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Abstract

We present an interactive algorithm to compute sur-
face distance maps for triangulated models. The distance
map represents the distance-to-closest-primitive mapping
at each point on the boundary of the mesh. We precom-
pute a surface parameterization and use the parameteri-
zation to define an affine transformation for each primi-
tive of the mesh. Our algorithm efficiently computes the
distance field by applying the affine transformation of the
primitive to the distance functions of the sites. We evalu-
ate the distance functions using texture mapping hardware.
In practice, our algorithm can compute high resolution sur-
face distance maps at interactive rates and provides tight
error bounds on their accuracy. We use surface distance
maps to perform interactive collision and distance queries
between complex deformable models. As compared to prior
approaches, our distance map computation and collision
detection algorithms can provide up to one order of mag-
nitude performance improvement.

1 Introduction

Distance fields are scalar fields that represent the clos-
est distances. Given a set of primitivesO in R3, the dis-
tance field at a point equals the distance to the closest
point onO. Distance fields are widely studied in com-
puter graphics, computational geometry, computer vision
and robotics. They are used for several applications in-
cluding shape representation and sculpting [FPRJ00], skele-
tonization [BKS01], collision and penetration depth compu-
tation [HZLM01], remeshing [KBSS01], motion planning
[HCK∗99], implicit surface representation [Gib98], non-
photorealistic rendering [KSFC92], etc.

In this paper, we consider the problem of computing the

distance map on a two-manifold triangulated mesh inR3.
Thesurface distance mapcomputes the distance-to-closest-
primitive mapping at each point on the boundary of the
mesh. The distance function varies continuously along the
surface and the gradient of the distance map yields the di-
rection vector to the closest object. If the primitivesO are
closed and orientable, we can also associate a sign with the
distance map.

Most of the prior techniques compute the distance field
along a volumetric grid or a voxelized representation of
space. At a broad level, these algorithms can be classified
into object space methods that perform direct scan conver-
sion into 3D voxels or image space methods that compute
the closest primitive at each grid point. The latter meth-
ods can be accelerated by rasterizing the distance functions
using the graphics hardware [HCK∗99, SGGM06, SPG03,
FG05]. These algorithms compute the distance field along
each slice of a 3D grid and the computation can be accel-
erated by using spatial bounds on the Voronoi regions of
the primitives [SOM04, PS05]. However, these volumetric
techniques have many limitations. Their storage overhead
and computation time isO(n3), wheren is the resolution
along the grid. As a result, current 3D distance field com-
putation algorithms are not fast enough for interactive ap-
plications. Moreover, their accuracy can be low as most of
the grid vertices do not exactly lie on the mesh boundary.
Main Results: We present a new algorithm to compute sur-
face distance maps of triangulated models. Our algorithm
uses a simple texture representation to store a piecewise
planar parametrization of the mesh. The parameterization
defines an affine transformation for each primitive of the
mesh. The 2D texture map is used as a discrete sampling of
the mesh for distance map computation.

We apply the affine transformation of the geometric
primitive to compute the distance functions of 3D primi-
tives using the texture mapping hardware. We use the sten-
cil test to clip the distance functions to regions correspond-

1



Figure 1: Surface distance map of the Hugo model enclosed in a box:We show the surface distance map of the Hugo model
(17.2K polys - in wireframe) within a box (12 polys). (a) The surface distance fields of Hugo on the box and of the box on
the Hugo model. The distances increases from red to green. (b) The Voronoi diagrams of the Hugo and box that are used
to compute the distance maps. Each colored region represents a Voronoi region of a site. (c) The normalized gradient of
the distance field. The color of a point on the box encodes a vector representing the direction to its closest point on Hugo
(and vice versa). Our algorithm can compute surface distance map of the Hugo and the box in 600ms on a grid of resolution
256× 256.

ing to the geometric primitive in the 2D texture. Our al-
gorithm employs spatial hierarchies to localize the distance
field computations and improve the overall performance.

We have implemented our algorithm on a Pentium IV
PC with an NVIDIA GeForce 7800 GTX GPU. We high-
light its performance on complex benchmarks composed of
thousands of triangles. In practice, our algorithm is able
to compute high resolution distance fields in a few hundred
milli-seconds. The distance values are computed on a float-
ing point buffer using32-bit floating point precision. We
use our algorithm to perform interactive collision and sep-
aration distance queries between 3D deforming objects. As
compared to prior techniques, our algorithm offers the fol-
lowing advantages:

• Generality: Our algorithm is applicable to all man-
ifold triangulated models. The only requirement is
computation of the piecewise parameterization of the
mesh.

