
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 1

HART: A Hybrid Architecture for Ray Tracing
Animated Scenes

Jae-Ho Nah, Jin-Woo Kim, Junho Park, Won-Jong Lee, Jeong-Soo Park, Seok-Yoon Jung,
Woo-Chan Park, Dinesh Manocha, and Tack-Don Han

Abstract—We present a hybrid architecture, inspired by asynchronous BVH construction [1], for ray tracing animated scenes.
Our hybrid architecture utilizes heterogeneous hardware resources: dedicated ray-tracing hardware for BVH updates and ray
traversal and a CPU for BVH reconstruction. We also present a traversal scheme using a primitive’s axis-aligned bounding box
(PrimAABB). This scheme reduces ray-primitive intersection tests by reusing existing BVH traversal units and the primAABB
data for tree updates; it enables the use of shallow trees to reduce tree build times, tree sizes, and bus bandwidth requirements.
Furthermore, we present a cache scheme that exploits consecutive memory access by reusing data in an L1 cache block. We
perform cycle-accurate simulations to verify our architecture, and the simulation results indicate that the proposed architecture
can achieve real-time Whitted ray tracing animated scenes at 1920×1200 resolution. This result comes from our high-
performance hardware architecture and minimized resource requirements for tree updates.

Index Terms—Ray tracing, bounding volume hierarchy, dynamic scene, graphics hardware

F

1 INTRODUCTION

Recently, a great deal of research has been conducted
to achieve ray tracing dynamic scenes at interactive
rates [2]. In dynamic scenes, objects can be moved,
added or deleted from a scene, or animated with topo-
logical changes. Because most ray-tracing systems are
based on acceleration data structures, such as kd-
trees, bounding volume hierarchies (BVHs), and grids,
these acceleration data structures should be effectively
updated for dynamic scenes. Many researchers have
exploited CPUs [1], [3]–[11], GPUs [12]–[16], MIC
(many integrated core) [11], [17], or dedicated ray-
tracing hardware [18]–[20] to achieve this goal.

However, most current real-time rendering engines
(e.g. game engines) use techniques based on ras-
terization instead of ray tracing. This means that
current ray-tracing systems still do not provide suf-
ficient performance for the real-time rendering of
dynamic scenes on commodity hardware. To achieve
ray-tracing in dynamic scenes at real-time rates, there
are two requirements: to get high-quality effects, the
ray traversal performance must be high; and there
must be fast acceleration-data-structure updates that
do not degrade the tree quality.

To achieve these two goals, we present a hybrid
ray-tracing architecture based on the BVH. In this

J.-H. Nah, J.-W. Kim, J. Park, and T.-D. Han (corresponding author)
are with Yonsei University, E-mail: {jhnah, jwkim, bluedawn, han-
tack}@msl.yonsei.ac.kr (part of the work was done when J.-H. Nah was
visiting UNC Chapel Hill)
W.-J. Lee, J.-S. Park, and S.-Y. Jung are with Samsung Electronics, E-
mail: {joe.w.lee, js1980.park, seokyoon.jung}@samsung.com
W.-C. Park is with Sejong University, E-mail: pwchan@sejong.ac.kr
D. Manocha is with the University of North Carolina at Chapel Hill,
E-mail: dm@cs.unc.edu

architecture, dedicated ray-tracing hardware performs
traversal and ray-triangle intersection tests because
these two operations tend to be the main bottlenecks
in ray tracing. In order to deal with dynamic scenes,
we extend CPU-based asynchronous BVH construc-
tion schemes [1], [7]; tree construction is performed
using a CPU, and bounding volume (BV) refitting is
performed by geometry and tree update (GTU) units,
as part of ray-tracing hardware. This approach greatly
reduces the tree update cost because expensive BVH
construction does not need to be performed during
each frame.

When we utilize multiple hardware resources, the
throughput of each hardware component and the
communication cost between the hardware compo-
nents determine overall performance. For our system,
we present a traversal scheme using primitive’s axis-
aligned bounding boxes (primAABBs) with shallow
trees. In this scheme, the traversal unit in the ray-
tracing hardware performs both BVH traversal and
ray-primAABB intersection tests. When this scheme
is used with shallow trees, it reduces both tree build
times and tree sizes by up to 44% without significant
performance degradation.

We also present a cache scheme for our traversal
unit; we maintain two consecutive sets of shape data
(node and primAABB) in an L1 cache block to reuse
the data in the next iteration. This cache-data reuse
scheme reduces cache misses caused by eviction and
increases rendering performance up to 21%.

We verify the performance of our architecture using
a cycle-accurate simulator. According to the simula-
tion results, our architecture could achieve a signif-
icantly higher performance in ray-tracing dynamic
scenes than other systems [17], [21], [22]. Conse-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 2

quently, our architecture can perform ray-tracing dy-
namic scenes with full Whitted effects (e.g., specular
reflection and hard shadows) at real-time rates. This
result comes from the efficient use of each hardware
component and from the maintenance of BVH quality.
In static scenes, our architecture performs comparably
to other ray-tracing hardware architectures designed
for static scenes [23].

2 PREVIOUS WORK

In this section, we summarize prior work on asyn-
chronous BVH construction. Next, we introduce re-
lated work, including ray-tracing hardware architec-
tures, CPU-GPU hybrid ray tracers, and primitive
culling algorithms.

2.1 Asynchronous BVH Construction
There are two representative BVH update methods:
BV refitting and rebuilding. First, BV refitting [3], [4]
quickly updates the BVs without changing the topol-
ogy of the BVHs. However, this method degrades the
tree quality due to overlap between BVs. In contrast,
BVH rebuilding methods [5] reconstruct the BVH
from scratch during each frame. This method creates
high-quality trees but takes longer than BV refitting.

The rebuild heuristic [3] detects tree-quality degra-
dation after BV refitting to determine when the BVH
needs to be rebuilt, but this method may cause a
disruptive pause while the BVH is being rebuilt [7].
Selective restructuring [6] continuously reconstructs
subtrees instead of rebuilding the entire tree at certain
points, which prevents that disruptive pause. How-
ever, this method proceeds in a serial manner, so it is
not suitable for our parallel architecture. Lauterbach
et al. [24] proposed an oriented bounding box (OBB)-
based refitting process for collision detection. This
OBB-based process, however, cannot be directly used
for our AABB-based ray-tracing system. Finally, a
tree-rotation algorithm [9] performs additional tree-
rotation operations after BV refitting to reduce tree-
quality degradation.

Asynchronous BVH construction [1], [7], the base
algorithm used in our architecture, asynchronously
executes BV refitting and BVH rebuilding on a multi-
core CPU. While a new BVH is built on specific
threads, the remaining threads perform BV refitting
and rendering during each frame. This approach takes
the best of both methods: it prevents BVH qual-
ity degradation from BV refitting while maintaining
frame rates, unlike the rebuild heuristic.

2.2 Dedicated Ray-Tracing Hardware Architecture
We classify the studies on dedicated ray-tracing hard-
ware architectures into two categories: SIMD (single
instruction, multiple data) approaches and MIMD
(multiple instructions, multiple data) approaches.

SaarCOR [25], RPU [26], and D-RPU [19] traverse four
rays together by exploiting packet tracing and the
four-wide SIMD architecture. These approaches are
suitable for coherent rays, but they are inefficient for
incoherent rays. To increase SIMD efficiency, Stream-
Ray [27] filters active rays in a large packet.

In single-ray-based approaches, each ray is treated
as an independent thread. Thus, these architectures
have higher hardware utilization than packet-based
SIMD approaches in the case of incoherent sets of
rays. TRaX [28] and MIMD TM [29] distribute each ray
to light-weight programmable cores. In contrast, the
T&I engine [23] includes fixed pipelines for traversal
and intersection operations. This architecture consists
of traversal units using an ordered depth-first lay-
out and three-phase intersection units. These two
types of units commonly include a ray accumula-
tion buffer for latency hiding. Aila and Karras [30]
proposed a GPU-based single-instruction, multiple-
threads (SIMT) architecture using treelets and a stack
top cache to minimize memory traffic when tracing
incoherent rays. SGRT [31], [32] is a mobile ray-tracing
hardware architecture designed for static scenes. It
combines dedicated T&I units and SRPs (Samsung
reconfigurable processors). RayCore [33] is another
mobile ray-tracing hardware architecture based on
unified MIMD T&I units.

