems [KHeY08] and performed contin-

uous self-collision on the cloth/sphere benchmark in 53ms

(vs. our 34ms) using an 8-core Xeon system. A more recent

hybrid version running on 4 CPU cores and 2 GPUs im-

proves timings to only 23ms, but uses more computational

resources and runs only pairwise intersection tests on the

GPU [KHH∗09].

Several previous approaches have been proposed to per-

form self-collision on GPUs using rasterization algorithms

[HTG03, KP03, GRLM03]. Govindaraju et al. [GKJ∗05]

used occlusion queries along with CPU-based overlap tests

to perform continuous self-collisions for cloth simulation

and were able to handle a 13K triangle version of the 40K

Princess model at about 500ms. In contrast, our approach

tests the same model with three times the complexity thirty

times faster (though, disregarding scaling issues, the GPU

used here has roughly 10-20 times peak performance.) Sim-

ilarly, Sud et al [SGG∗06] perform self-collisions by using

discrete Voronoi diagrams generated by rasterization. Their

approach took 800ms (1̃50ms scaled by FLOPs) on a 15K

version of the Cloth/Ball scene we use, whereas our ap-

proach is over 25x faster on the full 92K model. Note that

it is hard to compare performance across GPU generations.

In addition, previous approaches relied heavily on occlusion

query performance and CPU-GPU bandwidth which has not

scaled with the computational power of many-core GPUs.

Distance queries: The fastest CPU approaches to distances

are based on RSS hierarchies. We compare our performance

against a single-core implementation of the widely-used

PQP [LGLM00] running on our benchmark system. For the

Car/Seat benchmark, the CPU-based query time is about

1.2s (on a single core) not including build and refit vs. 55ms

for our GPU implementation. Additionally, refitting and re-

building the RSS hierarchy is drastically slower and for com-

plex models may dominate the overall simulation cost. On

GPUs, rasterization-based approaches to distances queries

have also been demonstrated. Sud et al [SGG∗06] perform

object-precision distance queries: on the same model at

higher resolution (92k vs. 15k triangles) our approach per-

forms roughly 27x faster (5x scaled by FLOP/s). Alternate

approaches that compute image-space or voxel-space dis-

tance fields, such as [MRS08] provide roughly equivalent

performance to ours, but may not work on complex scenes

such as the car-seat benchmark due to lack of precision and

when object-space accuracy is required.

7. Conclusion and future work

We have presented new GPU algorithms for discrete and

continuous collision detection. We have also introduced a

parallel front-based traversal method for collision detection

that greatly reduces the bottlenecks in collision traversal.

Our results show that we can compute and use tight-fitting

bounding volumes interactively and perform continuous col-

lision detection an order of magnitude faster than previous

GPU approaches and competitively or faster than current

multi-core CPU methods. We also provided a fast distance

query solution that increase the speed of existing exact meth-

ods significantly despite the seemingly lack of inherent par-

allelism of the problem. We have shown the advantages of

wide-branching tree structures over binary trees in parallel

distance queries, and have worked around the high degree of

data dependency by reformulating both the construction and

traversal algorithm to extract enough parallelism.

There are many avenues for future work. Algorithms that

use hierarchies and operations similar to those of proximity

queries include n-body simulation, point-based modeling al-

gorithms and many more. Enabling their efficient implemen-

tation on GPUs is important for high-performance imple-

mentations. Other variations of proximity queries similar to

separation distance queries are also widely used and could be

implemented similarly. For self-collision, techniques have

been proposed to reduce the amount of edge/edge and ver-

tex/face intersection tests significantly [CTM08]. Our ap-

proach is mostly orthogonal, so it would be interesting to

investigate implementing these methods in our framework.

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

C. Lauterbach & Q. Mo & D. Manocha / gProximity: Hierarchical GPU-based Operations for Collision and Distance Queries

Acknowledgments

We would like to thank Liangjun Zhang and Will Moss

for their help and E. Ferre from Kineo CAM for the car

model. This research was supported in part by ARO Con-

tract W911NF-04-1-0088, NSF awards 0636208, 0917040

and 0904990, DARPA/RDECOM Contract WR91CRB-08-

C-0137, and Intel.

References

[ABP98] ARORA N. S., BLUMOFE R. D., PLAXTON C. G.:
Thread scheduling for multiprogrammed multiprocessors. In
SPAA ’98: Proceedings of the tenth annual ACM symposium

on Parallel algorithms and architectures (New York, NY, USA,
1998), ACM, pp. 119–129.

[CT08] CEDERMAN D., TSIGAS P.: On sorting and load bal-
ancing on gpus. SIGARCH Comput. Archit. News 36, 5 (2008),
11–18.

[CTM08] CURTIS S., TAMSTORF R., MANOCHA D.: Fast
collision detection for deformable models using representative-
triangles. Proc. of ACM Symposium on Interactive 3D Graphics

and Games (2008).

[EL01] EHMANN S., LIN M.: Accurate and fast proximity
queries between polyhedra using surface decomposition. In Proc.

of Eurographics (2001).

[Eri04] ERICSON C.: Real-Time Collision Detection. Morgan
Kaufmann, 2004.

[GKJ∗05] GOVINDARAJU N., KNOTT D., JAIN N., KABAL I.,
TAMSTORF R., GAYLE R., LIN M., MANOCHA D.: Collision
detection between deformable models using chromatic decompo-
sition. ACM Trans. on Graphics (Proc. of ACM SIGGRAPH) 24,
3 (2005), 991–999.

[GLM96] GOTTSCHALK S., LIN M., MANOCHA D.: OBB-Tree:
A hierarchical structure for rapid interference detection. Proc. of

ACM Siggraph’96 (1996), 171–180.

