
Surface Distance Maps

Avneesh Sud Naga Govindaraju Russell Gayle Erik Andersen Dinesh Manocha

Dept of Computer Science, University of North Carolina at Chapel Hill
http://gamma.cs.unc.edu/gvd/sdm

Figure 1: Interactive motion planning of hundreds of agents for crowd simulation: Weuse our novel surface distance map computation
algorithm for interactive path computation and collision detection in a dynamic environment:(left and center) Two views of the environment
with dynamic 3D obstacles, including cars and flying drones. Each humanagent is represented as a cylinder and colored based on its goal.
(right) The nearest neighbor map of the obstacles and agents is computed using surface distance maps. Each colored region is closer to one of
the 3D obstacles than to any other. The path for one of the agents is shown using solid black lines. Our algorithm can perform the simulation,
including distance computations and path planning, for100 agents at10fps on a high-end PC.

ABSTRACT

We present a new parameterized representation called surface dis-
tance maps for distance computations on piecewise 2-manifold
primitives. Given a set of orientable 2-manifold primitives, the
surface distance maprepresents the (non-zero) signed distance-to-
closest-primitive mapping at each point on a 2-manifold. The dis-
tance mapping is computed from each primitive to the set of re-
maining primitives. We present an interactive algorithm for com-
puting the surface distance map of triangulated meshes using graph-
ics hardware. We precompute a surface parameterization and use
the it to define an affine transformation for each mesh primitive.
Our algorithm efficiently computes the distance field by applying
this affine transformation to the distance functions of the primitives
and evaluating these functions using texture mapping hardware. In
practice, our algorithm can compute very high resolution surface
distance maps at interactive rates and provides tight error bounds on
their accuracy. We use surface distance maps for path planning and
proximity query computation among complex models in dynamic
environments. Our approach can perform planning and proximity
queries in a dynamic environment with hundreds of objects at inter-
active rates and offer significant speedups over prior algorithms.

CR Categories: I.3.5 [Computing Methodologies]: Compu-
tational Geometry and Object Modeling—Geometric algorithms;
I.3.7 [Computing Methodologies]: Three-Dimensional Graphics
and Realism—Animation, virtual reality

Keywords: distance fields, parameterization, deformable models,

collision detection, motion planning

1 INTRODUCTION

Distance fields are scalar fields that represent the closest distances.
Given a set of primitivesS in R

3, the distance field at a point equals
the distance to the closest point onS. Distance fields are widely
studied in computer graphics, computational geometry, computer
vision and robotics. They are used for several applications includ-
ing shape representation and sculpting [15], skeleton computation
[2], collision and proximity computations [32], remeshing [21],
motion planning [18], implicit surface representation [16], non-
photorealistic rendering [20], etc.

Most of the prior techniques compute the distance field along a vol-
umetric grid or a voxelized representation of space. At a broad
level, these algorithms can be classified into object space methods
that perform direct scan conversion into 3D voxels or image space
methods that compute the closest primitive at each grid point. The
latter methods can be accelerated by rasterizing the distance func-
tions using the graphics hardware [19, 31, 30, 12]. These algo-
rithms compute the distance field along each slice of a 3D grid and
the computation can be accelerated by using spatial bounds on the
Voronoi regions of the primitives [31, 27]. However, many appli-
cations require distance information on the surface boundary of a
mesh. The existing volumetric techniques are inefficient for such
computations due to high storage overhead and computation cost.
Moreover, their accuracy can be low as most of the grid vertices do
not exactly lie on the mesh surface.

In this paper, we consider the problem of computing the distance
map on triangulated meshes inR

3. Given a set of 2-manifold prim-
itives S, the surface distance mapat each point on a primitiveo
represents the (non-zero) distance-to-closest-primitive from the set

S \ {o}. The distance function varies continuously along the sur-
face and the distance map yields the direction vector to the closest
primitive. As the surface distance map encodes closest primitive
mapping, it also provides the Voronoi diagram at each point on the
2-manifold primitives, or thenearest neighbor mapon the bound-
ary. If the primitivesS are orientable, we can also associate a sign
with the distance map.

Main Results: We present a new algorithm to compute sur-
face distance maps of triangulated models. Our algorithm uses
a simple texture representation and precomputes a piecewise pla-
nar parametrization of each mesh. The parameterization defines
an affine transformation for each primitive of a mesh to the plane.
The 2D texture map is used as a discrete sampling of the mesh
for distance map computation. As a result, the resolution of dis-
tance map is limited by the size of the texture memory. We apply
the affine transformations to compute the distance functions of 3D
primitives using the texture mapping hardware. This formulation
is also used to compute thenearest-neighbor mapin terms of first
order and second order Voronoi diagrams of the primitives. Finally,
we present tight error bounds on the discretization error in surface
distance map and nearest neighbor map computation.

We highlight two interactive applications of surface distance maps
and nearest-neighbor maps computed on the surfaces.

1. Motion planning in dynamic environments: We use the
nearest-neighbor maps to compute a collision free path for
robots or multiple agents moving in a dynamic environments.
We update the position of all the robots and compute the sur-
face distance map. We use our planner to compute collision
free path for human agents in a crowd simulation.

2. Proximity queries between deformable models:The sur-
face distance map is used for collision and proximity queries
between multiple deformable 3D models. We use the error
bounds to perform conservative computation and the result-
ing algorithm has object-space precision.

We have implemented our algorithm to compute the surface dis-
tance map on a3GHz Pentium D PC with an NVIDIA GeForce
7900 GTX GPU. We highlight its performance on complex bench-
marks composed of thousands of triangles. In practice, our algo-
rithm is able to compute512 × 512 distance fields on triangulated
meshes in a few hundred milli-seconds. The distance values are
computed on a floating point buffer using32-bit floating point pre-
cision. We apply our surface distance map computation algorithm
to perform proximity queries among deformable models consisting
of 6K primitives in200ms. We use the nearest-neighbor map com-
putation for interactive motion planning of100 agents in a complex
environment at10 fps.