Many other ray tracing hardware architectures have
been proposed for dynamic scenes. SaarCOR [25]
includes a transformation unit for ray transformation.
This hardware architecture does not update a kd-tree,
so it is limited to piecewise rigid motion [18]. D-RPU
[19] supports skinning animation through the use of
a BKD-tree update unit [19]. This approach is similar
to BV refitting [4] and is prone to problems related
to tree-quality degradation [34]. In contrast, our ar-
chitecture based on asynchronous BVH construction
can maintain tree quality. Finally, Doyle et al. [20]
proposed a hardware architecture for binned SAH
BVH construction.

2.3 CPU-GPU Hybrid Ray-Tracing System

Some researchers have tried to utilize both CPUs and
GPUs in a cooperative way to render dynamic scenes.
Budge et al. [35] combined CPU tree construction
and GPU ray tracing using CUDA. Nah et al. [36]
implemented an OpenGL ES-based ray tracer for
mobile devices, which assigned kd-tree construction
and ray tree management to CPUs and ray traversal
and shading to GPUs. The brigade renderer [37] is a
rendering engine for path tracing dynamic scenes that
exploits CPUs for game logic and BVH maintenance
and GPUs for rendering.

Other researchers have focused on CPU-GPU hy-
brid path tracing static scenes. Budge et al. [38] dis-
tributed the tasks to CPUs and GPUs via careful
scheduling. Combinatorial bidirectional path-tracing

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 3

[39] utilizes GPUs to link segments of camera and
light paths and utilizes CPUs to avoid the limitations
of pure GPU implementations. LuxRays [40] supports
multiple OpenCL devices, so CPUs, GPUs, or both
can be used for ray tracing. Unlike these studies, we
focus on ray tracing dynamic scenes rather than static
scenes.

2.4 Primitive Culling Algorithms for Ray Tracing
To reduce the computational costs of ray-primitive
intersection tests, a few CPU-based primitive culling
algorithms have been proposed. Vertex culling [41]
substitutes a cheap ray-frustum test for unnecessary
ray-triangle intersection tests. The ray box cull [42]
creates a transient AABB using a ray’s t interval in a
grid cell and primAABB. Nah et al. [43] extended the
ray box cull into kd-trees. These methods [41], [43]
can be useful for ray tracing dynamic scenes when
they are combined with shallow tree structures.

3 PROPOSED ARCHITECTURE

We start this section by describing the overall system
architecture and design decisions. We then introduce
the traversal scheme using ray-primAABB intersec-
tion tests. Next, we describe the hardware compo-
nents of our system in detail.

3.1 System Organization
Figure 1 illustrates the organization of our proposed
system. This system consists of CPUs, ray tracing
acceleration units, and programmable shaders. The
goal of the proposed system is to utilize heteroge-
neous hardware resources for fast ray tracing dynamic
scenes.

We chose asynchronous BVH construction [1] [7] for
our system because we can easily distribute the BVH
update process to a CPU and ray-tracing hardware. In

Fig. 1. Overall system architecture.

our system, a CPU performs scene management and
BVH construction. Because modern CPUs have multi-
level cache hierarchies, surface area heuristic (SAH)-
based tree construction [4] requiring random memory
access fits well in these hierarchies. On the other
hand, geometry and tree update (GTU) units in the
dedicated hardware perform key-frame animation, BV
refitting, and the computation of triangle data in [44]
(triAccel) because these need to be performed during
each frame. The input key-frame geometry data are
transferred from the CPU to a memory in ray-tracing
hardware via a PCI Express bus in advance, and they
are used in the GTU unit. The computed data from the
GTU unit are used for traversal and intersection (T&I)
operations in ray tracing. The reason we chose a fixed
hardware unit for this process is its high performance
per area.

T&I units are comprised of fixed pipelines for high
performance per area as well because T&I operations
can dominate the computation of ray tracing. We used
a single-ray-based approach rather than a ray-packet-
based SIMD approach for efficient processing of inco-
herent rays. Additionally, efficient multi-threading is
performed with a ray accumulation buffer [23] in each
traversal and intersection unit. This buffer is used
to prevent pipeline stalls by storing rays that induce
a cache miss, and it permits the efficient concurrent
processing of multiple rays in deep pipeline stages.

The traversal unit (TRV) performs both the BVH
traversal and ray-primAABB intersection tests in Sec-
tion 3.2. In contrast to the prior T&I engine [23], the
TRV unit is optimized for BVHs rather than kd-trees.

We limited the primitive type to a triangle for sim-
ple configuration. The ray-triangle intersection unit
(IST) is based on Wald’s algorithm [44]. According
to [23], this algorithm has the lowest cost of all
ray-triangle intersection algorithms for hit triangles.
Because of the increased possibility that the ray could
hit the triangles in a leaf node after filtering of the ray-
primAABB scheme, Wald’s algorithm is a good choice
for our architecture. Additionally, precomputation-
based algorithms such as Wald’s algorithm can be
used to design an effective H/W intersection unit;
consecutive memory access to precomputed data can
simplify cache configuration and increase pipeline uti-
lization compared to the Möller-Trumbore algorithm
[45], which requires one index and three vertices.
Although the precomputed triAccel data of Wald’s
algorithm increase memory footprints (40 bytes per
triangle), we believe that the overhead is not high for
scenes of moderate complexity.

Programmable shaders perform ray generation and
shading to support various effects. We assume that
these shaders are similar to unified shaders in com-
modity GPUs, and that ray data transmission between
the T&I units and the programmable shaders use
small FIFO buffers to reduce memory traffic, as with
[23], [32]. We will only focus on BVH updates and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 4

ray traversal in this paper; detailed descriptions of
the ray generation and shading kernel are included
in the SGRT paper [32].

3.2 Traversal Scheme using PrimAABBs
The proposed system in Section 3.1 has the following
problems. First, asynchronous BVH construction on
CPUs and our ray-tracing hardware require triple
buffering of tree data (Figure 1): data transferred from
CPUs, data for the GTU unit, and data for the T&I
unit. Second, the BVH is sometimes too outdated by
the time its construction is finished [7], and this situ-
ation occurs when the BVH construction time is long.
Third, a big tree with a large number of nodes would
create a bottleneck due to the limited bus bandwidth
between the CPU and the ray-tracing hardware.

We deal with these issues by reusing the pri-
mAABBs for traversal. Originally, primAABBs are
used for BVH building and BV refitting. We maintain
primAABBs data after BV refitting and reuse them for
traversal. When a ray reaches a leaf node, we perform
a ray-primAABB test using the existing traversal unit
before sending the ray to the intersection (IST) unit.
This method substitutes most of the expensive ray-
primitive intersection tests with ray-AABB intersec-
tion tests. For example, a ray-triangle intersection
test requires 11–29 multiplications and 1–2 reciprocal
instructions [23], but a ray-AABB intersection test only
require 6 multiplications. We will explain the detailed
traversal hardware architecture using this scheme in
Section 3.4.

In combination with shallow trees, our traversal
scheme using primAABBs solves all three of the
problems listed above (Figure 2). Shallow trees with
large leaf nodes have small memory footprints and
also require less build time. However, these large leaf
nodes incur more ray-primitive intersection tests. Our
proposed scheme prevents traversal cost increases
from the use of shallow trees as other culling methods
do [41], [43]. However, our reuse of the existing traver-
sal unit and primAABB data means that the additional
culling stages required by other culling methods are
unnecessary.

This method also permits an effective data layout.
Wald’s intersection algorithm [44] requires 36 bytes
per triangle in a triAccel data, and a reordered triangle
in a BVH leaf node requires its original triangle index
for shading (4 bytes). If the precomputed triangle data
(40 bytes) and a primAABB (24 bytes) are combined,
32-byte alignment can be made available (Figure 3)
without padding. This configuration increases cache
efficiency. If a ray passes the ray-primAABB test, we
transfer the 8-byte triAccel data to the IST unit.

3.3 Geometry and Tree Update Unit
The geometry and tree update (GTU) unit computes
BVHs, primAABBs, and triAccel data during each

Fig. 2. An example of a shallow tree configuration
using primAABBs: Our scheme reduces the tree depth
and adds the primAABBs of each primitive to the tree.
Each leaf node in the right figure points to primAABBs
instead of actual primitives.