• Accuracy: We can compute very high resolution dis-
tance maps, e.g.1K × 1K at32-bit floating point pre-
cision. On the other hand, previous techniques based
on volumetric approaches could barely compute dis-
tance fields1283 or 2563 resolution at interactive rates.

• Performance: Our algorithm can handle deformable
models with thousands of polygons at interactive rates.
We observe5 − 10 times speedup over prior distance
field computation and collision detection algorithms.

Organization: The rest of the paper is organized as follows.
We briefly survey prior work on distance field computation

and surface mapping in Section 2. Section 3 describes our
algorithm to compute distance maps for two-manifolds and
we present a number of techniques to improve its perfor-
mance in Section 4. We analyze our algorithm in Section
5 and highlight its performance on different benchmarks in
Section 6.

2 Related Work

In this section, we give a brief overview of related work
on distance fields and surface mappings.

2.1 Distance Fields

Algorithms to compute distance fields are widely stud-
ied. At a broad level, these algorithms can be broadly classi-
fied based on the model representations such as images, vol-
umes or polygonal representations. Good surveys of these
algorithms are given in [Cui99, Aur91, PS05].

The algorithms for image-based data sets perform ex-
act or approximate computations in a local neighborhood
of the voxels. [Dan80, Set99, BGKW95, MQR03, GF03].
Exact algorithms for handling 2-D and k-D images have
been propose to compute the distance transforms in voxel
data in O(N) time, whereN is the number of voxels
[BGKW95, MQR03].

There is extensive work in computing the exact Voronoi
diagram of a set of points [Aur91]. However, exact compu-
tation of Voronoi regions of higher order primitives such as
lines or triangles is a hard problem due to its algebraic and
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combinatorial complexity. As a result, most practical algo-
rithms compute an approximation to the Voronoi diagram
by computing distance fields on a uniform grid or an adap-
tive grid. A key issue is the underlying sampling criterion
used for adaptive subdivision [VO98, TT97, ER02, PF01].

The computation of a discrete Voronoi diagram on a uni-
form grid can be performed efficiently using graphics raster-
ization hardware. This idea was original proposed for point
primitives in [WND97]. Hoff et al. [HCK∗99] render a
polygonal approximation of the distance function on depth-
buffered graphics hardware and computed the generalized
Voronoi Diagrams in two and three dimensions. The 3D al-
gorithm computes each slice separately. An efficient exten-
sion of the2-D algorithm for point primitives is proposed in
[Den03]. Sudet al. [SOM04, SGGM06] present algorithms
efficiently compute distance fields of polygonal primitives
by using a combination of culling and clamping algorithms
and map the computations to the texture mapping hardware.
In practice, these algorithms can improve the performance
of 3D distance field computation considerably, but are not
fast enough for interactive applications. Fischer and Gots-
man [FG05] describe techniques to approximate higher or-
der Voronoi diagrams and distance fields using GPUs.

A class of exact distance computation and collision de-
tection algorithms based on external Voronoi diagrams are
described in [Lin93]. A scan-conversion method to com-
pute the3-D Euclidean distance field in a narrow band
around manifold triangle meshes (CSC algorithm) is pre-
sented by Mauch [Mau03]. The CSC algorithm uses the
connectivity of the mesh to compute polyhedral bounding
volumes for the Voronoi cells. The distance function for
each site is evaluated only for the voxels lying inside this
polyhedral bounding volume. Sigget al. [SPG03] describe
an efficient GPU based implementation of the CSC algo-
rithm. Peikert and Sigg [PS05] present algorithms to com-
pute optimized bounding polyhedra of the Voronoi cell for
GPU-based distance computation algorithms. Lefohnet al.
describe an algorithm for interactive deformation and vi-
sualization of level set surfaces using graphics hardware
[LKHW03].

2.2 Surface Mapping and Parameterization

Surface distance maps can be regarded as amapping
computed on the surface. In some ways, this problem
is related to other surface mapping problems such as tex-
ture mapping [Cat74], which is used to define the color on
the surface; displacement mapping [Coo84], which consists
of perturbations of the surface positions; bump mapping
[Bli78], which give perturbations to the surface normals;
and normal maps [Fou92], which contains the actual nor-
mals instead of the perturbations. All these mapping are
supported by current graphics hardware.

Figure 2: Affine map and distance computation:We com-
pute the distance map at a pointQ on triangle T (ofO1).
The green vector shows the closest site ofO2 to Q. The
affine mapM mapsT to a triangle in the 2D domain.