As compared to prior distance field based approaches, our algo-
rithm offers the following advantages:

• Generality: Our algorithm is applicable to all triangulated
models. The only requirement is the computation of the piece-
wise affine parameterization of the mesh.

• Accuracy: We can compute very high resolution distance
maps, e.g.1K × 1K at 32-bit floating point precision. On
the other hand, previous interactive techniques based on volu-
metric approaches are typically restricted to lower resolution
(643 or 1283) distance fields.

• Performance: Our algorithm can compute surface distance
fields of deformable models with thousands of polygons at
interactive rates. We observe5−10 times speedup in the per-
formance of resulting proximity queries and motion planning
algorithms over prior approaches.

Organization: The rest of the paper is organized as follows. We
briefly survey prior work on distance field computation and surface
mapping in Section 2. Section 3 describes our algorithm to compute
distance maps for two-manifolds and we present a number of tech-
niques to improve its performance in Section 4. We analyze our
algorithm in Section 5 and highlight its performance on different
applications in Section 6.

2 RELATED WORK

In this section, we give a brief overview of related work on distance
fields and surface mappings.

2.1 Distance Fields

Algorithms to compute distance fields are widely studied. At a
broad level, these algorithms can be broadly classified based on the
model representations such as images, volumes or polygonal repre-
sentations. Good surveys of these algorithms are given in [8, 1].

The algorithms for image-based data sets perform exact or approx-
imate computations in a local neighborhood of the voxels [9, 29, 4,
25, 17]. Exact algorithms for handling 2-D and k-D images have
been proposed to compute the distance transforms in voxel data in
O(M) time, whereM is the number of voxels [4, 25].

Many object-space methods based on adaptive subdivision are
known for computing approximate Voronoi diagrams of polygonal
models [35, 34, 11, 28]. These algorithms can be used to compute
distance fields and are limited to static models. The computation of
a discrete Voronoi diagram on a uniform grid can be performed ef-
ficiently using graphics rasterization hardware [36, 19, 10, 31, 12].
These algorithms compute 3D distance fields along a uniform grid,
and can compute them interactively for low resolution grids on cur-
rent GPUs.

A class of exact distance computation and collision detection algo-
rithms based on external Voronoi diagrams are described in [23].
A scan-conversion method to compute the3-D Euclidean distance
field in a narrow band around manifold triangle meshes (CSC al-
gorithm) is presented by Mauch [24]. The CSC algorithm uses the
connectivity of the mesh to compute polyhedral bounding volumes
for the Voronoi cells. The distance function for each site is evalu-
ated only for the voxels lying inside this polyhedral bounding vol-
ume. Sigg et al. [30] describe an efficient GPU based implementa-
tion of the CSC algorithm. Peikert and Sigg [27] present algorithms
to compute optimized bounding polyhedra of the Voronoi cell for
GPU-based distance computation algorithms. Lefohn et al. [22] de-
scribe an algorithm for interactive deformation and visualization of
level set surfaces using graphics hardware.

2.2 Surface Mapping

Surface distance maps can be regarded as amappingcomputed on
the surface. In some ways, this problem is related to other surface
mapping problems such as texture mapping [5], which is used to
define the color on the surface; displacement mapping [7], which
consists of perturbations of the surface positions; bump mapping
[3], which give perturbations to the surface normals; and normal
maps [14], which contains the actual normals instead of the per-
turbations. All these mapping are supported by current graphics
hardware.

3 SURFACE DISTANCE M APS

In this section, we present our notation and definitions used in the
paper. We introduce surface distance maps and list some of their

properties.

3.1 Notation and Definitions

Let S = {o1, . . . , on} denote the set ofn piecewise linear 2-
manifold objects or meshes in 3D. Furthermore, each objectoi is
decomposed into vertices, open edges and open faces, also known
assites. A site is denoted aspi. Let Ti ⊂ R

2 represent the 2D
parametric domain for objectoi. The mapping of a primitive to the
2D domainT is represented with an overline. Vectors and matrices
are represented using boldface. For example, a pointq and triangle
t in 3D map toq andt, respectively, onT.

O
1

q

p

t

O
2

q

M

q

t

q

Figure 2: Affine map and surface distance map computation:The
affine mapM maps the trianglet on objecto1 to the trianglet in
domainT. The distance vectors fromt to a point sitep on object
o2 are computed at the vertices oft. Then the distance vector of
a pointq on the trianglet is a convex combination of the distance
vectors at the vertices.

The Euclidean distance function of a sitepi at a pointq ∈ R
3 is

denotedd (q, pi). The closest vector fromq to pi is known as the
distance vector, denoted~d(q, pi). The distance of a pointq to an
objectoi is the minimum distanced (q, pj) for all sitespj in oi.

The surface distance map, D() : S → R, at a pointq on object
oi is defined as the distance to the closest object (excluding itself).
The surface distance map is closely related to the nearest neighbor
map on the surface, denotedN () : S → S, and is defined as the
closest object (excludingoi) at the pointq. Formally,

D(q|S) = min
j 6=i

(d (q, oj)),q ∈ oi, oj ∈ S

N (q|S) = {oj | d (q, oj) = D(q)}

For ease of notation, when the surface distance map and the near-
est neighbor maps are computed with respect to all the objects, we
do not explicitly denoteS, i.e. D(q) = D(q|S) andN (q) =
N (q|S). For a set of points, the surface distance map provides the
distance field to closest objects (excluding itself).

