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We present a sound propagation and rendering system for generating realistic environmental acoustic effects in real time for 
game-like scenes. The system uses ray tracing to sample triangles that are visible to a listener at an arbitrary depth of 
reflection. Sound reflection and diffraction paths from each sound source to the listener are then validated using ray-based 
occlusion queries. Frame-to-frame caching of propagation paths is performed to improve the consistency and accuracy of the 
output. Furthermore, we present a flexible framework, which takes a small fraction of CPU cycles for time-critical scenarios. 
To the best of our knowledge, this is the first practical approach that can generate realistic sound and auralization for games 
on current platforms. 

 
 
 
1 Introduction 
 
 Auditory displays and sound rendering are frequently 
used to enhance the sense of immersion in computer 
games and related applications. Aural cues can be 
combined with visual cues to improve realism and the 
user’s experience. In practice, aural cues are frequently 
used to create various emotions including fear, 
apprehension and horror. Games constantly improve the 
realism of graphics and AI but little work is done to 
enhance sound within games. Current sound systems use 
precomputed reverberation filters for specific locations to 
enhance the player's sense of space. While this approach 
is often a good enough approximation, these methods may 
not work well in dynamic scenes. More importantly, the 
effects of sound occlusion are often critical to how 
players perceive sound within a game. However, these 
phenomena are rarely modeled. In practice, realistic 
sound occlusion and propagation computation is regarded 
as a difficult problem. This is one of the main goals of 
sound propagation: to accurately simulate how sound 
interacts with an environment and is heard by a listener. 
 While sound propagation solutions exist, they are 
either too slow or not appropriate for dynamic scenes. 
This is the largest challenge in developing such a system 
for games. A sound propagation system for games must 
be able to produce reasonable output while consuming a 
minimum of CPU time and memory. In this paper, we 
present a novel sound propagation system that uses 
backwards ray tracing and propagation path caching to 
improve on existing work in this area. 
 
2 Components of Sound Propagation 
 
 Sound propagation is usually modeled as a 
combination of several different phenomena. Any sound 

received by a listener can be split into 3 components: 
direct sound, early reflections and late reverberation. 
Direct sound is transmitted directly from a sound source 
to a listener. 
 Early reflections comprise the first echoes of a sound 
that reach a listener after direct sound arrives. These 
contributions can be produced by specular reflection off 
of surfaces in the scene, diffuse reflections, and 
diffraction about edges. Early reflections give auditory 
cues to a listener about the size of the environment and 
any salient features. 
 Late reverberation is the last component heard by a 
listener. It consists of many thousands of higher-order 
reflections that sum to produce a decaying reverb tail. 
Though we have a solution for reverb estimation we will 
focus on the early reflection and diffraction portions of 
our sound propagation system in this paper. 
 
3 Prior Work 
 
 Much work has been done in the past on simulating 
realistic sound propagation in virtual environments. The 
earliest of these systems were developed as aids to 
architectural acousticians. These systems used ray tracing 
to estimate the acoustic qualities of concert halls and 
other rooms [Krokstadetal.1968; Vorländer 1989]. From 
this point, two classes of sound propagation methods 
emerged: numeric and geometric. 
 Numeric methods are accurate and produce true-to-
life results but are generally too slow to be used in real-
time systems. FDTD methods are very accurate but 
require enormous amounts of time and memory to 
simulate and therefore cannot be used in any real time 
system [Botteldooren 1995]. ARD makes improvements 
on FDTD methods by subdividing a complex 
environment into rectangular subdivisions in order to 