The problem of computing a parameterization is well
studied in the literature. A recent survey of these techniques
is given in [FH05]. Given a closed model, these algorithms
cut the model into charts such that each chart is homeomor-
phic to a disk. Each chart is parameterized separately and
the final parameterization is an atlas of these chart parame-
terizations.

3 Surface Distance Maps

In this section, we present surface distance maps and our
algorithm to compute them efficiently using texture map-
ping hardware. We first introduce the notation used in the
paper.

3.1 Notation

We use upper case letters to represent objects or triangles
in 3D and lower case letter to represent their mapping on a
2D plane. We denote piecewise linear 2-manifold objects
or meshes in 3D asOi. Furthermore,Oi is decomposed
into vertices, edges and faces, also known assites. We as-
sume that the model is triangulated and each edge and face
represents an open set. A site is denoted asPi. We use
d(Q, Pk) to denote the distance function of a sitePk at a
point Q ∈ R3. The distance function of a sitePi on a tri-
angleT in the 3D mesh represents the closest distance from
each pointQ on T to Pi. The closest vector fromQ to Pi

is known as the distance vector. The color atQ is defined
ascolor(Q) and we use this function to denote the closest
distance.

Given two 2-manifold objectsO1 and O2, the surface
distance fieldD(O1) of an objectO1 at a pointQ ∈ O1

is the minimum value of the distance functions of all sites
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Pk ∈ O2 at Q. The surface distance map ofO1 computes
the surface distance field at a discrete set of sampled points
on O1. We define an affine mappingMk : Tk → T1 to
transform the sampled points on the trianglesTk ∈ Oi into
a 2D planeTi ⊂ R2.

3.2 Distance Fields: Background

Distance fields can be computed efficiently on discrete
volumetric grids by rasterizing the distance function of each
site to the points in the grid. Many algorithms compute the
distance functions from each site to the points on the planes
swept along the Z-axis of the grid [SOM04, SGGM06,
SPG03, PS05]. These algorithms perform the distance field
computation using one of these approaches:

1. Evaluate the distance functiond(Q, Pk) at each point
Q in the plane directly by rasterizing the distance func-
tions and use the depth-buffer hardware.

2. Compute the distance vector fromQ to the site and
use the magnitude of the distance vector to compute
d(Q, Pk). This computation can be efficiently per-
formed using the bilinear interpolation capabilities of
the texture mapping hardware.

In order to accelerate the computations, prior algorithms
construct a convex bounding polytopeB to represent the
region of influence of a site on each plane along the Z-axis.
As a result, the distance function is only evaluated at the
points insideB. We use similar techniques to accelerate the
computation of surface distance maps.

3.3 Planar Parameterization

Given a 3D mesh with trianglesTk, k = 1, . . . , n, our
algorithm transformsTk into a 2D planetk by applying an
affine mappingMk (see Fig. 2).Mk is represented as a
matrix and ensures the following properties:

• There is a one-to-one mapping from a pointQ ∈ Tk

to the pointMkQ ∈ tk. This mapping is computed by
performing matrix-vector multiplicationMkQ.

• No two transformed trianglestk = MkTk and tl =
MlTl share a common interior point in the 2D plane.

These constraints are satisfied using piece-wise pla-
nar parameterizations of the surface in 3D space and the
mapped triangles can be represented in a 2D texture atlas.

The affine transform for a triangleTk to a triangletk in
2D plane is computed by first rotating the triangleTk into
the plane oftk and aligning an edge oftk with the corre-
sponding edge ofTk. Finally, a shear transformation is ap-
plied to align the three vertices oftk with the transformed

vertices ofTk. Mathematically,Mk = AtAsAr whereAt

is a translation matrix,As represents a scale and shear ma-
trix in the XY plane and is of the form

As =

 sx sh ∗ sy 0
0 sy 0
0 0 1

 ,

andAr is a rotation matrix.

3.4 Surface Distance Computation

Surface distance maps compute the distance-to-closest-
primitive in the the scene to the sampled points on the sur-
face of the mesh. We first compute the affine mappings,
Mk, for each triangleTk in the 3D mesh. These affine
map defines the sampling on each triangleTk in 3D space
by sampling the projected triangletk in the 2D plane of
the surface distance map. The surface distance map sam-
ples the 2D plane uniformly using a 2D texture. Instead of
computing distances using a volumetric grid, our algorithm
computes the distance map on each triangleTk using affine
transforms of distance functions to a 2D plane containing
tk.