The nearest neighbor map on the surface is closely related to the
Euclidean Voronoi diagram in 3D. Assuming each objectoi to be a
Voronoi site, letVDk(S) denote the k-th order Euclidean Voronoi
diagram of the set of objects, andGovk(q,S) denote the k-th order
governor set of a pointq. The k-th order governor set of a pointq

is the set ofk closest sites atq. (see [26] for standard definitions).
Then, the following result relates the nearest neighbor map on the
surface and the 3D Voronoi diagram.
Lemma 1. Letq ∈ oi. Then (a)Gov1(q,S \ {oi}) = N (q), and
(b) Gov2(q,S) = {oi,N (q)}.

Lemma 1 implies that the nearest neighbor map on the surface of
oi is given by the intersection ofoi with the 1st order Voronoi di-
agramVD1(S \ {oi}), or equivalently with the 2nd order Voronoi
diagramVD2(S). Later, we use these properties in order to use
surface distance fields for interactive motion planning and proxim-
ity computations.

3.2 Surface Parameterization

We define an affine mappingMi,1 : ti → T1 to transform the
sampled points on the trianglesti ono1 into the 2D domainT1. For
ease of notation, when the object idj is implicit (j = 1 in this case),
we shall drop the object id subscript fromMi,j and denote the affine
map asMi. Given a 3D mesho with trianglestk, k = 1, . . . , n, our
algorithm transforms each triangletk into a triangletk by applying
an affine mappingMk (see Fig. 2). The matrixMk is constructed
to satisfy the following constraints:

• There is a one-to-one mapping from a pointq ∈ tk to the
pointMkq ∈ tk.

• No two transformed trianglestk = Mktk and tl = Mltl

share a common interior point in the 2D domainT.

These constraints are satisfied using piece-wise planar parameter-
izations of the surface in 3D space and the mapped triangles can
be represented in a 2D texture atlas. SinceM is affine, it can be
written as a composition of a scale, shear, translation and rotation
matrices.

3.3 Linear Interpolation

In this section, we show that the surface distance field at a point
in the triangle can be represented as linear interpolant of distance
vectors of the vertices of that triangle. We shall present this property
for point, infinite lines and planes, and then extend it to finite edges
and triangles. Given a triangletk ∈ oi with verticesxa, a = 1, 2, 3,
for a given point, infinite line or plane sitepl on objectoj (j 6= i),
we use the linear interpolation property of distance vectors [31] to
express the distance vector at any point on triangletk to sitepl as a
convex combination of the distance vectors at the verticesxa:

~d(q, pl) =
3

Σ
a=1

βa
~d(xa, pl),q ∈ tk,

3

Σ
a=1

βa = 1, βa ≥ 0 (1)

Given thattk = Mktk, it impliesD(tk) = D(Mktk). Since the
convex combination is invariant under affine transformMk, from
equation (1) we have,

⇒ ~d(q, pl) = ~d(q, pl) =
3

Σ
a=1

βa
~d(xa, pl),q = Mkq (2)

Thus the distance vector at a pointq ∈ tk (in objectoi) is computed
by performing linear interpolation of distance vectors on the 2D
domainT, as shown in equation (2). Thus the surface distance map
at pointq is computed as the minimum of the length of distance
vectors,

D(q) = D(Mkq) = min(d (q, pl)), ∀pl ∈ oj , j 6= i

We now extend the linear interpolation property to finite sites (edge,
triangle). For a finite site, the linear interpolation is valid inside a
convex region defined by the boundary of the site [31].

4 INTERACTIVE DISTANCE M AP COMPUTATION

In this section, we present our algorithm to efficiently compute sur-
face distance maps. We make use of the bilinear formulation of
distance computation and evaluate it efficiently using GPUs. We
also describe many techniques to accelerate the computation.

4.1 GPU Based Computation

We compute a discrete approximation of surface distance maps
at interactive rates using bilinear vertex attribute interpolators in
graphis hardware (for eg. texture coordinate interpolation). Dis-
crete surface distance maps compute the distance-to-closest-object
mapping at a finite set of point samples on each 2-manifold mesh.

We first compute the affine mappings,Mk for each triangletk in
the 3D mesh. We sample the domainT uniformly using a 2D tex-
ture. This defines a sampling on each triangletk in 3D space by
sampling the projected triangletk in the 2D domainT. Instead of
computing distances along a volumetric grid, our algorithm com-
putes the distance map on each triangletk by computing the dis-
tance vectors at the vertices oftk and computing the distance vec-
tors at the point samples ontk using equation (2).

In order to accelerate distance computations, prior algorithms con-
struct a convex polytopeGi which bounds the Voronoi region of a
site pi and reduces the fill requirements [31, 27]. We use similar
techniques to accelerate the computation of surface distance maps.
For each sitepi, we compute a convex bounding polytopeGi. To
compute the surface distance maps on triangletk, we intersectGi

with the triangletk in the 3D mesh. The distance vector computa-
tions are performed in the texture domainT only for the points that
lie inside the transformed domainMk(tk ∩Gi).

Surface distance maps can be computed on the rasterization hard-
ware by using transformations, clipping and interpolation capabili-
ties of the GPUs. The main stages of the pipeline are as follows:

• Bound Computation and Intersection: We compute the
bounding polytopeGi of sitepi, and intersect it with the plane
πk containing triangletk on the CPU. This gives a convex
polygongi = Gi ∩ πk.

• Distance Vector Computation and Transform: We com-
pute the distance vectors at each vertex ofgi and project the
vertices ofgi to the 2D domainT using the affine mapMk.
This per vertex computation is efficiently performed in paral-
lel using thevertex processoron the GPU.