Fig. 3. 32-byte alignment by combining a primAABB
with the precomputed triangle data (triAccel).

frame for animated scenes. This unit is organized
into five pipeline stages as illustrated in Figure 4.
Vertex and index fetch units read the triangle index
and vertex data, an interpolation unit performs key-
frame animation, and the AABB/triAccel calculation
unit calculates each triangle’s AABB and triAccel data.
These three units were designed as a half-pipelined
architecture for reduced hardware requirements. Fi-
nally, a BV refit unit performs BV refitting [4], and
this unit is fully pipelined.

The index fetch unit fetches the index of three ver-
tices in a triangle from the memory. The order of the
triangles used in this unit corresponds to the triangle
order in the leaf nodes of the BVH. In other words, all
triangles in a leaf node are stored consecutively. This
order removes triangle list fetching upon ray traversal
to simplify the design of the T&I unit. Each index
fetch unit has two index buffers for the concurrent
processing of the index fetch unit and the vertex fetch
unit.

The vertex fetch unit reads vertices from the ex-
ternal memory. Each vertex fetch unit has a 32-entry
FIFO buffer to hide memory latency. If the buffer
is not full, another thread can generate a memory
request without a pipeline stall. The size of the mem-
ory request is 32 bytes. This policy reduces memory
requests by using spatial locality when three vertices
are adjacently stored in the memory.

The vertex interpolation unit calculates the inter-
polated vertices by using the two key frames. An
interpolation requires nine multiplications and nine
additions for three axes and three vertices. Each ver-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 5

GTU unit

Index fetch unit

Vertex fetch unit

Index

buffer2

Index

buffer1

FIFO buffer

Interpolation unit

AABB/TriAccel calculation unit

 BV Refit unit

Refit cache

External
DRAM

Vertex indices

Vertices

BVH

TriAccel/AABBs

Fig. 4. The architecture of the geometry and tree
update (GTU) unit.

tex interpolation unit consists of five multipliers and
five adders. Thus, the throughput of the unit is 0.5
triangles per cycle.

The AABB/triAccel calculation unit calculates pri-
mAABBs and triAccel data using the interpolated
vertices. Each AABB/triAccel calculation unit consists
of 10 adders, 12 multipliers, and one reciprocal unit.

After the primAABBs are calculated, the BV refit
unit performs BV refitting using the primAABBs. We
used the breadth-first tree layout for BV refitting for
easy parallelization. If the size of the node cache in
the T&I units is 64 bytes, the breadth-first layout
stores two child nodes in a cache block similar to the
layout in [46]. Therefore, both layouts have the same
cache efficiency in a 64-byte cache block. Each BV refit
unit has a cache including node data and primAABB
data; we also prefetch data into this cache to hide
memory latency. The output data are transferred to
the memory using the write-through policy.

The GTU procedure can be parallelized for large
dynamic scenes. In this case, the geometry-update
part (index fetch, vertex fetch, interpolation, and
AABB/TriAccel calculation units) and the tree-update
part (a BV refit unit) are separately operated. In the ge-
ometry update part, the number of triangles assigned
to each parallel unit is the total number of triangles
divided by the number of parallel units. In contrast,
BV refit units exploit level-by-level parallelization in
a bottom-up update manner [24]; at each level, the
number of nodes assigned to each parallel unit is the
number of nodes at the level divided by the number
of parallel units. Only if all BV refit units finish the
current updates, further BV updates at the upper
levels of the tree are started.

3.4 Traversal and Intersection Unit
The traversal and intersection (T&I) unit (Figure 5)
consists of one ray dispatcher (RD), 16 traversal
(TRV) units, one TRV L2 cache, and one intersection

(IST) unit. The RD gets rays from the programmable
shaders and dispatches the rays to the TRV units.
The RD also calculates the inverse direction vector for
TRV units. Ray tracing is basically “embarrassingly
parallel,” and the parallelization of ray traversal can
be easily achieved as with [23]. In other words, if
enough ray threads are supplied to T&I units, the RD
in each T&I unit can perform traversals using multiple
TRV units.

The TRV units perform both BVH traversal and ray-
primAABB intersection tests. Each TRV unit includes
a ray-AABB intersection routine, stack memory, a ray
accumulation buffer for latency hiding [23], and an
L1 cache. The ray-AABB intersection calculation part
is fully pipelined and it consists of six floating-point
adders, six floating-point multipliers, and 13 floating-
point comparators to achieve a throughput of one ray-
AABB intersection test per cycle.

The IST unit performs ray-triangle intersection tests.
Each IST unit consists of 11 floating-point adders,
11 floating-point multipliers, one reciprocal unit, and
four floating-point comparators. The IST unit, like the
TRV unit, includes an L1 cache and a ray accumulator
buffer for effective memory access.

The ratio of TRV units to IST units is 16:1, which
is different from that in the previous fixed ray-tracing
pipelines [18], [19], [23], [25], [32] (3:1–4:1). The reason
for this is that ray-primAABB tests in TRV units
minimize the number of ray-triangle intersection tests.

Figure 6 illustrates the finite-state machine for pro-
cessing of both BVH traversal and ray-primAABB
intersection tests. Each state is described as follows.
• STAT TRV (0) represents the initial traversal stage

to fetch data. If the parent node is an inner node,
we fetch the child node’s AABB and the next state
is set to STAT LCHD (1) to visit the left child node.
If the parent node is a leaf node, the next state is
STAT PRIM (4). If the traversal is finished, the next
state is STAT SHD (6).

Fig. 5. The architecture of the traversal (TRV) and in-
tersection (IST) unit. In contrast to the prior T&I engine
[23], the ratio between TRV and IST units is 16:1 with
the ray-primAABB intersection scheme, which reduces
the expense of IST units per T&I unit.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 6

STAT_

PRIM

(4)

STAT_

TRV (0)

STAT_

LCHD

(1)

STAT_

RCHD

(2)

STAT_

TRV_

POST

(3)

STAT_

IST (5)

STAT_

SHD (6)

miss

hit

leaf

inner

nodetermination

no

more

prims

Fig. 6. The finite-state machine of the traversal unit. A
dash arrow, such as 0→ 1, 2→ 3, and 4→ 3, means a
state transition in the same iteration without additional
shape data fetch.

• STAT LCHD (1) performs the left child traversal.
After the ray-AABB intersection test, the next state is
set to STAT RCHD (2).
• STAT RCHD (2) performs the right child traver-

sal. After the ray-AABB intersection test, the next state
is set to STAT TRV POST (3).
• STAT TRV POST (3) determines the next visit

node. In this state, stack operations based on the
short-stack algorithm with the restart-trail method
[47] are performed. Additionally, the SATO metric
[48] is adapted to accelerate shadow ray traversal.
First, if a non-shadow ray and a shadow ray intersect
both of the child nodes, the next node is determined
based on the child node of the nearest node and
of the node with the lower cost based on SATO
metric, respectively. The other node is pushed into the
stack and the restart-trail flag bit at the current tree
level is updated. If the stack is full, the bottom-most
entry is discarded. After that, the current tree level is
increased for further restart-trail updates. Second, if
a ray intersects either the left child node or the right
child node, only the current tree level is increased.
Third, if the ray does not intersect either child node,
the next visit node is popped from the stack and the
current level bit is decreased. If the stack is empty, the
node traversal is restarted from the root node. In this
case, the restart-trail flag prevents duplicated visits to
already traversed sub-trees. Because the next traversal
step corresponds to a visit to the nodes in the above
three cases, we set the next state to STAT TRV (0).
• STAT PRIM (4) performs ray-primAABB intersec-

tion tests. If the ray passes the test, the next state
is STAT IST (5). Additionally, if there are remain-
ing primAABBs for further intersection in the leaf
node, the processing is iterated with the current state
(STAT PRIM (4)). When we find the hit point of an
occluded ray or have visited all primAABBs in the
leaf, we change the state into STAT TRV POST (3).
• STAT IST (5) passes the ray into the IST unit.
• STAT SHD (6) passes the ray into the shaders

when the final hit point of the ray is found.