We present an algorithm to compute distance functions
on a set of sampled points on the triangles of the 3D mesh.
For each sitePi, we compute a convex bounding polytope
B, which acts as a spatial bound on the Voronoi region of
Pi. In other words, any point outsideB can not lie in the
Voronoi region ofPi. We intersect B with the plane of a
triangleTk in 3D mesh. We then use the following lemma
to compute the distance vectors onTk.
Lemma 1: Given an affine transformationMk that maps
a triangle Tk to a triangletk in the 2D texture. LetB be
the convex bounding polytope of a sitePi and letVj , j =
1, . . . , l denote the vertices ofB ∩ Tk. Let the color atMk

vj∈ tk becolor(Mkvj) = d(vj , Pi) andQ be an interior
point onB ∩ Tk. Thend(Q, Pi) is equal tocolor(MkQ).
Proof: Let Q =

∑k
j=0 λjvj , λj ≥ 0, 1 ≤ j ≤ k. Based

on the properties of distance vectors, we can show that
d(Q, Pi) =

∑k
j=0 λjd(vj , Pi). FurthermoreMkQ ∈ t

and MkQ =
∑k

j=0 λjMkvj . Since color is linearly

interpolated,color(MkQ) =
∑k

j=0 λjcolor(Mkvj) =∑k
j=0 λjd(vj , Pi). Therefore,color(MkQ) = d(Q, Pi).

Q.E.D.
Lemma 1 shows that the distance vector computation on
B ∩ Tk can be performed by assigning the color at each
vertexv to d(v, Pi) and transform the computation ofB ∩
Tk to the 2D plane. Then, the distance vector for each point
Q ∈ B ∩ Tk can be computed using the texture mapping at
the locationMkQ in the 2D texture.
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3.5 Mapping to GPUs

Surface distance maps can be computed by the rasteri-
zation hardware by using the transformation, clipping and
interpolation capabilities of the GPUs. We use Lemma 1 to
design an efficient pipeline for surface distance map com-
putation using GPUs:

• Vertex Engines:We first compute the bounding poly-
tope on the CPU, and transform the vertices of the
bounding polytope onto the 2D plane of surface dis-
tance map. The transformation operation is defined
using a projective matrix and is implemented using the
vertex processors on a GPU.

• Stencil Test: B ∩ T corresponds to the region ofB
projecting inside the trianglet (which is a mapping of
T in the 2D domain) in the texture atlas. We use the
stencil functionality of GPUs to clip the projection of
B to the region insidet.

• Texture Mapping: The linear interpolation of color is
equivalent to the interpolation of texture co-ordinates
assigned to the vertices of the triangle. This function-
ality computes the distance vectors in the texture atlas.

• Fragment processing:The distance value at the frag-
ment is the norm of the distance vector and computed
using the fragment processor.

• Depth Test: The distance value is stored in the depth
and compared with the current minimum distance
value using the depth test functionality of GPUs. The
minimum distance value is stored in the depth buffer.

4 Interactive Distance Map Computation

In the previous section, we presented our algorithm to
compute the distance map using the GPUs. The algo-
rithm requires computing of intersections between bound-
ing polytopes of sites and the triangles in the 3D mesh. In
this section, we present culling and clipping techniques to
accelerate the performance of the algorithm.

4.1 Clipping

Surface distance maps require an efficient clipping algo-
rithm for each triangle-site pair (see Lemma 1). Given a site
Pi and a triangleTk, we restrict the computation on the 2D
plane to the interior oftk using stencil. As a result, each
triangle-site pair requires a valid stencil portion intk and
the stencil has to be set in the region corresponding totk.
We first describe an algorithm to perform clipping using a

Input : Two objectsO1, O2. Parameterizationt(O1)
from O1 to T1.

Output : The SDFD(O1) of objectO1.

