
Goal Velocity Obstacles for Spatial Navigation of
Multiple Autonomous Robots or Virtual Agents

Jamie Snape and Dinesh Manocha

University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
{snape,dm}@cs.unc.edu

Abstract. We present the goal velocity obstacle for the spatial naviga-
tion of multiple autonomous robots or virtual agents, such as are found
in mobile robotics, video games, and simulated environments, to planar
goal regions in the two-dimensional workspace. Our approach uses the
notion of velocity obstacles not only to compute collision-avoiding veloc-
ities with respect to other agents, but also to specify velocities that will
direct an agent toward its spatial goal region. The goal velocity obstacle
provides a unified formulation that allows for goals specified as points,
line segments, and bounded, planar regions in two dimensions that may
be static or moving. An agent may have multiple goal regions without
requiring an explicit goal allocation algorithm that would choose a par-
ticular goal region to navigate toward in advance. We have applied our
approach to experiments with hundreds of agents, demonstrating shorter
path lengths and fewer collisions with only microseconds of additional
computation per agent per time step than when using velocity-based
methods that optimize on a single, preferred velocity toward the goal of
each agent.

Keywords: multiagent planning, motion planning, mobile robot coor-
dination, collective behaviors, implicit cooperation

1 Introduction

The spatial navigation of groups of multiple autonomous robots or virtual agents
to specified goal locations is an important problem in the fields of mobile robotics,
video games, and simulated environments. Teams of autonomous robots may co-
operate to perform some task, such as surveillance or industrial warehousing,
while large numbers of virtual agents may be incorporated into game levels and
simulated environments. Often, autonomous robots must interact with nearby
humans, and virtual agents in a game must interact with agents controlled by a
player. Efficient collision avoidance algorithms that can react to a dynamic envi-
ronment are particularly important in these circumstances since the autonomous
robots or virtual agents must adapt their motion to the unpredictable actions
of the human. A human or human-controlled agent may also represent the goal
location of a group of pursuing autonomous robots or virtual agents. In this
case, the group of autonomous robots or virtual agents must be able to converge

on a possibly moving, planar goal region that is the footprint of the human or
human-controlled agent.

In previous work [1,2], each agent, such as an autonomous robot or a virtual
agent, chooses an avoiding new velocity based on some optimization to make
progress toward its goal. Commonly, this optimization is on a preferred velocity
that is directed to a roadmap node [3] or a fixed point in the center of a naviga-
tion mesh edge or face [4]. However, often these points approximate planar goal
regions, and this contraction of the goal region to a point can cause artifacts, such
as collisions when several agents converge on a single point. Behavior would be
improved if the agent could navigate to any point in a goal region. However, with
limited exceptions [5], most velocity-based methods are simply coupled with a
cluster of point goals and a goal allocation algorithm that chooses the point goal
of an agent based on some heuristic. When goal regions are moving, optimizing
on a preferred velocity ignores that the position of the goal region may have
changed significantly by the time the agent has computed a new velocity. Hence,
the trajectory of the agent will not necessarily be directed toward its goal region,
and the lengths of paths to the goal region will be increased. If the velocity of
the goal region were considered during the optimization of the velocity, then the
motion of the agent toward its goal region would again be improved

In this paper, we introduce the goal velocity obstacle for navigating multiple
agents to planar, spatial goal regions that counters the above-described disadvan-
tages of formulations that optimize on preferred velocity. The basic idea is that
instead of only using the notion of velocity obstacles [1] to compute collision-
avoiding velocities, we also use them to define the goal regions of the agent
within velocity space. We call the velocity obstacle of an agent induced by its
goal region a goal velocity obstacle, and if the agent chooses a velocity that is
inside the goal velocity obstacle at each time step, then it will eventually reach
its goal region.

The goal velocity obstacle provides a unified formulation that allows for goals
specified as points, line segments, and bounded, planar regions in two dimensions
that may be static or moving. An agent navigating using goal velocity obsta-
cles may have multiple goal regions without requiring an explicit goal allocation
algorithm that would choose a particular goal region to navigate toward in ad-
vance. Goal regions may also have a time dependency, such that the goal region
is only available to an agent during a specific window of time, without requiring
an explicit scheduling algorithm.