3.5 Cache-Data Reuse Scheme

Efficient memory access is important for high per-
formance when rays are incoherent. For incoherent
ray tracing, we present a cache-data reuse scheme to
exploit consecutive access. The block size of an L1
traversal cache is 64 bytes, so two sets of BVH node
data or primAABB data can be stored in a cache block.
In the case of BVH node data, left and right child
nodes are stored consecutively. PrimAABBs in a leaf
node are also stored consecutively. Therefore, we can
reuse the cache-block data for the next iteration after
the data are obtained. From the L1 cache, we obtain
two sets of shape data (node or primAABB data) in
an entire cache block and continuously maintain these
data in the next pipeline stages. After dozens of cycles,
when the ray comes back to the top of the traversal
pipeline for the next iteration, we can reuse the shape
data. If the required shape data exist in the maintained
cache-block data, a cache access for the shape data is
bypassed and the processing of the ray is treated as
a cache hit.

4 SIMULATION RESULTS AND ANALYSIS

In this section, we describe the experimental results
using a cycle-accurate simulator. This simulator pro-
vides all of the cycles required for BV refitting and
ray-tracing, hardware utilization, average T&I opera-
tions per ray, cache/memory statistics, and simulated
performance, etc. We also compare our system to
other approaches and describe the limitations of our
work.

4.1 The Effect of the Ray-PrimAABB Test Scheme
and Asynchronous BVH Construction

We used four dynamic test scenes for the experiment
(Figure 7): UNC cloth simulation (92K triangles), Fairy
forest (174K triangles), Exploding Dragon (252K tri-
angles), and Lion (1.6M triangles). The Cloth scene
has high frame-to-frame coherence, so it is suitable
for BV refitting. The Fairy scene is used for game-like
scene configuration. The Dragon scene has low frame-
to-frame coherence due to fractures after a collision
between a bunny and a dragon. The Lion scene is
the largest scene in our benchmark and has features
similar to the Dragon scene. All scenes were rendered
at 1920×1200 resolution. For our experiments, we
used two different ray settings: ray casting with hard
shadows with one light source and two-bounce forced
specular reflection. The BVHs were constructed by
using the binned SAH method [5]. All experiments
were performed using a 3.5GHz Core i7 4770K CPU
with 8GB of RAM.

To construct shallow BVHs, we modified the ratio
of the expected traversal cost (KT) to the expected
intersection cost (KI) when we calculated the SAH
cost in [5]. When we did not use the ray-primAABB

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 7

Fig. 7. Four dynamic test scenes (from top to bottom): Cloth, Fairy, Dragon, and Lion. All captured images were
rendered with two-bounce forced specular reflection and hard shadows. According to our simulation results, our
architecture can render these scenes at 264, 36, 212, and 46 FPS at 1920×1200 resolution, respectively.

test scheme, both the KT and KI values were set to
1. When we enabled the ray-primAABB test scheme,
we varied the KT values (2, 5, and 10) and set the
KI value to 1. The use of larger KT values produces
shallower trees having larger leaf nodes. The first goal
of the experiments in this section is to determine the
optimal ratio of KT to KI for our system.

Table 1 describes the results of our experiments.
To measure the BVH build time, we use the multi-
threaded BVH builder in Embree 2.3.2 [11]. We used
four threads and one thread for the Lion scene and the
other scenes, respectively. We believe this 1-4 thread
setting is affordable in terms of resource utilization
because modern CPUs, such as Intel Core i7 used in
our experiments, can support up to eight threads.

The results in Table 1 are described as follows. First,
the BVH build time decreases by 17–20%, 36–44%,
and 46–50% when KT is 2, 5, and 10, respectively.
When we consider a small overhead for key-frame
animation and data transfer, the BVH can be rebuilt
at 25, 12, 9, and 3 times per second for the Cloth,
Fairy, Dragon, and Lion scenes, respectively. Next, the
number of intersection tests decreases 16–29% when
the ray-primAABB intersection scheme has been en-
abled, but when KT is 10, the number of traversal
operations increases up to 27%. Thus, we conclude
that the optimal KT :KI ratio with the ray-primAABB
test scheme is 5:1 because this ratio provides the best
performance balance between tree construction and

TABLE 1
The experimental results for the ray-primAABB

intersection scheme. For the statistics in this table, we
selected a middle frame of each scene and rendered
the scene with two-bounce reflection and shadows.

KT :KI Avg tris BVH build Avg TRV Avg IST
per leaf time (ms) steps per ray steps per ray

Cloth (92K triangles) / single-threaded BVH build
1:1 1.75 65 (1.00×) 33.46 (1.00×) 1.93 (1.00×)
2:1 2.84 52 (0.80×) 33.00 (0.99×) 1.37 (0.71×)
5:1 7.45 36 (0.56×) 34.87 (1.04×) 1.38 (0.72×)
10:1 14.49 33 (0.51×) 40.04 (1.20×) 1.38 (0.72×)

Fairy (174K triangles) / single-threaded BVH build
1:1 2.06 120 (1.00×) 64.99 (1.00×) 6.82 (1.00×)
2:1 3.17 100 (0.83×) 63.73 (0.98×) 5.68 (0.83×)
5:1 7.35 77 (0.64×) 66.40 (1.02×) 5.72 (0.84×)
10:1 14.50 65 (0.54×) 78.90 (1.21×) 5.74 (0.84×)

Dragon (252K triangles) / single-threaded BVH build
1:1 1.72 178 (1.00×) 51.63 (1.00×) 1.36 (1.00×)
2:1 2.80 142 (0.80×) 51.31 (0.99×) 0.98 (0.72×)
5:1 6.47 105 (0.59×) 52.63 (1.02×) 0.99 (0.73×)
10:1 12.24 88 (0.50×) 57.04 (1.10×) 1.00 (0.74×)

Lion (1.6M triangles) / parallel BVH build (4 threads)
1:1 1.80 474 (1.00×) 85.39 (1.00×) 11.68 (1.00×)
2:1 2.82 390 (0.82×) 84.97 (1.00×) 8.86 (0.76×)
5:1 7.30 287 (0.61×) 91.27 (1.07×) 8.90 (0.76×)
10:1 14.40 246 (0.52×) 108.17 (1.27×) 8.94 (0.77×)

ray traversal. Because the sum of T&I operations with
the KT values of 1 and 5 are similar, we think both
settings will result in similar memory traffic.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 8

0

40

80

120

160

Default Ours Default Ours Default Ours Default Ours

Cloth Fairy Dragon Lion

(MB)

Node

PrimAABB

Triangle index list

Fig. 8. Comparison of the tree sizes (in megabytes).
Default – the ratio of KT to KI was 1:1 without the
ray-primAABB intersection scheme. Ours – the ratio of
KT to KI was 5:1 with the ray-primAABB intersection
scheme.

Figure 8 depicts the tree sizes. Node data require
triple buffering, and the size of a node is 32 bytes.
Both primAABB data and a triangle index list require
double buffering; PrimAABB data and a triangle in-
dex list do not need a buffer to store transferred data
from the CPUs and a buffer in T&I units, respectively.
Note that we do not count 8 bytes of primAABB data
stored in the padding of TriAccel data (Figure 3) for
these tree sizes in Figure 8.

According to Figure 8, the proposed method
achieves a reduction of 34–44% of the tree sizes; the
number of nodes is 72–77% less than the default
setting, and primAABB data are added. The result
also means that the bus-bandwidth requirements to
transfer node and triangle index data from the CPU
to the ray-tracing hardware are reduced by 66–71%.
If the data are asynchronously transferred from the
CPU to the ray tracing hardware, the required bus-
bandwidth for BVHs is very small (22–52 MB/s) be-
cause these data do not need to be transferred during
each frame.

4.2 Hardware Complexity and Area Estimation
The hardware setup of the proposed architecture is
structured as follows. The number of stacks per TRV
is 32, and the number of TRVs in a T&I unit is 16;
therefore, the highest number of executing rays in a
T&I unit is 512. We configured the external memory
for 1GHz, 8-channel GDDR3 memory. We assumed
that six channels are connected to T&I units, and two
channels are connected to the GTU units. The memory
simulation was executed using a GDDR3 simulator in
GPGPU-Sim [49]. As with [23], we assumed that the
programmable shaders provide sufficient computing
power for ray generation and shading.