reduce the simulation time. However, this method still 
requires significant time and resources [Raghuvanshi et 
al. 2009]. Direct-to-Indirect Acoustic Radiance Transfer 
borrows from radiosity ideas in graphics to perform 
simulation of diffuse reflection at real-time rates. 
However, this method still requires a large memory 
footprint and a long preprocessing step. In addition, scene 
geometry must be static, causing the approach to loose 
realism in situations with dynamic geometry [Antani et al. 
2010]. 
 Geometric methods generally use algorithms from 
graphics to model how sound propagates in an 
environment. These methods are generally more tractable 
than numeric simulation because they usually allow for 
moving sources, listeners, and dynamic scene geometry. 
This makes geometric sound propagation attractive for 
interactive game applications. The most accurate 
geometric approach is the image source method where 
sound sources are recursively reflected over every triangle 
in a scene to form images of the source positions. 
Reflection paths from the listener to the source are then 
validated in reverse via occlusion queries. While accurate, 
the image source method is extremely slow: the running 
time increases exponentially with the reflection depth 
[Allen and Berkley 1979]. 
 Other geometric approaches use scene sampling to 
find potentially valid propagation paths. In beam tracing, 
rectangular beams are traced from sound sources through 
the scene to see if the listener is contained in any beams 
and therefore hears the sound [Funkhouser et al. 1998; 
Laine et al. 2009]. Frustum tracing is another method 
similar to beam tracing that uses rectangular frusta instead 
of beams to perform sound propagation [Chandak et al. 
2008]. While these methods work well, they suffer from 
performance issues due to the geometric complexity 
inherent in tracing volumes through an environment. 
Neither method is fast enough to be practical in an 
interactive application. Other methods have been 
proposed such as RESound that uses a hybrid of ray and 
frustum tracing [Taylor et al. 2009b]. However, these 
methods still do not meet real-time requirements. 
 
3.1 Ray-Tracing Sound Propagation: iSound 
 
 Ray tracing for sound propagation has several 
advantages over other numeric and geometric simulation 
techniques: it can easily handle dynamic scenes, requires 
less preprocessing, and is much more amenable to real-
time simulation. Due to the simplicity of ray tracing, it 
can also be implemented on the GPU, improving 
simulation times 
 The most recent prior system, iSound, uses a forward 
ray-tracing algorithm on the GPU to perform sound 
propagation at real-time rates [Taylor et al. 2010]. In this 
approach, a random spherical sampling of rays is cast 
from each sound source in a scene. These rays are then 

propagated through the environment via specular 
reflection and diffraction to an arbitrary user-defined 
recursion depth. Diffraction is performed whenever a ray 
touches a triangle which as been previously marked as 
having a diffracting edge as part of a preprocessing step 
[Taylor et al. 2009a]. The ray is tested to see if the 
barycentric coordinates of its intersection point lie closer 
to the edge than some threshold value. If so, secondary 
rays are cast throughout the shadow region bounded by 
the adjacent triangle. These rays are then propagated 
through the scene as described above. 
 This initial ray propagation is used to determine sets 
of geometry visible to sound sources at each recursion 
depth. As each ray is cast, it is checked for intersection 
with a sphere of user-defined radius centered at the 
listener's position. If so, the set of triangles that the ray 
has interacted with as it was propagated is added to a list 
of potentially valid propagation paths from the sound 
source to the listener. 
 After all visibility rays have been traced from every 
sound source in the scene, the algorithm validates all 
potential propagation paths in order to determine a final 
set of contributions of each sound source detected by the 
listener. An image-source method is performed to validate 
each path [Allen and Berkley 1979]. The position of the 
sound source is recursively reflected over each triangle in 
the propagation path to produce a series of source image 
positions.  If a path contains diffraction, the image source 
position at that depth is defined on the diffraction edge by 
the UTD formation for edge diffraction [Kouyoumjian 
and Pathak 1974]. Occlusion query rays are then traced 
from the listener backwards to the most recent source 
image. If the ray reaches the triangle in question without 
intersecting any other geometry, an intersection point is 
calculated and the process is repeated until the source is 
reached. If there is occlusion, the propagation path in 
question is marked as invalid and removed from the list of 
propagation paths. 
 At this point, all paths left in the list will be valid. 
Additional data needed for sound rendering is then 
calculated for each path: the total distance from the source 
to the listener, the direction from the listener to the first 
source image, and a frequency-dependent attenuation 
value caused by interaction with materials in the scene at 
each depth of recursion. The UTD formulation for edge 
diffraction is used to determine attenuation coefficients 
for diffraction interaction along the path. 
 