• Clipping: We restrict the computation of distance vectors to
the domain given bytk ∩ gi. In the 2D domainT, this is
equivalent to clipping the projectiongi againsttk. We use the
stencil functionality of GPUs to perform this clipping.

• Bilinear Interpolation: The convex combination of distance
vectors is equivalent to linear interpolation of texture co-
ordinates assigned to the vertices of the polygongi, and is
performed by thetexture unitof the GPU.

• Distance Computation: The distance value at a texel in the
texture atlas is the norm of the distance vector and computed
using thefragment processorof the GPU.

• Distance Comparison: The distance value is returned as
depth and compared with the current minimum distance value
using the depth test functionality in theraster processorof
GPUs. The minimum distance value is stored in the depth
buffer.

The overall algorithm to compute the surface distance map of ob-
ject o1 using sites in a set of objectsS is given in Algorithm 1.
The algorithm requires computing of intersections between bound-
ing polytopes of sites and the triangles in the 3D mesh, and clipping
of polygons in 2D. We present details of stencil-based clipping and
hierarchical culling techniques that are used to accelerate the per-
formance of the algorithm.

Clipping: Surface distance maps require an efficient clipping al-
gorithm for each triangle-site pair. Given a sitepi and a triangle
tk, we restrict the computation on the 2D domain to the interior of
tk using stencil tests. As a result, each triangle-site pair requires a
valid stencil to be set in the region corresponding totk. We first
set the stencil value of the triangle to1 by renderingtk on T. We
then compute the distance vectors by renderinggi onto the portions
of the surface distance map where the stencil value is set to1. We
then reset the stencil values by renderingtk and setting the sten-
cil value to0 on the triangle. For a set of triangles, we reduce the
state change overhead by associating a unique stencil id with each
triangle. Since the stencil buffer is limited to 8 bit precision, we
use a buffer that maintains a set of available stencil ids, which are
replaced using a least-recently-used replacement policy.

Input : Objecto1, Set of objectsS. Parameterization from
o1 to T1.

Output : The Surface Distance MapD(o1) of objecto1.

Initialize D(o1) to∞ for all pointsq in T11
Update AABB hierarchy ofo12
foreach triangle tk in o1 do Mk,1 ← UpdateAffine(tk)3
foreachobjectoa in S contributing to SDM ofo1 do4

foreachsitepi in oa do5
OBB(Gi)← ComputeOBB (pi)6
Intersect OBB(Gi) against AABB hierarchy ofo17
foreach triangle tk in o1 intersectingGi do8

gi ← IntersectPolytope(Gi, tk)9
foreachvertexxj in gi do10

Compute distance vector~d(xj , pi)11
Transformxj to xj usingMk,112
Assign texture coordinates ofxj ,13

(r, s, t)← ~d(xj , pi)

end14
Draw textured polygongi on domainT115

end16

end17

end18
Read-backT119
foreach triangle tk in T1 do20

Map distance values fromtk to tk21

end22

Algorithm 1 : Pseudo-code to compute the surface distance
map ofo1 using sites inS. Line 1 initializes the depth val-
ues in the texture atlas for the triangles ino1. We compute
the affine transform for each triangle ino1 (Line 3). We
first perform a broad-phase culling to compute objects that
contribute to SDM ofo1. For each site in these objects,
we compute the potentially overlapping triangles ino1 with
the distance function of sitepi (Lines 6-8). We then clip the
bounding polytope enclosing the distance function ofpi to
the overlapping triangles ino1 (Line 9). Each clipped poly-
gon corresponds to a triangle ino1 and we map the clipped
polygons onto the texture atlas using the affine transforma-
tions of the corresponding triangles (Lines 10-15).

4.2 Hierarchical Culling

We use a hierarchical distance culling algorithm to reduce the num-
ber of triangle-site pairs in the surface distance map computation.
The distance functions are computed from a sitepi to a triangletk

in 3D mesh only when the intersection of the bounding polytope
with the triangle is non empty (i.e.Gi ∩ tk 6= ∅). We use an axis-
aligned bounding box (AABB)-hierarchy of each object to quickly

Figure 3: Surface Distance map computation on deforming letters ”3d2007i”:Deforming dynamic simulation on7 letters falling on an
uneven terrain, (6K triangles total). (a)-(b) Two frames from the simulation. (c) The surface distance maps between two letters show the
direction of the closest point on the other letter. Our algorithm can perform proximity queries using high resolution surface distance maps of
resolution512× 512 in 100− 200 ms per frame.

cull away sites whose bounding polytopes do not overlap with the
triangles in the 3D mesh.

Our algorithm initially constructs an AABB hierarchy for each
object. Each leaf of the hierarchy stores a triangle of the ob-
ject. At run-time, we update the AABB-hierarchy and use it for
culling bounding polytopes that do not intersect with the AABB-
hierarchy. The hierarchy nodes are updated in a bottom-up manner.
The update cost of a hierarchy is linear in the number of leaves
in the AABB-hierarchy. For each sitepi, we compute a bound-
ing polytopeGi and compute a tight-fitting oriented bounding box
OBB(Gi) that enclosesGi. We perform overlap tests between
OBB(Gi) and the nodes of the AABB hierarchy. For each leaf
with triangletk that overlaps withOBB(Gi), we perform distance
computations onGi ∩ tk as described in Section 4. The OBBs are
constructed only once per frame for each site, and therefore, the
time taken to update the OBBs is linear in the number of sites in the
scene. The AABB hierarchy and OBBs are updated each frame for
deforming models.