Table 2 shows the hardware complexity of a GTU
unit and a T&I unit. Each BV refit, TRV, and IST unit
has a 8KB, 16KB, and 128KB 2-way set associative
cache, respectively. All caches have one read-only

TABLE 2
Complexity of each component by the number of

floating-point units and the required on-chip memory.
Abbreviations: ADD – adder, MUL – multiplier, RCP –
reciprocal unit, CMP – comparator, L1 – L1 cache, L2

– L2 cache, idx. – index, vtx. – vertex, calc. –
calculation.

ADD MUL RCP CMP RF L1 L2
GTU unit
Idx. fetch 2KB
Vtx. fetch 5KB
Vtx. interp. 10 5 1KB
TriAccel/ 10 12 1 7 20KB
AABB calc.
BV refit 11 2KB 8KB
Total 20 17 1 18 30KB 8KB
T&I unit
1 RD 3 2KB
16 TRV 96 96 208 207KB 256KB 512KB
1 IST 11 11 1 3 13KB 128KB
I/O buffer 32KB
Total 107 107 4 211 254KB 384KB 512KB

TABLE 3
Area estimates of a GTU unit and a T&I unit.

Abbreviations: FP – floating-point, INT – integer.

Functional Area Total Area Memory Area Total Area
Unit (mm2) (mm2) Unit (mm2) (mm2)
GTU unit
FP ADD 0.003 0.06 BV refit 0.03
FP MUL 0.01 0.17 4K RFs 0.019 0.14
FP RCP 0.11 0.11
FP CMP 0.00072 0.01
INT ADD 0.00066 0.02
Control/Etc. 0.09
Wiring overhead 0.54
Total 1.07
T&I unit
FP ADD 0.003 0.32 TRV L1 0.037 0.60
FP MUL 0.01 1.07 TRV L2 1.23
FP RCP 0.11 0.44 IST 0.25
FP CMP 0.00072 0.08 4K RFs 0.019 1.18
INT ADD 0.00066 0.03
Control/Etc. 0.45
Wiring overhead 3.88
Total 9.51

port. An L2 TRV cache is a 512KB 4-way cache divided
into eight banks. The BV refit cache has a block size
of 256B for data prefetching with a sequential access
pattern. In contrast, both TRV and IST caches have a
block size of 64B.

We set the latency of the L1 caches as one cycle and
set the minimum latency of the L2 caches as 3 cycles.
This configuration is the same as that in 500MHz
MIMD TM [29] based on CACTI [50], and also cor-
responds to the cache latencies on AMD Opteron X4
(3-cycle L1 and 9-cycle L2 latencies at 2.5GHz) [51].
Additionally, caches in our architecture are read-only

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 9

in contrast to modern CPUs/GPUs, so we did not
need to consider complex cache coherency issues. We
also considered bank conflicts; if a bank conflict in an
L2 cache occurs, the L2 cache access is delayed. As
a result, the actual L2 cache latency is usually more
than 10 cycles with coherent rays; if rays are very
incoherent, the L2 cache latency can increase by up
to dozens of cycles.

The latencies of a floating-point (FP) multiplier,
an FP adder, an FP comparator, and a reciprocal
unit were set to 2, 2, 1, and 16 cycles, respectively,
similar to [29]. Register files (RFs) are needed for
buffers between the units, ray accumulation buffers,
8-entry traversal stacks, I/O buffers to programmable
shaders, and pipeline registers. The size of a ray
accumulation buffer is 32 (2 (width) × 16 (height)).

To predict the performance of our system, we care-
fully estimated the area of a GTU unit and a T&I unit
(Table 3), using an estimation metric similar to that
in [23]. First, we assumed 65 nm technology, a 200
mm2 die area, and a clock speed of 500 MHz, similar
to TRaX [28]. Second, we assumed that the GTU unit
and T&I units occupy less than 33% of the total area,
similar to D-RPU [19]. The remaining area was used
for programmable shaders and memory interfaces.
Third, we used the area estimates for arithmetic units
and caches obtained from [29] and CACTI 6.5 [50].
Fourth, we assumed that control parts require 23%
of the total area for arithmetic units; this assumption
is based on the ratio of the front-to-end area to that
of the execution area in [52]. Fifth, we added 69%
overhead into our estimation. This was assumed by
two levels of wiring overhead (arithmetic units →
each component → a GTU unit and a T&I unit); the
one-level overhead used in [52] is approximately 30%.
According to these estimates, four GTU units (4.3
mm2) and six T&I units (57.1 mm2) can be assigned
into a ray-tracing core with a 200 mm2 die area (31%
of the total area).

4.3 Simulation Results in Dynamic Scenes

For experiments with dynamic scenes, we used the
same test scenes and experimental setup as in Section
4.1. Table 4 describes the results: our system can
achieve real-time frame rates at 1920×1200 resolution.
The performance effects of two-bounce reflection are
different in each scene due to the different required
cycles for BV update and ray tracing changed in each
scene (Figure 9). In the Fairy scene, frame rates with a
ray recursion depth of 2 are 3× lower than that with a
depth of 0 because almost all radiance rays (primary
and reflection rays) hit some objects and generate
additional rays. In contrast, many radiance rays in
the other scenes do not hit any objects (background
colors in Figure 7) and do not propagate additional
rays. Thus, the differences of frame rates between the
ray recursion depths of 0 and 2 in these scenes are less

0

10

20

Fairy

0

1

2

3

Cloth

Geometry

/tree update

Ray tracing

(depth 0)

Ray tracing

(depth 2)

0 3 6 9

Cycles(M)

Time (s)

0 5 10 15 20

0

2

4

6

Dragon

0 5 10 15

0

5

10

15

Lion

0 10 20 30 40

Fig. 9. Required cycles per frame for the test scenes.

than those in the Fairy scene. In particular, the Lion
scene shows almost same frame rates regardless of the
ray recursion depths because the geometry and tree
update time is bottlenecked in this scene due to its
high triangle count (1.6M). However, real-time frame
rates (46 FPS) are still shown.

Memory traffic per frame is broadly proportional
to the scene size because more triangles require more
memory accesses for geometry and tree updates. Ad-
ditionally, two-bounce reflection increases memory
traffic due to low cache hit rates; various directions of
normal vectors of each object can result in incoherent
reflection rays which can decrease cache hit rates.

In Table 5, we compare our system to other ap-
proaches. For a comparison with a CPU approach,
we executed the Manta ray tracer [21] with the tree-
rotation algorithm [9]. For ray traversal, we used
the DynBVH traversal algorithm [4] with an 8×8
packet size. The result on a 3.5GHz Core i7 CPU
is 8–23 FPS. For comparison with a GPU approach,
we used NVIDIA OptiX 3.6.2 [22]. For key-frame
animation, we modified the Sample6 code in OptiX
SDK. We measured performance with an NVIDIA
GeForce GTX680 card, which gave a result of 7–30
FPS. In contrast to these CPU and GPU approaches,
our architecture can achieve real-time frame rates in
all the test scenes. These high frame rates are due to
high ray traversal performance, the maintenance of
tree quality, and a low tree-update overhead.

We have also implemented a CPU-GPU hybrid ray
tracer based on asynchronous BVH construction. The
detailed description of the hybrid ray tracer is beyond
the scope of this paper and is included in another

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 10

TABLE 4
Simulation results in dynamic scenes.

Scene # of rays Cache hit rate (%) Average Memory traffic Simulated
(max ray depth) per frame (M) (BV Refit/TRV L1/ TRV/IST (MB/frame) frames per

TRV L2/IST) steps per ray second
Cloth (0) 3.0 86 / 97 / 95 / 98 28.8 / 1.3 37.0 402
Cloth (2) 3.9 86 / 95 / 95 / 97 33.6 / 1.4 51.3 264
Fairy (0) 4.6 85 / 98 / 96 / 99 63.1 / 4.3 63.0 109
Fairy (2) 11.9 85 / 96 / 94 / 98 66.5 / 5.6 187.7 36
Dragon (0) 2.6 85 / 98 / 93 / 95 28.9 / 0.5 80.0 312
Dragon (2) 3.3 85 / 93 / 84 / 85 41.0 / 0.8 166.5 212
Lion (0) 2.7 85 / 92 / 97 / 98 54.2 / 4.7 763.3 46
Lion (2) 3.6 85 / 88 / 94 / 96 86.4 / 8.1 923.2 46

TABLE 5
Comparison of the performance for ray casting with shadows at 1920×1200 resolution.