In experiments with hundreds of agents, those navigating using goal velocity
obstacles toward static, moving, and multiple goal regions have shorter path
lengths from their starting positions to their goal regions and fewer collisions with
other agents, than when using velocity-based methods that optimize on a single
preferred velocity toward the goal of each agent. The additional computational
overhead is just a few microseconds, per agent, per time step, compared to
previous velocity-based methods.

The rest of this paper is organized as follows. In Sect. 2, we survey related
work on the navigation of multiple agents in video games, mobile robotics, and

simulated environments. We define our problem and give a brief overview of
the concepts of velocity obstacles and preferred velocity for navigating multiple
agents in Sect. 3. In Sect. 4, we introduce our formulation of goal velocity obsta-
cles, where we use velocity obstacles as spatial goals for agents in velocity space.
We describe our implementation and report experimental results in Sect. 5.

2 Related Work

The prevalent approach to navigation in mobile robotics, video games, and sim-
ulated environments has been roadmaps [3]. In methods based on roadmaps,
agents are constrained to the immediate vicinity of the edges of a graph be-
tween intermediate goal nodes placed in the environment. Increasingly, naviga-
tion meshes [4, 6, 7] and similar methods [8, 9] are superseding that approach.
Randomized methods [10, 11] may be used for roadmap generation, and the
Hertel-Mehlhorn algorithm [12] and space-filling volumes [13] allow for auto-
matic navigation mesh generation.

In static environments, derivatives of the A* search algorithm [14] are used
on the roadmap or navigation mesh to plan a path to the goal. In dynamic
environments, the D* algorithm [15] may be used to repair a previously planned
path instead of re-planning from scratch. Planners based on roadmaps have
also been adapted to accommodate dynamic environments by reusing previously
computed information [16–19] or integrating obstacle movement directly into the
planner [20]. Alternatives to changing a pre-computed roadmap or navigation
mesh include potential field planners [21], inevitable collision states [22], and
adaptive roadmaps [23].

Video games and simulated environments have, historically, used force-based
methods, such as flocking [24], in combination with roadmap and navigation
mesh approaches to provide local collision avoidance for groups of agents moving
through the environment. Velocity-based methods, such as the velocity obsta-
cle [1], and its derivatives [2, 25, 26], popular in mobile robotics, have exhibited
improvements in terms of computational performance and local collision avoid-
ance.

Many other methods from mobile robotics, such as the dynamic window
approach [27], and rule-based or social-force models from crowd simulation [28–
32] are equally suited to navigation of agents in video games and simulated
environments. Generally, current collision avoidance approaches are limited to
using some form of point goal [33] or line segment goal [5] in connection with
the global planner.

3 Background

In this section, we define of the problem of navigating multiple agents in the
two-dimensional plane with respect to the two-dimensional velocity space. In
addition, we briefly review the concepts of velocity obstacles and preferred ve-
locity to provide context for our formulation of goal velocity obstacles.

3.1 Problem Definition

Let there be a set of n > 1 disc-bounded holonomic agents A sharing an envi-
ronment in the two-dimensional workspace R2 and the two-dimensional velocity
space, which we denote V2. The environment may also contain static and moving
obstacles. We assume that static and moving obstacles can be identified by each
agent as not actively adapting their velocity to avoid any of the agents.

Each agent A ∈ A has a constant radius rA > 0, a current position pA ∈ R2,
and a current velocity vA ∈ V2 for each time step, all of which are known to every
agent. Furthermore, let each agent A also have one or more bounded goal regions
G ⊂ R2 that are not necessarily known to the other agents. Each goal region
may be of any shape, need not simply be a point, and may have a nonzero linear
velocity vG ∈ V2. For simplicity, we assume that goal regions do not rotate, i.e.,
their angular velocity is zero

The objective of each agent A is to choose, independently and simultaneously,
a new velocity vnew

A ∈ V2 at each time step to compute a trajectory toward any
point in a goal region G without collisions with other agents, static obstacles, or
moving obstacles. The agents should not perform any sort of central coordina-
tion, but we may assume that all agents are using the same strategy to choose
new velocities. An agent A has reached a goal region G if A ∩G 6= ∅.