We further improve the performance of our surface distance map al-
gorithm by reducing the number of distance function rasterization
operations using distance bounds computed using the AABB hier-
archy. For each node in the AABB hierarchy, we maintain a lower
bound on the maximum distance from the AABB of a triangletk

to the AABB of the sites. Initially, the maximum distance bound of
each node in the hierarchy is set to∞. We do not perform distance
evaluation of a sitepi for triangletk if the distance bound stored for
a node in the hierarchy is less than the minimum distance from the
AABB of the node to the AABB ofpi. This culling test based on
distance bounds is used to reject sites whose distance functions do
not contribute to the distance map ontk, as there exists some other
sites that are closer toTk.

If a site is not culled away, we intersect the bounding polytopeGi

of the site withtk and compute the distance vectors at the vertices
of Gi ∩ tk. We then perform distance function computation on
Gi ∩ tk.

5 ANALYSIS

In this section, we analyze the time complexity of our algorithm.
We also derive error bounds on the distance computation as a func-
tion of 2D grid resolution in the parametric domain.

Time Complexity: Let there bem sites in each object. The cost
of performing hierarchical culling isO(m log m). The rasterization
cost of computing the surface distance map of resolutionM×M is
O(rM2), where1 ≤ r ≤ m. The value ofr depends on the culling

efficiency achieved by our hierarchical culling algorithm and is typ-
ically close to1, especially when we perform distance computations
in a localized region or narrow bands. Hence the total computa-
tion cost of computing the surface distance map for each object is
O(rM2 + m log m).

Error Bounds: Our algorithm, described in Section 4, computes
a discrete surface distance map at the sample points on the mesh.
The accuracy at these samples is governed by the precision of the
texture mapping hardware that performs bilinear interpolation. Cur-
rent GPUs offer32-bit floating arithmetic to perform these compu-
tations. We also present an error bound on the computed distance
for any point on the surface, as the object undergoes non-rigid affine
transformations, including scaling and shearing. Given a sampling
on the parametric domain, we first derive a function that computes
the sampling density on the surface in 3D using the inverse of the
affine map. The 3D sampling density is used to compute discretiza-
tion error bounds on the surface distance map.

The affine transform for each triangle can be decomposed into a
combination of scale, shear, translation and rotation transforms.
The distances are preserved under rigid transformations. In this
case, scaling and shear transforms change the distance values be-
tween adjacent samples. Next, we present a lemma that relates the
sample density on the parametric domain with that on the 3D mesh.
Lemma 2. Let the affine transformMk map triangletk on object
o to triangletk in texture domainT. Letsx, sy andsh, respectively,
be the scale alongX-axis, scale alongY -axis and shear induced
by the inverseM−1

k . Further, let the base length of the triangletk

be b and spacing between adjacent samples inT be δ. Then the
maximum distance between two adjacent samples ontk is given by

fk(δ) ≤ δ

q

(sx + dx)2 + s2
y (3)

wheredx = max(|sh| − (b
sxδ

+ 1), 0).

It has been shown that the error introduced by a distance distance
field is bounded by the sample density [32]. Hence from Lemma 2,
the maximum error in the continuous surface distance map com-
puted on objecto is given bye(δ) = maxk(fk(δ)), for all trian-
glestk ∈ o. Furthermore, it follows from equation (3) asδ → 0,
dx → 0, and the maximum error,e(δ)→ 0 as expected.

Moreover, the error in the surface distance map is bounded as the
objecto undergoes bounded deformations. We assume the initial
mappingMk has unit scale and zero shear. Then, we can derive the
error bound as the object undergoes deformations by the following
lemma:
Lemma 3. Let the maximum motion of a vertex on triangletk,
modulo any rigid body transformation, be bounded bydm, and the

base and height of triangletk on domainT beb andh, respectively.
Then the discretization error in surface distance map is bounded by

g(δ) ≤ 2dmδ + max

»

dm −
h

2

„

b

δ
+ 1

«

, 0

–

Surface Distance Map Resolution: By definition, the transform
Mk is always invertible. Conversely, one can also use the inverse of
the function to compute the sampling required in the texture domain
to achieve a desired precision in the computed surface distance map.
In particular, letem denote the maximum error in the surface dis-
tance map. Then the sampling densityδ on the texture domainT is
given bymink(f−1

k (em)), for all tk ∈ o, wheref−1

k x is given by
the scale and shear transforms ofMk. The resolution of the texture
used to sampleT is M ×M , whereM = 1

δ
. We use these error

bounds to perform proximity computations at object-space preci-
sion in Section 6.2

6 IMPLEMENTATION AND PERFORMANCE

In this section we briefly describe our implementation of surface
distance map computation and highlight its application to motion
planning and proximity computations between deformable models.
We also compare our algorithm with prior distance field computa-
tion algorithms.

6.1 Implementation

We have implemented our algorithm on a PC with a3.0GHz Pen-
tium D CPU,2GB of memory and an NVIDIA7900 GTX GPU
connected via a PCI-Express bus, running Windows XP operating
system. We used OpenGL as the graphics API and the Cg program-
ming language to implement the fragment programs. The initial
mapping from the manifold objects to the texture atlas is computed
using NVIDIA’s Melody 1 software. The surface distance map of
each object is computed on a floating point buffer using 32-bit float-
ing point precision. The distance vectors are passed as texture pa-
rameters to the fragment program.

Our algorithm can compute high-resolution (512×512 to1K×1K)
surface distance map of objects with tens of thousands of polygons
in a fraction of a second. We also compute the gradient of the dis-
tance field which gives the direction to the closest primitive for a
point on the surface of an object. As compared to prior approaches
based on volumetric techniques, our surface distance map compu-
tation algorithm is about4− 10 times faster.

6.2 Comparison with Prior Distance Field Computation Algo-
rithms

We compare the features and performance of our surface distance
map algorithm with prior approaches that compute the distance field
on a uniform volumetric grid using GPUs. These include linear
factorization [31] and efficient GPU implementations of CSC algo-
rithm [30, 27]. All the prior approaches compute the distance field
along a uniform 3D grid. Since the GPU computes the distance field
along one slice, these algorithm perform the computations along
different slices and exploit spatial coherence between the slices to
speed up the computation.