CPU (Manta) [21] GPU (OptiX) [22] MIC [17] CPU-GPU hybrid [53] Ours
Platform Intel Core i7 NVIDIA GeForce Intel MIC Intel i7 4770K + RT H/W +

4770K (4 cores) GTX 680 (1536 cores) (32 cores) NVIDIA GTX 680 CPU (1-4 cores)
Clock (MHz) 3500 1006 1000 3500(CPU) & 1006(GPU) 500 (RT H/W only)
Process (nm) 22 28 45 22(CPU) & 28(GPU) 65 (“)
Area (mm2) 177 294 - 177(CPU) & 294(GPU) 200 (“)
BVH update BV refitting [4] + LBVH [13] + Binned SAH BVH Asynchronous BVH
method tree rotation [9] BVH refinement [16] construction [17] construction [1]
FPS (Cloth) 23 30 44 35 402
FPS (Fairy) 8 17 17 25 109
FPS (Dragon) 18 26 19 39 312
FPS (Lion) 8 7 - 18 46

technical report [53]. The results on a 3.5GHz Intel
Core i7 CPU and an NVIDIA GTX680 GPU are 18-35
FPS, and our architecture is at least 2.5× faster than
this CPU-GPU hybrid ray tracer.

Compared to full SAH BVH construction on the
Intel MIC architecture [17], our approach takes ad-
vantage of asynchronous BVH construction and het-
erogeneous computing environments. According to
[17], full BVH construction spent 41–65% of the total
rendering time in the Cloth, Fairy, and Dragon scenes.
In contrast, the GTU unit in our architecture occupies
less than 3% of the total die area and an existing CPU
performs tree reconstruction.

4.4 Simulation Results in Static Scenes

Our ray-tracing system can also be used to accelerate
the rendering of static scenes. To measure the per-
formance of our architecture in static scenes, we set
up the following experimental environment, similar
to [23], [46]. We used the three scenes in Figure 10:
Sibenik (80K triangles), Fairy Forest (174K triangles),
and Conference (282K triangles). We obtained ray
data from Aila’s CUDA ray tracer [46]. The resolu-
tion is 1024×768 and the ray types are the primary
ray (very coherent), the ambient occlusion (AO) ray
(incoherent), and the diffuse inter-reflection ray (very
incoherent). The number of samples per pixel is 32.
We used AO cut-off values of 5.0, 0.3, and 5.0 for the
Sibenik, Fairy, and Conference scenes, respectively. We

Fig. 10. Sample images from the three static test
scenes: Sibenik rendered with ray casting, Fairy ren-
dered with ambient occlusion, and Conference ren-
dered with diffuse inter-reflection.

used the same view points as [46] and the perfor-
mance values are averages from five representative
viewpoints per scene. The BVHs were built by the
split BVH build algorithm [54]. Note that we assumed
that eight memory channels are connected to T&I
units in contrast to Section 4.3. The reason is that we
investigate not dynamic scene performance but ray
traversal performance, in this section.

Table 6 summarizes the results in the static test
scenes. According the results, our ray-tracing sys-
tem achieves 351–969 Mrays/s. Compared to a kd-
tree-based ray-tracing hardware architecture for static
scenes [23], our proposed architecture performs at an
average 94.4% of [23] and these results are comparable
to those of the kd-tree-based architecture. Addition-
ally, our architecture performs better than GPU ray
tracing on GTX680 [55], even though our architecture
requires less computational resources than do modern

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 11

TABLE 6
Simulation results in static scenes.

Ray type TRV/IST Cache hit rate (%) Average Memory Simulated Relative
utilization (TRV L1/TRV L2/IST) TRV/IST traffic Mrays/s performance

(%) steps per ray (GB/s) compared to [23]
Sibenik (80K triangles)
Primary 95 / 56 99 / 93 / 99 65.4 / 2.9 1.8 588 128%
AO 95 / 53 97 / 99 / 99 43.7 / 1.8 0.4 928 113%
Diffuse 65 / 50 87 / 92 / 89 76.9 / 4.3 27.6 351 80%
Fairy (174K triangles)
Primary 73 / 72 98 / 93 / 99 89.7 / 8.7 2.7 383 106%
AO 64 / 80 96 / 97 / 99 45.0 / 4.3 2.6 649 80%
Diffuse 59 / 81 89 / 91 / 94 69.8 / 7.2 21.9 380 102%
Conference (282K triangles)
Primary 82 / 73 99 / 93 / 99 58.9 / 3.7 1.9 602 76%
AO 90 / 51 97 / 98 / 99 38.8 / 1.6 1.2 969 82%
Diffuse 75 / 77 91 / 91 / 92 61.3 / 4.6 24.1 506 84%

TABLE 7
The effect of the cache-data reuse scheme for L1

traversal caches.

Scene TRV/IST TRV L1/ L2 Simulated
utilization cache hit (%) Mrays/s

Without our cache scheme
Sibenik 53 / 41 84 / 92 290
Fairy 55 / 75 87 / 91 349
Conference 68 / 70 89 / 92 462
With our cache scheme
Sibenik 65 / 50 87 / 89 351
Fairy 59 / 81 89 / 91 380
Conference 75 / 77 91 / 91 506

desktop GPUs, as described in Table 5. In particular,
when tracing incoherent rays, our MIMD architecture
results in less performance degradation than modern
SIMT-based GPU architectures.

We also investigated the efficiency of the cache
scheme presented in Section 3.5. For this experiment,
we traced diffuse inter-reflection rays, which are the
most incoherent ray type in our benchmark. Under
the cache-data reuse scheme, a ray that bypassed an
L1 traversal cache was counted as a cache hit for
the cache hit-rate calculation. According to the results
shown in Table 7, the cache-data reuse scheme for L1
cache access improves the ray-tracing performance by
9–21% with increased cache hit rates. In terms of chip
area, the cache-data reuse scheme requires additional
register spaces to store a 64B cache block of data in
each pipeline stage and buffer. However, additional
registers for the T&I unit, which are 28KB, require
only 0.13mm2.

4.5 Discussion and Limitations

More effective BVH update: Our system’s perfor-
mance may drop off in complex dynamic scenes
because of a long tree-build time and large memory
footprints. In addition, our system would not be suit-

able for very rapidly-changing scenes (e.g., racing) be-
cause asynchronous BVH construction exploits frame-
to-frame coherence. Additionally, object insertion, ob-
ject deletion, or completely unstructured motion with
topological changes can generate a frame drop in
asynchronous BVH construction [1], since in these
situations the entire BVH should be reconstructed in
every frame. Finally, once triple buffering is used, the
tree data stored in the first and second buffers are
two and one frame old, respectively. The possibility of
performance degradation caused by the outdated data
in the first buffer was described above, but an early
finish of BV refitting using the second buffer can result
in delayed rendering. For example, if a significant
amount of time is still required for ray tracing during
the current frame after BV refitting has finished, the
BVH in the second buffer will be outdated during the
idle time of GTU units. The outdated BVH can make
a perceptible delay if frame rates are very low.

We think there are four possible future improve-
ments: partial update, tree rotation, faster BVH con-
struction, and continuous BV refitting operations.
First, if we divide the static parts and dynamic parts
of the tree using multi-level hierarchies like gkDtrees
[8], we can more effectively render dynamic scenes,
which mainly consist of static parts. Since we do
not need to rebuild and refit static parts, and these
static parts only need a single buffer, this method
will alleviate the problem of the rapid BVH rebuild
time outdating the rebuilt BVH. In case of object
insertion, object deletion, or topological changes, the
dynamic parts can be selectively restructured, in a
similar manner to the method in [6]. Second, if the
BV refit unit is extended to support the tree-rotation
algorithm [9], the BVH update will be more robust
for rapidly-changing scenes. Because the tree-rotation
algorithm can be easily integrated to BVH refitting, we
believe this addition can be available in our hardware
architecture. Third, our approach can be combined
with faster ways of constructing the BVH, such as the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 12

approximate agglomerative clustering algorithm on
multi-core CPUs [10] or a dedicated hardware unit for
BVH construction [20]. In this case, since the tree need
not be reconstructed during each frame, our small
GTU unit will help to reduce the required hardware
resources for tree construction. Finally, continuous
BV refitting operations can alleviate the delayed ren-
dering problem. After BV refitting computation is
finished, we can update the BVH again at the current
time if a long time remains to finish ray tracing at the
current frame. This approach will generate a recently
updated BVH.