4 Fast Sound Propagation for Games 
 
 Our new algorithm builds upon the work in iSound 
by modifying the algorithm to avoid issues encountered 
and to achieve the fastest performance possible for game-
like scenes. The primary differences of our approach 
include backward ray tracing from the listener in the 
visibility determination step and propagation path caching 



for better frame coherence. 
 
4.1 Backward Sound Propagation 
 
 In our algorithm, we chose to shoot visibility rays 
from the listener, rather than from each sound source. 
This decision was made based upon the following 
observation: the early reflections and diffractions that are 
perceptually important tend to come from geometry in the 
vicinity of the listener. Thus, it is advantageous to cast 
more rays from the listener's position. When casting rays 
from each sound source, only a few may reach the listener 
and these may not be the most perceptually important 
paths, requiring more rays to be cast in order to get all 
necessary propagation paths. Our method tries to get as 
many of the important paths as possible while shooting 
fewer rays than other techniques. This strategy has the 
added benefit that the amount of rays no longer scales 
linearly with the number of sound sources. 
 The algorithm begins by casting a random spherical 
sampling of rays from the listener. These rays are 
propagated through the scene as with iSound. Rays are 
specularly reflected by triangles they intersect up to a 
user-defined maximum recursion depth. The algorithm 
maintains a hash table of visited propagation paths for 
each depth of reflection. All paths with one reflection are 
kept in one table, all paths with two reflections are kept in 
another, and so on. At each depth of reflection, the hash 
table for the current depth is queried to see if it contains 
the ordered sequence of triangles previously visited by the 
current visibility ray. If so, the algorithm continues 
propagating that ray to the next depth of reflection. If the 
triangle sequence has not been visited, it is added to the 
hash table and any valid propagation paths are found. The 
hash table keeps the algorithm from producing duplicate 
propagation paths and is crucial for frame-to-frame path 
caching. It is analogous to the visibility sets kept by 
iSound. 
 When a new triangle sequence is visited, the listener's 
position is reflected over each triangle in the sequence, 
creating a series of listener image positions (versus 
iSound's source image positions). Each sound source in 
the scene is then tested to see if there is a valid reflection 
path back to the listener using a variation of the image 
source validation method from iSound. If any edge of the 
most recent triangle has been previously marked as a 
diffraction edge, diffraction paths over that edge from 
source positions to the listener image position are found. 
The algorithm considers only sound sources that lie in the 
diffraction shadow region from the listener's perspective. 
This approach is valid because the geometry of UTD 
diffraction is symmetrical [Kouyoumjian and Pathak 
1974]. Like iSound, we use the UTD diffraction 
formulation to determine the point on the edge at which 
diffraction occurs and then perform path validation back 
to the listener as with reflection paths. 

 For each valid propagation path, the system 
calculates the same output as iSound: the total distance 
along the path, the direction of the path from the listener, 
and the total frequency-dependent material attenuation 
along the path. In addition to these values, our algorithm 
also calculates the relative speed along the propagation 
path of the source and listener. This allows the sound 
renderer to perform more accurate delay interpolation by 
using physically correct doppler shifting to guide the 
interpolation. 
 
4.2 Propagation Path Caching 
 
 Given the random nature of the rays used for 
visibility determination, visible triangle sequences are 
often inconsistent from frame to frame. This results in 
propagation paths that drop in and out, even when neither 
source nor listener are moving. This problem is solved in 
our approach by using the visibility hash tables as 
persistent caches. At the beginning of each frame, all 
triangle sequences in the hash tables are checked to see if 
propagation paths exist from the current source positions 
to the listener. If a previously valid path is invalidated in 
this step, these triangle sequences are removed from the 
hash table. Otherwise, the triangle sequences remain in 
the hash table. 
 This approach has the effect that once paths are 
found, they are kept and updated until they become 
invalid. This avoids the frame coherency issues that 
plague other ray-sampling algorithms. Perhaps the 
greatest benefit of the caching is that far fewer visibility 
rays need to be cast each frame. The visibility sets are 
iteratively refined over many frames, resulting in a higher 
overall frame rate and lower latency for real time 
applications. For example, casting 1000 rays per frame 
over 10 frames has a similar time cost and output to 
casting 10000 rays in a single frame. The former is far 
more preferable for applications like games where lower 
latency is critical for the user. 
  