3.2 Velocity Obstacles

The velocity obstacle [1] of an agent A induced by an agent or moving obstacle
B is the set of all velocities of A that may cause a collision with agent or moving
obstacle B within the short window of time [0, τ], assuming that each agent or
moving obstacle continues on the same trajectory (see Fig. 1). More formally,
let

A⊕B = {a + b | a ∈ A, b ∈ B}

be the Minkowski sum of agent A and agent or moving obstacle B, and let

−A = {−a | a ∈ A}

denote the agent A reflected in its reference point. Then the velocity obstacle
for agent A induced by agent or moving obstacle B, denoted V OτA|B ⊂ V2, is
defined by

V OτA|B = {v | ∃s ∈ [0, τ] :: s (v − vB) ∈ B ⊕−A} .

There are many variations of velocity obstacles, however, for simplicity, we will
use this definition, unless noted otherwise.

When there are more than two agents in the environment, we define the
combined velocity obstacle of an agent A, denoted V OτA ⊂ V2, as the union of
all velocity obstacles of the agent induced by other agents A1, . . . , An−1 in the
environment, i.e.,

V OτA = V OτA|A1
∪ · · · ∪ V OτA|An−1

.

If an agent chooses a velocity outside its combined velocity obstacle at each
time step, then it is guaranteed not to collide with any of the other agents in
the environment during the window of time [0, τ].

pA

pB vB

B

px

py

vApref

pG

A

0

vB

0

vy

vx

vA
pref

B ⊕ -A

VOA|B
τ

(a) (b)

Fig. 1. (a) Agent A navigating toward a static point goal pG with preferred velocity
vpref
A while avoiding agent B. (b) The velocity obstacle V OτA|B for agent A induced by

agent B.

3.3 Preferred Velocities

The preferred velocity of an agent is, informally, the velocity that the agent
would take were there no other agents, static obstacles, or moving obstacles for
it to avoid (see Fig. 1). Typically, the preferred velocity vpref

A ∈ V2 of an agent
A would be directed toward a fixed point goal pG ∈ R2 and have a magnitude
vprefA > 0, known as the preferred speed, i.e.,

vpref
A = vprefA

pA − pG
‖pA − pG‖2

It follows that in order to progress toward its point goal without collisions, an
agent A will choose, at each time step, the new velocity vnew

A closest to its

preferred velocity vpref
A that lies outside the combined velocity obstacle, i.e.,

vnew
A = arg min

v 6∈V OτA

∥∥∥v − vpref
A

∥∥∥
2
.

4 Goal Velocity Obstacles

In this section, we introduce the new concept of using velocity obstacles to specify
the goal regions of agents in the two-dimensional velocity space from which to
choose collision-free velocities toward their goal regions in the two-dimensional
workspace.

4.1 Overall Approach

Instead of using velocity obstacles purely for excluding velocities that may cause
collisions with other agents or moving obstacles, then optimizing with respect
to a preferred velocity for navigation to a goal in the workspace R2, we propose
the additional use of velocity obstacles to define the goal regions of an agent
within the velocity space V2. More precisely, we define the goal velocity obstacle
of agent A toward the goal region G, denoted GV OA|G ⊂ V2, as

GV OA|G = V OτA|G = {v | ∃s ∈ [0, τ] :: s (v − vB) ∈ G⊕−A} .