Shading cost: Shading may or may not be a major
cost in ray tracing [46], but we assumed that shading
would not be a bottleneck due to the shading cost
of Whitted ray tracing and the sufficient capability of
programmable shaders. In the Embree system, com-
plex shading for off-line rendering typically consumes
30 to 50% of the total frame time [11]; it indicates
that simpler shading for real-time ray tracing dynamic
scenes would result in cost lower than 30% of the
total frame time. In fact, shading costs in simpler
scenes occupy about 25% of the total rendering time
in Wald’s experiments (Table 7.6 in [44]). Additionally,
a GPU ray tracer [55] on GTX680 shows very high
ray generation and shading (RGS) performance (sev-
eral hundred million rays per second). Even a cycle-
accurate simulation result on a state-of-the-art mobile
processor (4-core SRP) exhibited RGS performance by
up to 198 M rays/s [32]. However, complex shading
would bottleneck rendering. In this case, we think
additional stream filter units [27] would be a suitable
solution to maintain high SIMD utilization of the
programmable shaders.

Animation and primitive types: Because we fo-
cused on a very small fixed unit for dynamic
scenes, our architecture currently supports triangu-
lar primitives and key-frame animations. To support
other animation and primitive types, appropriate pro-
grammable shaders would be needed. In regards to
animation types, the usage of GTU units will be
different. If hierarchical transformation or skinned
animation is performed on shaders, the interpolation
unit for key-frame animation in a GTU unit will
not be used. If an object is inserted or deleted in a
scene, or the geometry/tessellation shader increases
the number of triangles in an object, the tree data of
the object in the GTU unit are invalid and so should
be reconstructed on a CPU. In this case, selective
restructuring [6] or multi-level tree decomposition
[8], [11], [56] can be used to effectively handle the
dynamic objects as described above. In regards to
primitive types, more complex interfaces between
TRV units and programmable shaders will be re-
quired to prevent performance degradation caused
by frequent communication or unbalanced workloads
between traversal and intersection operations.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a hybrid ray-
tracing architecture for dynamic scenes. Our approach
achieves real-time frame rates using asynchronous
BVH construction [1], [7] on a CPU, and dedicated
ray-tracing hardware. We have also presented a novel
traversal hardware architecture using ray-primAABB
tests and an efficient cache scheme for the architecture.

There are many avenues for future work. First, new
acceleration data structures would help to increase
the performance of our architecture. Our BVH-based
hardware architecture is slower than a kd-tree-based
hardware architecture [23] in some static scenes, as
described in Section 4.4; we think that an extended
architecture based on shared-plane BVHs (SPBVHs)
[57] can compensate for the defect because SPBVHs
have a lower traversal cost and memory footprints
than BVHs. Second, we would like to prove the
feasibility of our system on a register-transfer-level
(RTL) implementation, after which we would like
to run experiments on actual hardware. Integration
with mobile GPU architectures [32] will be especially
helpful for new killer mobile applications. Finally,
we are interested in extending our architecture to
accelerate ray-tracing-based sound rendering [58].

ACKNOWLEDGMENTS

This work was supported by Samsung Electronics
Co., Ltd. Jae-Ho was also supported by the Na-
tional Research Foundation of Korea Grant funded
by the Korean Government (Ministry of Education)
[NRF-2012R1A6A3A03040332]. Dinesh Manocha was
supported by ARO Contract W911NF-10-1-0506, and
NSF awards 0917040 and 1320644. Models used are
courtesy of the UNC Dynamic Scene Benchmarks
(Cloth Simulation, Exploding Dragon, and Lion), the
Utah 3D Animation Repository (Fairy Forest), Marko
Dabrovic (Sibenik), and Anat Grynberg and Greg
Ward (Conference). We would like to thank Tero
Karras, Timo Aila, and Samuli Laine for releasing their
GPU ray tracer, and to thank Tor Aamodt and his lab
members for releasing GPGPU-Sim.

REFERENCES

[1] T. Ize, I. Wald, and S. G. Parker, “Asynchronous BVH con-
struction for ray tracing dynamic scenes on parallel multi-core
architectures,” in In Proceedings of the Eurographics Symposium
on Parallel Graphics and Visualization, 2007, pp. 101–108.

[2] I. Wald, W. R. Mark, J. Gunther, S. Boulos, T. Ize, W. Hunt,
S. G. Parker, and P. Shirley, “State of the art in ray tracing
animated scenes,” Computer Graphics Forum, vol. 28, no. 6, pp.
1691–1722, 2009.

[3] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha, “RT-
DEFORM: Interactive ray tracing of dynamic scenes using
BVH,” in Proceedings of IEEE Symposium on Interactive Ray
Tracing 2006, 2006, pp. 39–45.

[4] I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable
scenes using dynamic bounding volume hierarchies,” ACM
Transactions on Graphics, vol. 26, no. 1, pp. 6:1–6:18, 2007.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 13

[5] I. Wald, “On fast construction of SAH-based bounding volume
hierarchies,” in Proceedings of IEEE Symposium on Interactive
Ray Tracing 2007, 2007, pp. 33–40.

[6] S.-E. Yoon, S. Curtis, and D. Manocha, “Ray tracing dynamic
scenes using selective restructuring,” in Proceedings of Euro-
graphics symposium on rendering 2007, 2007, pp. 73–84.

[7] I. Wald, T. Ize, and S. G. Parker, “Fast, parallel, and asyn-
chronous construction of BVHs for ray tracing animated
scenes,” Computers & Graphics, vol. 32, no. 1, pp. 3–13, 2008.

[8] Y.-S. Kang, J.-H. Nah, W.-C. Park, and S.-B. Yang, “gkDtree:
A group-based parallel update kd-tree for interactive ray
tracing,” Journal of Systems Architecture, vol. 59, no. 3, pp. 166–
175, 2013.

[9] D. Kopta, T. Ize, J. Spjut, E. Brunvand, A. Davis, and
A. Kensler, “Fast, effective BVH updates for animated scenes,”
in Proceedings of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, 2012, pp. 197–204.

[10] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch, “Efficient BVH
construction via approximate agglomerative clustering,” in
Proceedings of the 5th High-Performance Graphics Conference,
2013, pp. 81–88.

[11] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst,
“Embree - a kernel framework for efficient CPU ray tracing,”
ACM Transactions on Graphics (SIGGRAPH 2014), vol. 33, no. 4,
pp. 143:1–143:8, 2014.

[12] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time KD-
tree construction on graphics hardware,” ACM Transactions on
Graphics (SIGGRAPH Asia 2008), vol. 27, no. 5, pp. 1–11, 2008.

[13] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha, “Fast BVH construction on GPUs.” Computer
Graphics Forum (EUROGRAPHICS 2008), vol. 28, no. 2, pp.
375–384, 2009.

[14] K. Garanzha, J. Pantaleoni, and D. McAllister, “Simpler and
faster HLBVH with work queues,” in Proceedings of the Confer-
ence on High Performance Graphics, 2011, pp. 59–64.

[15] T. Karras, “Maximizing parallelism in the construction of
BVHs, octrees, and k-d trees,” in Proceedings of the 4th conference
on High-Performance Graphics, 2012, pp. 33–37.

[16] T. Karras and T. Aila, “Fast parallel construction of high-
quality bounding volume hierarchies,” in Proceedings of the 5th
High-Performance Graphics Conference, 2013, pp. 89–99.

[17] I. Wald, “Fast Construction of SAH BVHs on the Intel Many
Integrated Core (MIC) Architecture,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 1, pp. 47–57,
2012.

[18] S. Woop, G. Marmitt, and P. Slusallek, “B-KD trees for hard-
ware accelerated ray tracing of dynamic scenes,” in GH ’06:
Proceedings of the 21st ACM SIGGRAPH/EUROGRAPHICS sym-
posium on Graphics hardware, 2006, pp. 67–77.

[19] S. Woop, E. Brunvand, and P. Slusallek, “Estimating perfor-
mance of a ray-tracing ASIC design,” in Proceedings of the 2006
IEEE/EG Symposium on Interactive Ray Tracing, 2006, pp. 7–14.