The precision of the distance field computed using a volumetric ap-
proach is governed by the cell size in the grid. Let the number of
cells in the grid beM ×M ×M , and storage overhead isO(M3).

1http://developer.nvidia.com/object/melodyhome.html

0

100

200

300

400

500

600

700

800

1 101 201 301 401 501

Frame Number

T
im

e
 (

m
s
)

DVD

SDM

Figure 4: Timing comparison for proximity computation between
our algorithm (labeledSDM) and a GPU-based volumetric distance
field algorithm [Sud et al. 06b] (labeledDVD), respectively:Our
algorithm is able to achieve 5–10 times speedup in proximity com-
putation between two deforming alphabets. The scene is composed
of 6K polygons. The surface distance field is computed at a reso-
lution of 512 × 512 and the volumetric distance field is computed
at 250 × 42 × 250. Our algorithm is able to obtain higher accu-
racy in distance field computation on the surface and achieves an
interactive performance of 5–10 frames per second.

Then the discretization error in the distance field is
√

3

2M
. In compar-

ison, for a surface distance map of sizeM ×M , the storage cost
is O(M2), and the error in the distance field is

√
2

2M
in absence of

any scale and shear. As the model undergoes deformation, the er-
ror bound for surface distance map is given by the functionf(1

M
),

presented in Section 5. Typically, the maximum amount of defor-
mationdm in interactive applications is small, and the error in the
distance field is given asO(1

M
). As a result, surface distance maps

provide a more compact representation of the distance field with
tighter error bounds. Conversely, our approach results in higher
resolution distance fields. Current GPUs have512MB or 1GB of
video memory. It may not be possible to store or compute a volu-
metric distance field at a high resolution (e.g.(1K)3) as it would
require8GB of memory. Furthermore, the cost of reading back a
3D distance field of(1K)3 and scanning could be rather high, i.e.
about16 seconds using a readback bandwidth of500MB/sec. As a
result, prior applications of interactive distance field computations
are limited to low resolution distance fields. On the other hand, we
can compute surface distance maps at high resolution on current
GPUs.

Let there bem sites in each object. Then the computation cost
to compute the global distance field using a volumetric approach
varies betweenO(mM3) andO(M3). Fornarrow bands, the cost
is O(m + rM3) wherer depends on the relative configuration of
sites. On the other hand, the cost of computing the global sur-
face distance map on the GPU isO(rM2 + m log m). Fornarrow
bands, the cost is close toO(M2 + m log m). A quantitative com-
parison of average time to compute the distance fields and perform
proximity queries on deformable models is shown in Figure 4.

6.3 Proximity Queries between Deformable Models

We use surface distance maps and nearest-neighbor maps to per-
form different proximity queries among 3D deformable models.
The set of queries include separation distance, collision detection,
contact normal and local penetration depth computation. As shown
in Lemma 1, the nearest neighbor map also provides the 2nd-order
governor set, and we use the algorithm presented in [32]. We
first use AABB hierarchies to localize the computation by com-
puting the region of overlap or compute a potentially neighboring

set (PNS) for the primitives. Next, we compute the surface distance
map for all triangles of each object that lie inside the localized re-
gion or the PNS. We use the error bounds on distance fields, pre-
sented in Section 5, to perform conservative computations and re-
duce the size of PNS based on properties of nearest-neighbor maps.
Finally, we perform exact collision, distance or penetration queries
between the primitives lying in the PNS.

We used our algorithm for proximity queries on a scenarios con-
sisting of deforming objects. The first is a sequence of7 deforming
alphabets falling on a bumpy terrain as shown in figure 3. The let-
ters are at different scales allowing us to vary resolution of surface
distance map. The entire environment consists of6K polygons. At
each frame, we compute a surface distance map on each letter at a
resolution512 × 512. The average time to perform all proximity
queries varies between100 − 200ms. As compared to [32], our
surface distance algorithm results in a speedup of8 times. Since
we are computing the distance map at a much higher resolution, the
image-space error using our algorithm is much lower as compared
to prior approaches, giving us significantly smaller error bounds.

The use of surface distance maps and nearest-neighbor maps con-
siderably improve the performance of the proximity query algo-
rithm. There are two main reasons.

• Faster computation: The underlying distance field compu-
tation algorithm is much faster. This is due to the fact that
we are only computing distance fields on the boundary of the
objects (i.e. a 2D manifold) as opposed to a 3D volumetric
grid.

• Higher accuracy : We compute the surface distance fields
at a higher resolution (e.g.5122 or 1K × 1K) as opposed
to volumetric approaches, which would typically compute at
643 or 1283 grid resolutions. As a result, our distance error
bounds are much tighter and the Voronoi-based culling results
in a smaller PNS and we perform significantly fewer exact
tests in the primitives.

• Adaptive resolution : Using surface distance maps, we can
select a unique resolution for each object, providing us with
adaptive resolution in large environments with variation in
scale.

6.4 Motion Planning in Dynamic Environments

We use our distance field computation algorithm for interactive mo-
tion planning of multiple 3D agents or robots moving along a 2D
manifold, but the environment consists of 3D obstacles. Some of
the driving applications include crowd simulation in urban environ-
ments or architectural models, vehicles moving along a terrain, etc.
We represent the environment as a set of objects,S, and partition
it into two disjoint sets: a set of obstaclesSo and a set of ’ground’
surfacesSg. A ground surface is a 2-manifold along which robots
are constrained to move.