Initialize D(O1) to∞ for all pointsQ in T11

Update AABB hierarchy ofO12

foreach facefi
w in O1 do UpdateAffine (fi

w,t(O1))3

foreachsitePj in O2 do4

Gj ← ComputeOBB(Pj)5

IntersectGj against AABB hierarchy ofO16

foreach facefi
w in O1 intersectingGj do7

gj ← ClipPolytope(Gj , fi
w)8

foreachvertexxk
w in gj do9

Compute distance vector~d(xk
w, Pj)10

Transformxk
w to xk

s11

Assign texture coordinates ofxk
s,12

(r, s, t)← ~d(xk
w, Pj)

end13

Draw textured polygongj on domainT114

end15

end16

Read-backT117

foreach facefi
s in T1 do18

Map distance values fromfi
s to fi

w19

end20

Algorithm 1 : Pseudo-code to compute the surface dis-
tance map ofO1 using sites inO2. We initialize the dis-
tance values in the surface distance mapD(O1) to∞
(line 1). We then update the hierarchy and the affine
transforms of triangles inO1 using a linear-time algo-
rithm (lines 2–3). Next, we update the surface distance
map ofO1 using the sites inO2 (lines 4 – 13). For
each site, we compute its bounding polytope and intersect
the OBB of bounding polytope with the AABB hierarchy
(lines 5–6). For each intersecting polytope, we compute
the surface distance map using stencil tests (lines 7–13).

single valid stencil value, and present a more efficient sten-
cil caching algorithm that uses multiple valid stencil values
to perform clipping.

The algorithm proceeds as follows. For each sitePi and
a triangleTk in a planePk in 3D space, we first compute its
bounding polytopeB and computeB ∩ Pk. Next, we clip
the transformed primitiveMk(B∩Pk) to tk in the 2D plane.
We use the stencil test functionality to perform the clipping
operation. We first set the stencil value of the triangle to
1 by renderingtk. We then renderMk(B ∩ Pk) onto the
portions of the surface distance map with the stencil value
set to1. We then rendertk by setting the stencil value to0
on the triangle.

For every two consecutive triangle-site pairs(Tk, Pi),
(Tl, Pj), k 6= l, our algorithm resets stencil on regions cor-
responding totk and sets the stencil on regions correspond-
ing to tl. The reset and set stencil operations can become
fill-bound. We improve the performance of our clipping al-

5



Figure 3: Collision and separation distance computation on deforming alphabets ”EG”:Deforming dynamic simulation on
two alphabets, (3.7K triangles total). (a)-(b) Two frames from the simulation. (c) The gradient of surface distance maps of
each alphabet shows the direction of the closest point on the other alphabet. Our algorithm can compute the global distance
maps for both bunnies in100ms at a grid of resolution512× 512. The proximity queries involve readback and scanning and
takes about10ms on top of distance map computation.

gorithm using a cache that maintains multiple stencil val-
ues. Initially, all the stencil values are unassigned. As the
distance computations are performed on the triangles, the
cache sets the unassigned stencil values to the triangles and
to the newly assigned stencil value used for clipping opera-
tion on a triangle. We use a simple replacement policy if no
value is available.

In order to compute the valid stencil value forTk, we
first test if the stencil is set on regions corresponding totk.
If the stencil is set, we simply use that value for the clipping
operations. On the other hand, if the stencil value is not set,
we need to assign a valid stencil value toTk. In order to
assign a valid stencil value, we check if any of the stencil
values in the cache are unassigned. If an unassigned value
is available, we assign that value toTk. If no valid sten-
cil value is available, the cache uses the least recently used
(LRU) replacement policy to determine the stencil value to
be allocated toTk. In this case, we first reset the stencil
on the triangle whose stencil is least recently used and then
allocate that stencil value toTk.

4.2 Hierarchical Culling

We use a hierarchical distance culling algorithm to re-
duce the number of triangle-site pairs in the surface dis-
tance map computation. Lemma 1 indicates that the dis-
tance functions are computed on a triangleTk in 3D mesh
only whenB∩Tk is not empty. We use an AABB-hierarchy
of each object to quickly cull away sites whose bounding
polytopesB do not overlap with the triangles in the 3D
meshTk.

Our algorithm initially constructs an AABB hierarchy
for each object. Each leaf of the hierarchy stores a triangle
of the object. At run-time, we update the AABB-hierarchy
and use it for culling bounding polytopes that do not inter-

sect with the AABB-hierarchy. We use the initially con-
structed AABB hierarchy and update the bounding boxes
of the hierarchy nodes in a bottom-up manner. The update
cost of a hierarchy is linear to the number of leaves in the
AABB-hierarchy and is usually fast. For each sitePi, we
construct a bounding polytopeB and compute a tight-fitting
oriented bounding boxOBB(B) that enclosesB. We per-
form overlap tests betweenOBB(B) and the AABBs that
correspond to the nodes of the AABB hierarchy. For each
leaf with triangleTk that overlaps with OBB(B), we per-
form distance computations onB ∩ Tk as described in Sec-
tion 3. The OBBs are constructed only once for each site,
and therefore, the time taken to update the OBBs is linear
to the number of sites in the scene.