We then choose a new velocity vnew
A ∈ V2 of agent A such that vnew

A lies not only
outside the velocity obstacles induced by other agents, but also inside the goal
velocity obstacle toward the goal region G, i.e., vnew

A ∈ GV OA|G \ V OτA. This is
illustrated in Fig. 2.

pA

A

pB

vA
vB

B

px

py

0

G

vB
0

vy

vx

vAopt
 = vA

GVOA|G

vAnew

VOA|B
τ

(a) (b)

Fig. 2. (a) Agent A navigating toward a static line segment goal regionG while avoiding
agent B. (b) The goal velocity obstacle GV OA|G for agent A toward goal region G and
the velocity obstacle V OτA|B for agent A induced by agent B.

4.2 Choice of Velocities

In general, there will be a choice of collision-free velocities vnew
A that will navigate

the agent A to some point in its goal region. Assuming that there is no preference
as to which point in the goal region an agent A ultimately reaches, we choose
a velocity vopt

A ∈ V2, which we call the optimization velocity, with respect to
which we must optimize from those velocities that are collision-free and inside
the goal velocity obstacle, i.e.,

vnew
A = arg min

v∈GVOA|G\V OτA

∥∥v − vopt
A

∥∥
2
.

Motivated by a desire for agents to make as minimal change in velocity as possible
at each time step [32], we choose the optimization velocity vopt

A of an agent A
as follows.

1. If the current velocity vA is inside the goal velocity obstacle GV OA|G, we
choose the current velocity as the optimization velocity, whether or not that
velocity is collision-free, i.e.,

vopt
A = vA .

2. If the current velocity is outside the goal velocity obstacle, so the agent
is moving away from its goal region, we choose the closest velocity to the
current velocity vA, with respect to Euclidean distance in the velocity space
V2, that lies inside the goal velocity obstacle, i.e.,

vopt
A = arg min

v∈GVOA|G
‖v − vA‖2 .

The optimization velocity vopt
A is distinct from the notion of preferred velocity

vpref
A , and, in general, much less influences the path taken by the agent A.

4.3 High Densities of Agents

By definition, if an agent chooses a velocity inside the goal velocity obstacle
at every time step, it will reach its goal region at some future moment in time,
assuming that such a velocity exists. If, however, due to a high density of agents,
there is no such velocity, i.e.,

GV OA|G ⊂ V OτA =
⋃
B∈A
A 6=B

V OτA|B ,

this means that either the goal region G is moving away from the agent A at
a faster speed than the agent can attain, or else the path to the goal region is
blocked by other agents or moving obstacles. In the first case, it is not possible
for the agent to reach its goal region. However, in the second case, we choose
a new velocity by relaxing some of the constraints in velocity space. In relax-
ing constraints, we must balance the possibly conflicting objectives of avoiding
collisions and reaching the goal region.

1. If the priority is to avoid collisions, above all else, we can replace the goal
velocity obstacle GV OA|G with the whole of the velocity space V2 at each
time step until a velocity within the goal velocity obstacle becomes available,
i.e.,

vnew
A ∈ V2 \ V OτA 6= ∅ .

2. If an increased possibility of collision is allowable, we remove, in turn, the ve-
locity obstacle induced by the most distant agent, with respect to Euclidean

distance in the workspace R2, until a velocity within the goal velocity ob-
stacle becomes free, i.e.,

vnew
A ∈ GV OA|G \

(
V OτA1

∪ · · · ∪ V OτAm
)
6= ∅ ,

where

‖pA − pAi‖2 ≤
∥∥pA − pAi+1

∥∥
2

and

GV OA|G ⊂ V OτA1
∪ · · · ∪ V OτAm+1

,

for m < n.

In our experiments, we favored the second of these options.