5 Analysis 
 
 In order to evaluate our system we used several 
benchmarks that tested a variety of situations relevant to 
games and real time virtual simulation. The first 
benchmark is an indoor scene from the Gamebryo game 
engine with 1556 triangles. This scene is representative of 
simple indoor environments common in some games. The 
second scene is an outdoor desert environment from the 
Gamebryo game engine with 11642 triangles. This scene 
is similarly representative of common outdoor game 
environments consisting of a heightfield terrain with 
scattered buildings. The final scene used was a model of 
the Sibenik cathedral with 76088 triangles. This scene 
was chosen because it is of a higher complexity than most 
game scenes and shows how the system's performance 



degrades with high-resolution environments. All 
benchmarks were performed on a single-core 2.16 GHz 
consumer laptop. 
 
5.1 Performance 
 
 Detailed performance benchmarks were gathered for 
the indoor scene that show how the time per frame varies 
based on the number of visibility rays. Figure 1 shows 
this relationship for three different propagation 
configurations: 4th-order reflection with 1st-order 
diffraction, 4th-order reflection, and 2nd-order reflection. 
We observed the expected linear time relationship 
between the time per frame and number of visibility rays. 
There is also a linear correlation with the reflection depth: 
4th order reflection is nearly twice as slow as 2nd order 
reflection. First-order diffraction adds only a small 
overhead to the system. 
 We find that the performance of our system is 
sufficient to meet the demands of real-time applications 
like games. With 1000 visibility rays, 4 orders of 
reflection and 1 order of diffraction, our system runs at 
over 30 frames per second on a single consumer CPU 
core. We believe that this frame rate is sufficient to 
provide a low-latency experience in modern fast-paced 
video games. Our system can also be tuned to run even 
faster with minimal quality decrease as shown in section 
5.3. 
 

 
Figure 1: A plot of the time per frame for the indoor scene 

versus the number of visibility rays for each trial. 
Diffraction incurs minimal additional cost while the total 

time is linear with respect to the number of rays and 
reflection depth. 

 
5.2 Accuracy 
 
 The same indoor scene and propagation 
configurations were used to perform benchmarks that 
show how the simulation quality changes with the number 
of visibility rays and depth of reflection. We measure the 
simulation quality by calculating the average number of 
propagation paths per frame for the entire benchmark 

demo. See figure 2 for a graph showing this relationship. 
 Perhaps the largest advantage of our sound 
propagation algorithm is that the number of propagation 
paths that it detects is less sensitive to the number of 
visibility rays. For all three scenarios in the graph, we 
observed an almost constant number of paths detected 
when more than 500 rays were cast. Below 500 rays, the 
number of paths drops off slowly. In fact, for 4th order 
reflections, 125 visibility rays were able to detect 84% of 
the paths detected by 500 rays. Of further interest is how 
lower-order reflections are even less susceptible to quality 
degradation with very small numbers of rays. When 
performing 2nd order reflection, just 125 rays is able to 
find 97% of the paths found with 500 rays. 
 The figure also shows how enabling diffraction can 
result in a significantly higher number of paths. 4th order 
reflection with diffraction produces 25-30% more paths 
than 4th order reflection without diffraction. 
 

 
Figure 2: A plot of the average number of propagation 

paths per frame for the indoor scene versus the number of 
visibility rays for each trial. Our system maintains 

accuracy when shooting even a very small number of 
rays. 

5.3 Performance & Accuracy Tuning For Games 
 
 Most modern video games have very stringent CPU 
budgets. This is even worse on game consoles where 
resources are limited. Some games allocate as little as 5 to 
10% of the CPU budget for sound. Thus, it is important 
for any practical sound propagation system to be highly 
performant. We believe our system to be highly tunable 
such that it can fit within these CPU budgets while still 
providing a significant increase in aural realism over 
current non-physically-based methods. 
 The primary ways that our system allows for 
performance tuning is by changing the number of 
visibility rays, the depth of reflection and whether or not 
diffraction is enabled. Given that the time complexity of 
our system is linear with respect to both the number of 
visibility rays and the reflection depth, and that the 
accuracy of the simulation is not very sensitive to the 
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number of rays except at higher depths of reflection, the 
system can be easily optimized for any given 
environment. For the indoor scene discussed in this 
section, the optimum number of visibility rays is around 
500. Above this point there is minimal benefit from 
shooting more rays and below this point the simulation's 
accuracy decreases more noticeably. This performance 
point is scene dependent: the nature of the algorithm 
causes more rays to be necessary when the scene 
complexity is higher. Table 1 shows the performance and 
number of propagation paths for the other benchmark 
scenes. 
 