We further improve the performance of our surface dis-
tance map algorithm by reducing the number of distance
function rasterization operations using distance bounds
computed using the AABB hierarchy. For each node in the
AABB hierarchy, we maintain a lower bound on the maxi-
mum distance from the AABB of a triangleTk to the AABB
of the sites. Initially, the maximum distance bound of each
node in the hierarchy is set to∞. We do not perform dis-
tance evaluation of a sitePi for triangleTk if the distance
bound stored for a node in the hierarchy is less than than
the minimum distance from the AABB of the node to the
AABB of Pi. This culling test based on distance bounds
is used to reject sites whose distance functions do not con-
tribute to the distance map onTk, as there exists some other
sites that are closer toTk.

If a site is not culled away, we intersect the bounding
polytopeB of the site withTk and compute the distance
vectors at the vertices ofB ∩ Tk. We then perform distance
function computation onB ∩ Tk.
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Figure 4: Distance map computation for a deforming
triangle: The triangle undergoes a non-rigid deforma-
tion (S) in terms of shear and scale. We compute a
new affine mapping for the triangle (M2) and use it to
compute the distance map on the triangle. The sample
locations are shown as dots in the 2D domain and the
triangles.

Figure 5: This figure highlights the distance between
adjacent samples in the 2D plane when a rectangular
planar primitive undergoes a scale (Fig. 5(a) and Fig.
5(c))or a shear transformation( Figs. 5(b),(c) and Figs.
5 (c), (d)).

5 Analysis

In this section, we analyze the accuracy of our algorithm.
We show that our algorithm can be used to compute a dis-
tance map up to a desired precision. We also consider the
case when the triangles undergo non-rigid deformations and
highlight the accuracy of distance maps based on the affine
transformations.

5.1 Error Analysis

The algorithm presented in section 4 computes an accu-
rate surface distance map at the sample points on the bound-
ary of the objects. Its accuracy is governed by the preci-
sion of the texture mapping hardware that performs bilin-
ear interpolation. Current GPUs offer32-bit floating arith-
metic to perform these computations. We also present an
error bound on the computed distance for any point on the
surface, as the object undergoes non-linear deformations.
Given a sampling on the texture domain, we derive a func-
tion to compute the sampling density on the surface in 3D
using the inverse of the affine map. Given the sampling den-
sity in 3D, we compute bounds on the distance. One can
also use the inverse of the function to compute the sampling
required in the texture domain to achieve a desired precision
in the distance field.

Given two pointspw andqw on an objectO1 and the
surface distance map ofO1 w.r.t. objectO2, the change in
the value of surface distance map fromp to q is bounded

by the distance betweenpw andqw [SOM04]:

‖ d(pw, O2)− d(qw, O2) ‖≤‖ pw − qw ‖ .

In order to bound the error in computed distances, we bound
the distance between a given point and the closest sample
from the surface distance map. This is bounded by the max-
imum distance between four adjacent samples in the surface
distance map.

Let pw andqw be adjacent points on the surface ofO1.
The corresponding pointsps andqs on the texture domain
T1 are given byt. The affine transform is defined using a
combination of scaling, translation and rotations. The func-
tion t is invertible since the scaling used to compute the
affine transforms are non-zero. The distances are preserved
under translation and rotation, as the corresponding matri-
ces used to define the affine transformation do not change
the distance between adjacent samples. Only the scale and
shear change the distance between four adjacent samples
and we derive error bounds under shear and scaling.

We assume the mappingt(O1) from initial position of
O1 to the texture atlasT1 has unit scale and shear, and the
spacing between two adjacent samples along each axis inT1

is δ. We provide a functionf(δ) which bounds the distance
between two adjacent samples inO1.

In the initial position ofO1, sincesx = 1, sy = 1, sh =
0, the spacing between two samples is bounded byf(δ) ≤√

2δ.
Let the maximum motion of a vertex in 3D, modulo any

rigid body transformations, space be bounded bydm. This
gives a bound on the maximum deformation of a face onO1.
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Figure 6: Relative error in distance map computation for
a deformable model:The relative error measures the ra-
tio of maximum distance between adjacent samples on the
distance map for all the triangles in a frame to the max-
imum distance between adjacent samples measured at the
beginning of the simulation. The graph highlights the rela-
tive error on a deformable simulation using a resolution of
512× 512.