Our goal is to perform motion planning for multiple moving robots
or agents with no assumptions about their motion. In this case,
each robot is treated as a dynamic obstacle for the other robots.
As a result, prior motion planning algorithms based on sampling-
based techniques and pre-computation of a roadmap are not directly
applicable.

Voronoi diagrams have been widely used for motion planning, in-
cluding roadmap computation [6], sample generation [13] or com-
bined with potential field methods for 2D robots [18]. It is well
known that the Voronoi diagram of the obstaclesVD(So) repre-
sents the connectivity of the free space of the robot, and can pro-
vide paths of maximal clearance between the obstacles. The 3D

Voronoi diagram consists of 2D Voronoi faces, 1D Voronoi edges
and Voronoi vertices. Since the motion of the robots is constrained
to Sg, we compute the intersection of the 3D Voronoi diagram
VD(So) with the ground surfacesSg. In this case,VD(So) ∩ Sg

gives paths of maximal clearance alongSg.

For each ground surfaceog ∈ Sg, we compute the surface distance
mapD(og|So) and the nearest neighbor mapN (og|So). SinceSo

andSg are disjoint, it follows from Lemma 1 that the nearest neigh-
bor mapN (og|So) is equivalent toVD(So) ∩ og. We extract the
discrete Voronoi graph fromN (og|So) and assign the edge weights
based on edge length and maximum clearance along the edge, as
described in [18]. The Voronoi vertices closest to the robot and
the goal position are classified as source and destination, respec-
tively, and the minimum weight path is computed using Dijkstra’s
shortest-path algorithm.

We combine the roadmap computed from the nearest-neighbor map
with a potential field planner for local planning. For each robot,
the potential field planner takes into account the proximity to the
nearest obstacle. Hence, for each robot objector ∈ So, we compute
the surface distance mapD(or|So) and use that map to compute the
proximity information. The surface distance map is sampled at a
finite set of points and we use that sampling to compute an average
force and torque to simulate the robot dynamics.

We demonstrate the application of surface distance maps for in-
teractive motion planning of a large number of human agents in
an urban environment with dynamic 3D obstacles (see Figure 1).
The set of obstacles consists of buildings, cars, flying drones and
humans. The set of ground surfaces consists of roads, sidewalks
and lawns. The humans enter the scene from the buildings and
exit through another building or the sidewalks. Each human is
an individual robot and has an independent goal. The cars and
drones, along with other humans, are treated as dynamic obstacles,
while the buildings, benches, fountains are treated as static obsta-
cles. In our implementation, a higher weight is assigned to Voronoi
edges corresponding to the cars and flying drones. As the flying
drones approach the ground, the humans update the paths to evade
them. The nearest-neighbor map is computed on a grid of reso-
lution 1K × 1K pixels. The environment has 15 static obstacles,
and up to 8 dynamic obstacles, and100 dynamically moving hu-
man agents. The complete motion planning takes120ms per frame,
which includes cost of computing the nearest neighbor map, ex-
tracting the discrete Voronoi graph and performing graph search.
The time spent on nearest neighbor map computation is approxi-
mately30ms per frame.

7 L IMITATIONS AND CONCLUSIONS

Our approach has certain limitations. We compute a 2D domain
triangle for each triangle in the 3D mesh. We pack all these 2D do-
main triangles in the texture atlas and our current packing algorithm
may not be optimal. Our current approach is limited to deforming
triangles with fixed connectivity. If the underlying simulation con-
sists of objects with changing topologies, we may need to update
the planar parameterization and recompute the spatial hierarchies.
The accuracy of our proximity computation algorithm is governed
by the resolution of the distance map. It is possible to compute
higher resolution distance fields using GPUs, but then the cost of
readback to CPU goes up, especially for interactive applications.

7.1 Conclusions and Future Work

We present a new algorithm to compute surface distance maps for
triangulated models using the texture mapping hardware. We com-
pute a planar parameterization of the mesh and use the affine map-

ping to efficient evaluate the distance maps. We also present culling
and clipping techniques to speed up the computations. We highlight
the performance of our algorithm on complex models and use it to
perform interactive proximity queries between deformable models.

There are many avenues for future work. We could further improve
the performance of our algorithm by using spatial and temporal co-
herence between successive frames. It may be possible to extend
our algorithm to objects with changing topologies, where we in-
crementally recompute the affine transformation to the parametric
domain. We would like to use proximity computation algorithm
to perform self-proximity queries including self-collisions or self-
penetrations in cloth simulation. Surface distance maps could also
be useful to accelerate ray tracing dynamic scenes [33].

ACKNOWLEDGMENTS

This research is supported in part by ARO Contracts DAAD19-02-
1-0390, and W911NF-04-1-0088, NSF Awards 0400134, 0118743,
ONR Contract N00014-01-1-0496, DARPA RDECOM Contract
N61339-04-C-0043 and Intel Corporation. We would like to ac-
knowledge members of UNC GAMMA and the reviewers useful
comments and feedback.

REFERENCES

[1] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geo-
metric data structure.ACM Comput. Surv., 23(3):345–405, September
1991.

[2] I. Bitter, A. Kaufmann, and M. Sato. Penalized-distance volumet-
ric skeleton algorithm.IEEE Trans. on Visualization and Computer
Graphics, 7(3), 2001.

[3] J. F. Blinn. Simulation of wrinkled surfaces. InComputer Graphics
(SIGGRAPH ’78 Proceedings), pages 286–292, 1978.

[4] H. Breu, J. Gil, D. Kirkpatrick, and M. Werman. Linear time Eu-
clidean distance transform and Voronoi diagram algorithms.IEEE
Trans. Pattern Anal. Mach. Intell., 17:529–533, 1995.

[5] E. Catmull. A subdivision algorithm for computer display of curved
surfaces. PhD thesis, University of Utah, 1974.