4.4 Moving Goal Regions

Consider now a goal region moving in a near-perpendicular direction to an agent
(see Fig. 3). When navigating using preferred velocities, the future trajectory
pG + svG of the goal region G is not taken into account, only the instantaneous
position of its center pG. Therefore, the agent is always changing its preferred
velocity, and, hence, current velocity, at each time step, navigating toward the
position of the goal region at the previous time step. This will occur even though
it is apparent that the goal region will cross the path of the agent if the agent
continues on its original trajectory. Contrast this with the goal velocity obstacle,
which, by definition, considers the future trajectory of the goal region, coupled
with an optimization velocity that favors minimal changes in current velocity.

pA

A

pB

vA

vB

B

px

py

0

vG

pG

G

vB
0

vy

vx

vA

vAnew

vG

GVOA|G

vAopt

VOA|B
τ

(a) (b)

Fig. 3. (a) Agent A navigating toward a moving disc-shaped goal region G with velocity
vG while avoiding agent B. (b) The goal velocity obstacle GV OA|G for agent A toward
goal region G and the velocity obstacle V OτA|B for agent A induced by agent B.

4.5 Multiple Goal Regions

When navigating using preferred velocities, if a goal region consists of the union
of all elements of a set G of multiple goal sub-regions (see Fig. 4), agent A
would be required to choose in advance one goal sub-region G ∈ G toward which
to navigate explicitly and set vpref

A in the direction of pG. However, with the
formulation of goal velocity obstacles, we can construct goal velocity obstacles
of each individual goal sub-region and then define the goal velocity obstacle of
the entire goal region as the union of these individual goal velocity obstacles,
i.e.,

GV OA|G =
⋃
G∈G

GV OA|G .

This has the advantage that if the path to one of the goal sub-regions G is
blocked by other agents, then the navigating agent will automatically divert to
another goal sub-region since the goal velocity obstacle GV OA|G corresponding
to the blocked goal sub-region will be completely covered with velocity obstacles,
i.e., GV OA|G ⊂ V OτA.

We choose the optimization velocity to be such that it lies inside the goal
velocity obstacle of the goal sub-region toward which the agent moved at the
previous time step, which reduces the possibility that the velocity of the agent
will oscillate between goal velocity obstacles of different goal sub-regions. While
the optimization velocity is chosen relative to a particular goal velocity obstacle,
this does not preclude a velocity being chosen if that goal sub-region is later
found to be blocked, and no explicit changes to the formulation are required to
accommodate this situation.

4.6 Goal Regions with Time Windows

Suppose now that a goal region is only available to an agent during some time
window [τ1, τ2] relative to the current time. We can express this time dependency
by truncating the goal velocity obstacle both at the apex and toward the base
(see Fig. 5). For this doubly truncated goal velocity obstacle, the values of τ1 and
τ2 decrease at each successive time step, and the definition of the goal velocity
obstacle GV Oτ1,τ2A|G of agent A toward the goal region G with time window [τ1, τ2]

becomes

GV Oτ1,τ2A|G = {v | ∃s ∈ [τ1, τ2] :: s (v − vB) ∈ G⊕−A} .

5 Experimentation

In this section, we describe the implementation of our approach and discuss the
results of our experiments involving multiple agents.

pA

A

pB

vA

vB

B

px

py

0

G

H

vAopt

0

vA

GVOA|H

vAnew

vB

GVOA|G

vy

vx

VOA|B
τ

(a) (b)

Fig. 4. (a) Agent A navigating toward a choice of two static line segment goal sub-
regions G and H while avoiding agent B. (b) The goal velocity obstacles GV OA|G for
agent A toward goal sub-region G and GV OA|H for agent A toward goal sub-region
H, and the velocity obstacle V OτA|B for agent A induced by agent B.

pA

A

pB

vA

vB

B

px

py

0

G

0

vA

vB

vy

vx

GVOA|G

optvAnew = vAA

VOA|B
τ

(a) (b)

Fig. 5. (a) Agent A navigating toward a static line segment goal region G with limited
time window [τ1, τ2] while avoiding agent B. (b) The goal velocity obstacle GV OA|G
for agent A toward goal region G with limited time window [τ1, τ2] and the velocity
obstacle V OτA|B for agent A induced by agent B.

5.1 Implementation

We implemented our approach in C++ using hybrid reciprocal velocity obstacles
[26] for collision avoidance between pairs of agents. Our algorithm to choose the
new velocity of each agent at every time step was based on the ClearPath efficient
geometric algorithm [34]. Calculations for each agent were carried out in separate
and independent threads, and in parallel, where possible, using Intel Threading
Building Blocks 4.1. The code was compiled using the Intel C++ Compiler XE
13.