An upper bound on the scaling is given by(s2
x+s2

y) ≤ 2dm.
Maintaining the sample spacing inT1 turns out to beδs, the
maximum distance between two adjacent samples inO1 is
bounded byf(δ) ≤

√
(sxδ)2 + (syδ)2 ≤ 2dmδ.

We now show that the distance between two adjacent
samples changes when the shearing exceeds a threshold,
and derive the bounds. Consider a rectangular face in 2D
with width b alongX, and heighth. Let the shear alongY
besh. Assuming that the motion only produces shear (see
Fig. 4),

sh =
2dm

h
(1)

Distance between two adjacent samples increases by more
than

√
2δ only if the first sample in rowy + δ moves past

the last sample in rowy, shδ > b + δ. Replacing from
equation (1) we get

dm >
bh

2δ
+ 1.

Thus, ifdm ≤ bh
2δ +1, then there is no additional error due to

shear. Ifdm > bh
2δ +1, then the effective increase in spacing

alongX axis between two rows of adjacent samples isdx =
max(sh − ( b

δ + 1), 0). In presence of scaling, the spacing
along each axis is replaced bysxδ andsyδ respectively. We
make the simplifying assumption thatsx = sy. Then the
increase in spacing alongX is given by(sx + dx), where
dx = max(sh − ( b

sxδ + 1), 0), and the total error bound in

the distance isf(δ) ≤ δ
√

(sx + dx)2 + s2
y.

6 Implementation and Performance

In this section we describe the implementation of our al-
gorithm to compute surface distance maps and its applica-
tion to proximity queries between deformable models. We
also compare our algorithm with prior distance field com-
putation algorithms.

6.1 Implementation

We have implemented our algorithm on a PC with a
2.4Ghz Opteron 280 CPU,2GB of memory and an NVIDIA
7800 GTX GPU connected via a PCI-Express bus, running
Windows XP operating system. We used OpenGL as the
graphics API and the Cg programming language for imple-
menting the fragment programs. The initial mapping from
the manifold objects to the texture atlas is computed using
NVIDIA’s Melody 1 software. The surface distance map of
each object is computed on a floating point buffer using 32-
bit floating point precision. The distance vectors are passed
as texture parameters to the fragment program.

Our algorithm can compute high-resolution (512 × 512
to 1K × 1k) surface distance map of objects with tens of
thousands of polygons in fraction of a second. We highlight
the performance of our algorithm on scenes with varying
polygon counts is highlighted in the graph. We also com-
pute the gradient of the distance field which gives the di-
rection to the closest primitive for a point on the surface of
an object. As compared to prior approaches based on vol-
umetric techniques, our surface distance map computation
algorithm is about5− 10 times faster.

6.2 Proximity Queries

We use our algorithm to compute proximity information
among 3D deformable models. This includes separation
distance, collision detection, penetration depth and contact
normal computation [HZLM01]. We first localize the re-
gion of overlap between two objectsO1 andO2, and com-
pute the surface distance map for all triangles of each object
that lie inside the localized region. The separation distance
between two objects is computed using minimum Euclidean
distance from points on one object to points on the other
object. We read back the surface distance maps ofO1 and
O2, and scan the pixels to determine the minimum distance.
Collision detection is performed by checking for pixels with
zero distance. In order to compute local penetration depth,
we assign a sign to the distance values based on the orien-
tation of the surface. In particular, all points ofO2 that are
insideO1 are assigned negative distance values. We then
compute the maximum of these values to approximate the
local penetration depth.

1http://developer.nvidia.com/object/melodyhome.html
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Figure 7: Proximity computation on deformable models:Dynamic simulation of two deforming bunnies, each with2K
triangles . (a)-(b) Two frames from the simulation. (c) The surface distance map of both the bunnies that shows the distance
field on the boundary. The distance increases from red to green. Our algorithm can compute the global distance maps and
proximity queries in300− 320ms at a resolution of512× 512.

We used our algorithm for proximity query on 2 scenar-
ios consisting of deforming objects. The first is a sequence
of two deforming alphabets as shown in figure 3. The al-
phabet ’E’ consists of2.1K polygons, while the object ’G’
consists of1.6K polygons. At each frame, we compute a
surface distance map at a resolution512×512. The average
time to perform all proximity queries is110ms. As com-
pared to [HZLM01, SGGM06], our surface distance algo-
rithm results in speedup of8 times. All these GPU-based
algorithms are image-space algorithms. Since we are com-
puting the distance map at a much higher resolution, the
image-space error using our algorithm is much lower as
compared to prior approaches. We also perform the prox-
imity computation on a sequence of two deforming bunnies.
Each bunny consists of2K polygons. At each frame, we
compute a surface distance map at a resolution512 × 512.
The distance map computation and proximity queries take
about300− 320 ms per frame.