[6] H. Choset and J. Burdick. Sensor based motion planning: The hier-
archical generalized Voronoi graph. InAlgorithms for Robot Motion
and Manipulation, pages 47–61. A K Peters, 1996.

[7] Robert L. Cook. Shade trees. In Hank Christiansen, editor, Computer
Graphics (SIGGRAPH ’84 Proceedings), volume 18, pages 223–231,
July 1984.

[8] O. Cuisenaire.Distance Transformations: Fast Algorithms and Ap-
plications to Medical Image Processing. PhD thesis, Universite
Catholique de Louvain, 1999.

[9] P. E. Danielsson. Euclidean distance mapping.Computer Graphics
and Image Processing, 14:227–248, 1980.

[10] M. Denny. Solving geometric optimization problems using graphics
hardware.Computer Graphics Forum, 22(3), 2003.

[11] Michal Etzion and Ari Rappoport. Computing Voronoi skeletons of
a 3-d polyhedron by space subdivision.Computational Geometry:
Theory and Applications, 21(3):87–120, March 2002.

[12] I. Fischer and C. Gotsman. Fast approximation of high order Voronoi
diagrams and distance transforms on the GPU. Technical reportCS
TR-07-05, Harvard University, 2005.

[13] M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-based
hybrid planner. Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2001.

[14] Alain Fournier. Normal distribution functions and multiple surfaces.
In Graphics Interface ’92 Workshop on Local Illumination, pages 45–
52, May 1992.

[15] S. Frisken, R. Perry, A. Rockwood, and R. Jones. Adaptively sam-
pled distance fields: A general representation of shapes forcomputer
graphics. InProc. of ACM SIGGRAPH, pages 249–254, 2000.

[16] S. Gibson. Using distance maps for smooth representationin sampled
volumes. InProc. of IEEE Volume Visualization Symposium, pages
23–30, 1998.

[17] J. Gomes and O. Faugeras. The vector distance functions.Int. Journal
of Computer Vision, 52(2):161–187, 2003.

[18] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Interactive
motion planning using hardware accelerated computation of general-
ized voronoi diagrams.Proceedings of IEEE Conference of Robotics
and Automation, 2000.

[19] Kenneth E. Hoff, III, Tim Culver, John Keyser, Ming Lin,and Dinesh
Manocha. Fast computation of generalized Voronoi diagrams using
graphics hardware. InComputer Graphics Annual Conference Series
(SIGGRAPH ’99), pages 277–286, 1999.

[20] A. Klein, P. J. Sloan, A. Finkelstein, and M. Cohen. Stylized video
cubes.Symposium on Computer Animation, 1992.

[21] L. Kobbelt, M. Botsch, U. Schwanecke, and H. P. Seidel. Feature-
sensitive surface extraction from volume data. InProc. of ACM SIG-
GRAPH, pages 57–66, 2001.

[22] A. Lefohn, J. Kniss, C.D. Hansen, and R. Whitaker. Interactive defor-
mation and visualization of level set surfaces using graphics hardware.
In Proceedings of IEEE Visualization, page To Appear, 2003.

[23] M.C. Lin. Efficient Collision Detection for Animation and Robotics.
PhD thesis, Department of Electrical Engineering and Computer Sci-
ence, University of California, Berkeley, December 1993.

[24] Sean Mauch.Efficient Algorithms for Solving Static Hamilton-Jacobi
Equations. PhD thesis, Californa Institute of Technology, 4 2003.

[25] C.R. Maurer, R. Qi, and V. Raghavan. A linear time algorithm for
computing exact euclidean distance transforms of binary images in
arbitary dimensions.IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 25(2):265–270, February 2003.

[26] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara.Spatial Tessel-
lations: Concepts and Applications of Voronoi Diagrams. John Wiley
& Sons, Chichester, UK, 1992.

[27] R. Peikert and C. Sigg. Optimized bounding polyhedra forgpu-based
distance transform. InScientific Visualization: The visual extraction
of knowledge from data, 2005.

[28] R. Perry and S. Frisken. Kizamu: A system for sculpting digital char-
acters. InProc. of ACM SIGGRAPH, pages 47–56, 2001.

[29] J. A. Sethian.Level set methods and fast marching methods. Cam-
bridge, 1999.

[30] C. Sigg, R. Peikert, and M. Gross. Signed distance transform using
graphics hardware. InProceedings of IEEE Visualization, pages 83–
90, 2003.

[31] A. Sud, N. Govindaraju, R. Gayle, and D. Manocha. Interactive 3d
distance field computation using linear factorization. InProc. ACM
Symposium on Interactive 3D Graphics and Games, pages 117–124,
2006.

[32] Avneesh Sud, Naga Govindaraju, Russell Gayle, Ilknur Kabul, and Di-
nesh Manocha. Fast proximity computation among deformable mod-
els using discrete voronoi diagrams.ACM Trans. Graph. (Proc ACM
SIGGRAPH), 25(3):1144–1153, 2006.

[33] L. Szirmay-Kalos, B. Aszodi, I. Lazanyi, and M. Premecz. Approx-
imate ray-tracing on the gpu with distance impostor.Proc. of Euro-
graphics, 2005.

[34] M. Teichmann and S. Teller. Polygonal approximation of Voronoi
diagrams of a set of triangles in three dimensions. Technical Report
766, Laboratory of Computer Science, MIT, 1997.

[35] J. Vleugels and M. H. Overmars. Approximating Voronoi diagrams
of convex sites in any dimension.International Journal of Computa-
tional Geometry and Applications, 8:201–222, 1998.

[36] M. Woo, J. Neider, and T. Davis.OpenGL Programming Guide, Sec-
ond Edition. Addison Wesley, 1997.