For efficiency reasons, only a subset of all other agents within a fixed radius
of each agent, with respect to Euclidean distance in the two-dimensional plane,
were considered for collision avoidance, and these agents were selected at the
beginning of every time step using an algorithm based on k-D trees [35].

5.2 Experiments

We applied our approach to multiple challenging experiments containing 25–200
agents as follows.

1. The agents are positioned evenly along one side of a rectangular environment
in two dimensions. The agents must navigate to one static line segment goal
region located midway along the opposite side of the environment to the
starting positions of the agents, see Fig. 6.

2. The agents must navigate across the environment toward one moving line
segment goal region. The goal region moves at a constant velocity along
the opposite side of the environment to the starting positions of the agents,
perpendicular to the direct paths of the agents to the goal region, see Fig. 7.

3. The agents must navigate across the environment toward two static line seg-
ment goal regions located at each end of the opposite side of the environment
to the starting positions of the agents, see Fig. 8.

Each experiment was performed twice, first using goal velocity obstacles and
hybrid reciprocal velocity obstacles, and then using preferred velocities and hy-
brid reciprocal velocity obstacles. Each agent had a radius of 1 m, an initial or
preferred speed of 1.4 m/s, and a maximum speed of 2.5 m/s.

Tables 1–3 list the total number of collisions between agents for the entirety
of each experiment, the average path length from start position to goal region for
each agent in each experiment, and the average computation time for each time
step. Timings are for one core of a quad-core 2.8 GHz Intel Core i5 processor
within a standard desktop system containing 8 GB of memory and running OS X
10.8 Mountain Lion.

5.3 Discussion

Figures 6–8 show that, for 25 agents, almost the entire goal region is utilized
by the agents in each experiment using goal velocity obstacles. In Fig. 7, the
agents take into account the motion of the goal region, and, in particular, agents

Fig. 6. 25 agents navigating toward one static line segment goal region using goal
velocity obstacles.

farthest from the starting position of the goal region maintain a direct path to
intercept the goal region as it passes close by, later in the experiment. Figure 8
demonstrates the agents splitting into two groups to move toward the closest
goal region to their starting position.

It is clear that in all experiments, for 25–200 agents, the number of collisions
between agents is significantly less when using goal velocity obstacles rather
than preferred velocities, see Table 1. Specifically, there are at least 55% fewer
collisions for the experiments with one static goal region, at least 97% fewer
collisions for the experiments with one moving goal region, and at least 90%
fewer collisions for the experiments with two static goal regions.

The length of the path that each agent takes to a goal region is also less when
using goal velocity obstacles, see Table 2. For the experiments with one and two
static goal regions, the paths are at least 5% shorter, and for the experiment
with one moving goal region the paths are always at least 10% shorter and more
than 25% shorter in most cases.

Computationally, it takes 2–21% longer, each time step, to compute new ve-
locities using goal velocity obstacles rather than preferred velocities, see Table 3.
Mostly, the difference is less than 10%, however, and, overall, using goal velocity
obstacles adds only a few microseconds of computation per agent at each time
step.

Fig. 7. 25 agents navigating toward one moving line segment goal region using goal
velocity obstacles.

Table 1. Total number of collisions between agents for the entirety of each experiment
for experiments using goal velocity obstacles (GVO) and preferred velocities (PV).

Number of Total number
agents of collisions

GVO PV

1. One static goal region 25 0 56
50 10 62

100 24 80
200 46 106

2. One moving goal region 25 4 144
50 2 132

100 2 166
200 0 218

3. Two static goal regions 25 4 348
50 10 498

100 28 778
200 94 996

Fig. 8. 25 agents navigating toward two static line segment goal regions using goal
velocity obstacles.

Table 2. Average path length from start position to goal region for each agent for
experiments using goal velocity obstacles (GVO) and preferred velocities (PV).