6.3 Comparison

In this section, we compare the features and performance
of our surface distance map algorithm with prior approaches
that compute the distance field on a uniform volumetric grid
using GPUs. These include DiFi [SOM04], linear factor-
ization [SGGM06] and efficient GPU implementations of
CSC algorithm [SPG03, PS05]. All the prior approaches
com pute the distance field along a uniform 3D grid. Since
the GPU computes the distance field along one slice, these
algorithm perform the computations along different slices
and exploit spatial coherence between the slices to speed up
the computation.

The precision of the distance field computed using a vol-
umetric approach is governed by the cell size in the uniform
grid. Let the number of cells in the gridn×n×n, and stor-
age overhead isO(n3). Then the error of the distance field

is
√

3
2m . In comparison, for a surface distance map of size

n × n, the storage cost isO(n2), and the error in the dis-
tance field is

√
2

2n in absence of any scale and shear. As the
model undergoes deformation, the error bound for surface
distance map is given by the functionf( 1

m ) presented in
Section 5. Typically, the maximum amount of deformation
dm is small, and the error in the distance field isO( 1

m ). As
a result, our approach results in higher resolution distance
fields. Current GPUs have512MB or 1GB of video mem-
ory. It may not even be possible to store a volumetric dis-
tance at a very high memory (e.g.(1K)3) on current GPUs,
as it would require8GB of memory. Furthermore, the cost
of reading back a 3D distance field of(1K)3 and scanning
is rather high, i.e. about16 seconds using a readback band-
width of 500MB/sec. On the other hand, we restrict the
distance field computation to the surface of a mesh and can
compute a high resolution mesh at interactive rates.

Let there bem sites in each object. Then the computation
cost to compute the global distance field using a volumetric
approach varies betweenO(mn3) andO(n3). For narrow
bands, the cost isO(m + n1) wheren1 is the number of
pixels near the surface. On the other hand, the rasteriza-
tion cost of computing the global surface distance map on
the GPU varies betweenO(mn2) andO(n2). For narrow
bands, the cost is close toO(n2) - as alln2 pixels lie on the
surface.

A quantitative comparison of average time to compute
the distance fields on deformable models is shown in figure
8.

7 Limitations

Our approach has many limitations. We compute a 2D
domain triangle for each triangle in the 3D mesh. We pack
all these 2D domain triangles in the texture atlas and our
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Figure 8: Timing comparison between our algorithm and a
GPU-based volumetric distance field algorithm [SGGM06]
labeled asSDF and Linear Factorization respectively:
Our algorithm is able to achieve 5–10 times speedup in
proximity computation between two deforming alphabets.
The scene is composed of 3.7K polygons. The surface dis-
tance field is computed at a resolution of512× 512 and the
volumetric distance field is computed at180 × 150 × 256.
Our algorithm is able to obtain higher accuracy in distance
field computation on the surface and achieves an interactive
performance of 5–10 frames per second.

current packing algorithm may not be optimal. Our current
approach is limited to deforming triangles with fixed con-
nectivity. If the underlying simulation consists of objects
with changing topologies, we may need to update the pla-
nar parameterization and recompute the spatial hierarchies.
The accuracy of our proximity computation algorithm is
governed by the resolution of the distance map. One pos-
sibility is to combine our algorithm with conservative dis-
tance bounds[SGG∗06] and perform the proximity compu-
tations at object-space precision in a conservative manner.
Furthermore, our current algorithm can only perform prox-
imity computations between a pair of objects, and does not
perform N-body computations.

8 Conclusions and Future Work

We present a new algorithm to compute surface distance
maps for triangulated models using the texture mapping
hardware. We compute a planar parameterization of the
mesh and use the affine mapping to efficient evaluate the
distance maps. We also present culling and clipping tech-
niques to speed up the computations. We highlight the per-
formance of our algorithm on complex models and use it to
perform interactive proximity queries between deformable
models.

There are many avenues for future work. We could fur-

ther improve the performance of our algorithm by using
spatial and temporal coherence between successive frames.
It may be possible to extend our algorithm to objects with
changing topologies, where we incrementally recompute
the affine transformations. We would like to use proxim-
ity computation algorithm to perform self-proximity queries
including self-collisions or self-penetrations in cloth simu-
lation. Surface distance maps could also be useful to accel-
erate ray tracing dynamic scenes [SKALP05].
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