[GRLM03] GOVINDARAJU N., REDON S., LIN M., MANOCHA

D.: CULLIDE: Interactive collision detection between complex
models in large environments using graphics hardware. Proc.

ACM SIGGRAPH/EG Workshop on Graphics Hardware (2003),
25–32.

[GW07] GRINBERG I., WISEMAN Y.: Scalable parallel colli-
sion detection simulation. Proc. of Signal and Image Processing

(2007).

[HGS∗07] HUGHES C. J., GRZESZCZUK R., SIFAKIS E., KIM

D., KUMAR S., SELLE A., CHHUGANI J., HOLLIMAN M. J.,
CHEN Y.-K.: Physical simulation for animation and visual ef-
fects: parallelization and characterization for chip multiproces-
sors. In ISCA (2007), pp. 220–231.

[HTG03] HEIDELBERGER B., TESCHNER M., GROSS M.: Real-
time volumetric intersections of deforming objects. Proc. of Vi-

sion, Modeling and Visualization (2003), 461–468.

[JC04] JOHNSON D. E., COHEN E.: Unified distance queries in
a heterogeneous model environment. In ASME DETC (2004).

[KG94] KUMAR V., GRAMA A. Y.: Scalable load balancing
techniques for parallel computers. Journal of Parallel and Dis-

tributed Computing 22 (1994), 60–79.

[KHeY08] KIM D.-S., HEO J.-P., EUI YOON S.: PCCD: Par-

allel Continuous Collision Detection. Tech. Rep. CS-TR-2008-
298, Dept. of CS, KAIST, 2008.

[KHH∗09] KIM D.-S., HEO J.-P., HUH J., KIM J., EUI YOON

S.: HPCCD: hybrid parallel continuous collision detection. In
Computer Graphics Forum (Proc. Pacific Graphics) (2009).

[KHM∗98] KLOSOWSKI J., HELD M., MITCHELL J., SOWIZ-
RAL H., ZIKAN K.: Efficient collision detection using bounding
volume hierarchies of k-dops. IEEE Trans. on Visualization and

Computer Graphics 4, 1 (1998), 21–37.

[KP03] KNOTT D., PAI D. K.: CInDeR: Collision and interfer-
ence detection in real-time using graphics hardware. Proc. of

Graphics Interface (2003), 73–80.

[KSTK95] KITAMURA Y., SMITH A., TAKEMURA H., KISHINO

F.: Parallel algorithms for real-time colliding face detection.
IEEE RO-MAN’95 TOKYO (Jul 1995), 211–218.

[LG07] LE GRAND S.: Broad-phase collision detection with
cuda. GPU Gems 3 (August 2007).

[LGLM00] LARSEN E., GOTTSCHALK S., LIN M., MANOCHA

D.: Distance queries with rectangular swept sphere volumes.
Proc. of IEEE Int. Conference on Robotics and Automation

(2000), 3719–3726.

[LGS∗09] LAUTERBACH C., GARLAND M., SENGUPTA S.,
LUEBKE D., MANOCHA D.: Fast bvh construction on gpus. In
Proc. Eurographics ’09 (2009).

[MLM08] MOSS W., LIN M., MANOCHA D.: Constraint-based
motion synthesis for deformable models. Computer Animation

and Virtual World, September (2008). Cover Image, Special Issue
(Best of Computer Animationand Social Agents).

[MRS08] MORVAN T., REIMERS M., SAMSET E.: High perfor-
mance gpu-based proximity queries using distance fields. Com-

puter Graphics Forum 27, 8 (Dec. 2008), 2040–2052.

[Pro97] PROVOT X.: Collision and self-collision handling in cloth
model dedicated to design garment. Graphics Interface (1997),
177–189.

[Qui94] QUINLAN S.: Efficient distance computation between
non-convex objects. pp. 3324–3329.

[RK87] RAO V. N., KUMAR V.: Parallel depth-first search, part i:
Implementation. International Journal of Parallel Programming

16 (1987), 6–479.

[SGG∗06] SUD A., GOVINDARAJU N., GAYLE R., KABUL I.,
MANOCHA D.: Fast proximity computation among deformable
models using discrete voronoi diagrams. Proc. of ACM SIG-

GRAPH (2006), 1144–1153.

[SGGM06] SUD A., GOVINDARAJU N., GAYLE R., MANOCHA

D.: Interactive 3d distance field computation using linear factor-
ization. In Proc. ACM Symposium on Interactive 3D Graphics

and Games (2006), pp. 117–124.

[SOM04] SUD A., OTADUY M. A., MANOCHA D.: DiFi: Fast
3D distance field computation using graphics hardware. Com-

puter Graphics Forum (Proc. Eurographics) 23, 3 (2004), 557–
566.

[TCYM08] TANG M., CURTIS S., YOON S.-E., MANOCHA D.:
Interactive continuous collision detection between deformable
models using connectivity-based culling. In Proc. ACM SPM ’08

(2008), pp. 25–36.

[vdB97] VAN DEN BERGEN G.: Efficient collision detection
of complex deformable models using AABB trees. Journal of

Graphics Tools 2, 4 (1997), 1–14.

[ZHKM08] ZHANG L., HUANG X., KIM Y., MANOCHA D.: D-
plan: Efficient collision-free path computation for part removal
and disassembly, 2008.

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time
kd-tree construction on graphics hardware. In Proc. SIGGRAPH

Asia (2008).

c© 2009 The Author(s)

Journal compilation c© 2009 The Eurographics Association and Blackwell Publishing Ltd.