Number of Average path length
agents to goal region (m)

GVO PV

1. One static goal region 25 229.0 243.3
50 245.5 266.2

100 307.6 339.8
200 404.2 441.2

2. One moving goal region 25 239.4 323.3
50 240.5 340.9

100 301.3 406.9
200 405.1 454.6

3. Two static goal regions 25 205.7 217.4
50 227.0 241.3

100 295.8 314.8
200 406.9 427.8

Table 3. Average computation time for each time step for experiments using goal
velocity obstacles (GVO) and preferred velocities (PV).

Number of Average computation
agents time (ms)

GVO PV

1. One static goal region 25 0.58 0.51
50 1.53 1.46

100 3.26 3.08
200 6.59 6.44

2. One moving goal region 25 2.90 2.41
50 4.87 4.78

100 7.33 6.86
200 9.68 9.05

3. Two static goal regions 25 0.36 0.32
50 1.12 1.04

100 2.26 1.97
200 4.12 4.01

6 Conclusion

In this paper, we have presented the goal velocity obstacle for the spatial nav-
igation of multiple agents to arbitrary-shaped, planar goal regions in the two-
dimensional plane. Our approach uses velocity obstacles not only to compute
velocities that may cause collisions with other agents, but also to define the goal
velocity obstacle, which specifies velocities in the two-dimensional velocity space
that will direct an agent toward its goal region on the plane.

Our goal velocity obstacle formulation is general, allowing for planar goal
regions of any shape without the need to approximate the goal region as a point
or line segment, as is required by most previous collision avoidance methods. Goal
regions may be static or they may be moving with a nonzero linear velocity. We
may specify multiple goal regions for each agent without requiring an explicit
goal allocation algorithm to choose a particular goal region for each agent in
advance of each time step. Our approach also allows for goal regions that are
available for a limited time window.

We have applied our approach to multiple challenging experiments by in-
tegrating with the hybrid reciprocal velocity obstacle formulation for collision
avoidance. On average, the agents traverse shorter path lengths and have fewer
collisions than when simply using preferred velocities directed to a single point
in their goal region instead of goal velocity obstacles.

Acknowledgments This work was supported in part by Army Research Office
Contract W911NF-04-1-0088, by National Science Foundation Awards 1000579
and 1117127, and by Intel Corporation.

References

1. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity
obstacles. The International Journal on Robotics Research 17 (1998) 760–772

2. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time
multi-agent navigation. In: Proceedings of the IEEE International Conference on
Robotics and Automation. (2008) 1928–1935

3. Canny, J.F.: The Complexity of Robot Motion Planning. The MIT Press, Cam-
bridge, Mass. (1988)

4. Snook, G.: Simplified 3D movement and pathfinding using navigation meshes.
In DeLoura, M., ed.: Game Programming Gems. Charles River, Hingham, Mass.
(2000) 288–304

5. Curtis, S., Snape, J., Manocha, D.: Way portals: efficient multi-agent navigation
with line-segment goals. In: Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games. (2012) 15–22

6. Kallmann, M.: Shortest paths with arbitrary clearance from navigation meshes.
In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation. (2010) 159–168

7. Van Toll, W., Cook, IV, A., Geraerts, R.: Navigation meshes for realistic multi-
layered environments. In: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems. (2011) 3526–3532

8. Pettré, J., Laumond, J.P., Thalmann, D.: A navigation graph for real-time crowd
animation on multilayered and uneven terrain. In: Proceedings of the First Inter-
national Workshop on Crowd Simulation. (2005) 81–89

9. Geraerts, R., Kamphuis, A., Karamouzas, I., Overmars, M.: Using the corridor
map method for path planning for a large number of characters. In: Proceedings
of the First International Workshop on Motion in Games. (2008) 11–22

10. Kavraki, L.E., Švestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12 (1996) 566–580

11. LaValle, S.M., Kuffner, Jr., J.J.: Randomized kinodynamic planning. The Inter-
national Journal on Robotics Research 20 (2001) 378–400