Scene # of 

Triangles 
Time Per 
Frame (ms) 

Average # 
of Paths 

Indoor 1566 26 21.4 
Outdoor 11642 27 4.4 
Cathedral 76088 108 6.6 
 

Table 1: Benchmarks for various scenes. Data was 
gathered with 1000 visibility rays, 4 orders of reflection 

and 1 order of diffraction. 
 
6 Comparisons 
 
 To our knowledge, the fastest geometric sound 
propagation system up to this point is iSound. Since both 
systems were tested using 3 of the same benchmarks, the 
results can be directly compared. For the indoor scene, 
our system achieves similar performance to iSound when 
using 500 visibility rays. Our system finds fewer 
propagation paths for the outdoor and cathedral scenes but 
achieves similar performance for these scenes with 1000 
visibility rays [Taylor et al. 2010]. This is due primarily to 
the increasing complexity of these scenes that necessitates 
more visibility rays. While iSound performs well in these 
scenes, it is a GPU-based sound propagation system and 
this makes it impractical for real-time graphics-heavy 
applications like video games. In these situations, a fast 
CPU-based sound propagation system is necessary. 
 When compared to other CPU-based geometric 
propagation algorithms such as RESound, ADFrustum, 
and the CPU version of iSound, our algorithm is by far 
the fastest. For the Sibenik cathedral scene, our system is 
at least 30 times faster than RESound for 3 orders of 
reflection and 1 order of diffraction [Chandak et al. 2008]. 
ADFrustum performs similarly to RESound for the same 
cathedral scene [Taylor et al. 2009b]. In addition, both of 
the benchmarks for these systems were performed using 7 
threads on a multicore CPU, while our system was tested 
using a single core. While CPU timings for iSound are not 
publicly available, we estimate our system to be at least 
10 times faster for similar scenes because iSound must 
shoot many more rays per frame to find the same 
propagation paths. 
 We are able to achieve these performance numbers 

primarily because our system uses path caching to reduce 
the number of rays needed for each frame. Since ray 
casting is the slowest part of ray tracing propagation 
algorithms, it is advantageous to design an algorithm that 
requires less rays to meet a give standard of accuracy. We 
believe our algorithm meets this goal and is perhaps the 
first geometric sound propagation algorithm that is 
practical enough to be used in games. 
 
7 Conclusions & Limitations 
 
 We have presented a novel geometric sound 
propagation algorithm that maintains the accuracy of prior 
methods but is also able to meet the stringent time 
requirements of games and other interactive systems. We 
have integrated our sound propagation and rendering 
system into the Gamebryo game engine in order to 
demonstrate that it is very acceptable for these 
applications. Our system executes on a single CPU core 
and has a small memory footprint, making it practical for 
resource-intensive games. We are able to achieve these 
results using a ray-tracing algorithm due to our use of 
propagation path caching and backwards ray tracing. 
These contributions allow our system to maintain 
accuracy with very small numbers of visibility rays versus 
other existing algorithms. 
 While our algorithm performs well, there are still 
many improvements that could be made. In the future, we 
would like to focus on both algorithmic improvements 
and optimization. Our algorithm doesn't support diffuse 
reflection or higher order diffraction. Solving these 
problems would produce even more accurate results. 
However, initial investigations show that higher order 
diffraction seems to be very difficult to do at interactive 
rates. In addition, the ray tracer that is used by our system 
is simple and doesn't make use of the SIMD instructions 
present on modern processors. Implementing this 
improvement could provide a sizable speed increase. 
Finally, we would like to do more work with integrating 
our sound propagation system into game engines in order 
to evaluate the algorithm's performance on real-world 
environments.  
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