12. Hertel, S., Mehlhorn, K.: Fast triangulation of the plane with respect to simple
polygons. Information and Control 64 (1985) 52–76

13. Tozour, P.: Search space representations. In Rabin, S., ed.: AI Game Programming
Wisdom 2. Charles River, Hingham, Mass. (2003) 85–102

14. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic deter-
mination of minimum cost paths. IEEE Transactions on Systems Science and
Cybernetics 4 (1968) 100–107

15. Stentz, A.: The focussed D* algorithm for real-time replanning. In: Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence. (1995)
1652–1659

16. Jaillet, L., Simeon, T.: A PRM-based motion planner for dynamically changing
environments. In: Proceedings of the IEEE/RSJ International Conference on In-
telligent Robots and Systems. (2004) 1606–1611

17. Kallmann, M., Mataric, M.: Motion planning using dynamic roadmaps. In:
Proceedings of the IEEE International Conference on Robotics and Automation.
(2004) 4399–4404

18. Ferguson, D., Kalra, N., Stentz, A.: Replanning with RRTs. In: Proceedings of the
IEEE International Conference on Robotics and Automation. (2006) 1243–1248

19. Zucker, M., Kuffner, J., Branicky, M.: Multipartite RRTs for rapid replanning in
dynamic environments. In: Proceedings of the IEEE International Conference on
Robotics and Automation. (2007) 1603–1609

20. Hsu, D., Kindel, R., Latombe, J.C., Rock, S.: Randomized kinodynamic motion
planning with moving obstacles. The International Journal on Robotics Research
21 (2002) 233–255

21. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The
International Journal on Robotics Research 5 (1986) 90–98

22. Petti, S., Fraichard, T.: Safe motion planning in dynamic environments. In: Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. (2005) 2210–2215

23. Sud, A., Gayle, R., Andersen, E., Guy, S., Lin, M., Manocha, D.: Real-time nav-
igation of independent agents using adaptive roadmaps. In: Proceedings of the
ACM Symposium on Virtual Reality Software and Technology. (2007) 99–106

24. Reynolds, C.: Flocks, herds and schools: a distributed behavioral model. ACM
SIGGRAPH Computer Graphics 21 (1987) 25–34

25. Van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision
avoidance. In: Proceedings of the Fourteenth International Symposium on Robotics
Research. (2011) 3–19

26. Snape, J., Van den Berg, J., Guy, S.J., Manocha, D.: The hybrid reciprocal velocity
obstacle. IEEE Transactions on Robotics 27 (2011) 696–706

27. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision
avoidance. IEEE Robotics and Automation Magazine 4 (1997) 23–33

28. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Physical
Review E 51 (1995) 4282–4286

29. Kluge, B., Prassler, E.: Reflective navigation: individual behaviors and group
behaviors. In: Proceedings of the IEEE International Conference on Robotics and
Automation. (2004) 4172–4177

30. Karamouzas, I., Overmars, M.: Simulating the local behaviour of small pedestrian
groups. In: Proceedings of the ACM Symposium on Virtual Reality Software and
Technology. (2010) 183–190

31. Van Welbergen, H., Van Basten, B., Egges, A., Ruttkay, Z., Overmars, M.: Real
time animation of virtual humans: a trade-off between naturalness and control.
Computer Graphics Forum 29 (2010) 2530–2554

32. Guy, S.J., Curtis, S., Lin, M.C., Manocha, D.: Least-effort trajectories lead to
emergent crowd behaviors. Physical Review E 85, 016110 (2012)

33. Van den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin, M.: Interactive navi-
gation of multiple agents in crowded environments. In: Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. (2008) 139–147

34. Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.:
ClearPath: highly parallel collision avoidance for multi-agent simulation. In: Pro-
ceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation. (2009) 177–187

35. De Berg, M., Cheong, O., Van Kreveld, M., Overmars, M.: Computational Geom-
etry. third edn. Springer, Heidelberg, Germany (2008)