[20] M. J. Doyle, C. Fowler, and M. Manzke, “A hardware unit for
fast SAH-optimised BVH construction,” ACM Transactions on
Graphics (SIGGRAPH 2013), vol. 32, no. 4, pp. 66:1–66:13, 2013.

[21] J. Bigler, A. Stephens, and S. G. Parker, “Design for parallel
interactive ray tracing systems,” in Proceedings of IEEE Sympo-
sium on Interactive Ray Tracing 2006, 2006, pp. 187–196.

[22] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock,
D. Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison,
and M. Stich, “OptiX: a general purpose ray tracing engine,”
ACM Transactions on Graphics (SIGGRAPH 2010), vol. 29, no. 4,
pp. 66:1–66:13, 2010.

[23] J.-H. Nah, J.-S. Park, C. Park, J.-W. Kim, Y.-H. Jung, W.-C. Park,
and T.-D. Han, “T&I engine: traversal and intersection engine
for hardware accelerated ray tracing,” ACM Transactions on
Graphics (SIGGRAPH Asia 2011), vol. 30, no. 6, pp. 160:1–
160:10, 2011.

[24] C. Lauterbach, Q. Mo, and D. Manocha, “gProximity: Hi-
erarchical GPU-based operations for collision and distance
queries,” Computer Graphics Forum (EUROGRAPHICS 2010),
vol. 29, no. 2, pp. 419–428, 2010.

[25] J. Schmittler, S. Woop, D. Wagner, W. J. Paul, and P. Slusallek,
“Realtime ray tracing of dynamic scenes on an FPGA chip,”
in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS confer-
ence on Graphics hardware, 2004, pp. 95–106.

[26] S. Woop, J. Schmittler, and P. Slusallek, “RPU: a programmable
ray processing unit for realtime ray tracing,” ACM Transactions
on Graphics (SIGGRAPH 2005), vol. 24, no. 3, pp. 434–444, 2005.

[27] K. Ramani, C. P. Gribble, and A. Davis, “StreamRay: a stream
filtering architecture for coherent ray tracing,” in ASPLOS ’09:
Proceeding of the Architectural support for programming languages
and operating systems, 2009, pp. 325–336.

[28] J. Spjut, A. Kensler, D. Kopta, and E. Brunvand, “TRaX: a mul-
ticore hardware architecture for real-time ray tracing,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 28, no. 12, pp. 1802–1815, 2009.

[29] D. Kopta, J. Spjut, E. Brunvand, and A. Davis, “Efficient MIMD
architectures for high-performance ray tracing,” in ICCD 2010:
Proceedings of the 28th IEEE International Conference on Computer
Design, 2010, pp. 9–16.

[30] T. Aila and T. Karras, “Architecture considerations for tracing
incoherent rays,” in HPG’ 10: Proceedings of the Conference on
High Performance Graphics, 2010, pp. 113–122.

[31] W.-J. Lee, S.-H. Lee, J.-H. Nah, J.-W. Kim, Y. Shin, J. Lee, and
S.-Y. Jung, “SGRT: a scalable mobile GPU architecture based
on ray tracing,” in ACM SIGGRAPH 2012 Talks, 2012.

[32] W.-J. Lee, Y. Shin, J. Lee, J.-W. Kim, J.-H. Nah, S.-Y. Jung, S.-
H. Lee, H.-S. Park, and T.-D. Han, “SGRT: A mobile GPU
architecture for real-time ray tracing,” in Proceedings of the 5th
High-Performance Graphics Conference, 2013, pp. 109–119.

[33] J.-H. Nah, H.-J. Kwon, D.-S. Kim, C.-H. Jeong, J. Park, T.-D.
Han, D. Manocha, and W.-C. Park, “RayCore: A ray-tracing
hardware architecture for mobile devices,” ACM Transactions
on Graphics, vol. 33, no. 5, pp. 162:1–162:15, 2014.

[34] S. Woop, “A programmable hardware architecture for real-
time ray tracing of coherent dynamic scenes,” Ph.D. disserta-
tion, Sarrland University, 2007.

[35] B. C. Budge, J. C. Anderson, C. Garth, and K. I. Joy, “A
hybrid CPU-GPU implementation for interactive ray-tracing
of dynamic scenes,” University of California, Davis Computer
Science, Tech. Rep. CSE-2008-9, 2008.

[36] J.-H. Nah, Y.-S. Kang, K.-J. Lee, S.-J. Lee, T.-D. Han, and S.-
B. Yang, “MobiRT: an implementation of OpenGL ES-based
CPU-GPU hybrid ray tracer for mobile devices,” in ACM
SIGGRAPH ASIA 2010 Sketches, 2010, pp. 50:1–50:2.

[37] J. Bikker and J. van Schijndel, “The brigade renderer: A path
tracer for real-time games,” International Journal of Computer
Games Technology, 2013.

[38] B. Budge, T. Bernardin, J. A. Stuart, S. Sengupta, K. I. Joy, and
J. D. Owens, “Out-of-core data management for path tracing
on hybrid resources,” Computer Graphics Forum, vol. 28, no. 2,
pp. 385–396, 2009.

[39] A. Pajot, L. Barthe, M. Paulin, and P. Poulin, “Combinatorial
bidirectional path-tracing for efficient hybrid CPU/GPU ren-
dering,” Computer Graphics Forum, vol. 30, no. 2, pp. 315–324,
2011.

[40] LuxRender, “Luxrays.” [Online]. Available: http://www.
luxrender.net/wiki/LuxRays

[41] A. Reshetov, “Faster ray packets - triangle intersection through
vertex culling,” in Proceedings of IEEE Symposium on Interactive
Ray Tracing 2007, 2007, pp. 105–112.

[42] J. Snyder and A. Barr, “Ray tracing complex models containing
surface tessellations,” in ACM SIGGRAPH Computer Graphics,
vol. 21, 1987, pp. 119–128.

[43] J.-H. Nah, W.-C. Park, Y.-S. Kang, and T.-D. Han, “Ray-box
culling for tree structures,” Journal of Information Science and
Engineering, vol. 29, no. 6, pp. 1211–1225, 2013.

[44] I. Wald, “Realtime ray tracing and interactive global illumina-
tion,” Ph.D. dissertation, Sarrland University, 2004.

[45] T. Möller and B. Trumbore, “Fast, minimum storage ray-
triangle intersection,” Journal of Graphics Tools, vol. 2, no. 1,
pp. 21–28, 1997.

[46] T. Aila and S. Laine, “Understanding the efficiency of ray
traversal on GPUs,” in HPG ’09: Proceedings of the Conference
on High Performance Graphics, 2009, pp. 145–149.

[47] S. Laine, “Restart trail for stackless BVH traversal,” in HPG
’10: Proceedings of the Conference on High Performance Graphics,
2010, pp. 107–111.

[48] J.-H. Nah and D. Manocha, “SATO: Surface-area traversal or-
der for shadow ray tracing,” Computer Graphics Forum, vol. 33,
no. 6, pp. 167–177, 2014.

http://www.luxrender.net/wiki/LuxRays
http://www.luxrender.net/wiki/LuxRays

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS , VOL. X, NO. X, 2014 14

[49] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “An-
alyzing CUDA workloads using a detailed GPU simulator,”
in Proceedings of IEEE International Symposium on Performance
Analysis of Systems and Software 2009, 2009, pp. 163–174.

[50] N. Muralimanohar, R. Balasubramonian, and N. Jouppi, “Opti-
mizing NUCA organizations and wiring alternatives for large
caches with CACTI 6.0,” in MICRO 40: Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture,
2007, pp. 3–14.

[51] D. A. Patterson and J. L. Hennessy, Computer Organization
and Design: The Hardware/Software Interface, 4th ed. Morgan
Kaufmann Publishers Inc., 2008.

[52] A. Mahesri, D. Johnson, N. Crago, and S. J. Patel, “Tradeoffs
in designing accelerator architectures for visual computing,”
in MICRO 41: Proceedings of the 41st annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, 2008, pp. 164–175.

[53] J.-W. Kim, J.-M. Kim, M. Lee, and T.-D. Han, “Asynchronous
BVH reconstruction on CPU-GPU hybrid architecture,” in
ACM SIGGRAPH 2014 Posters, 2014, pp. 91:1–91:1.

[54] M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in
bounding volume hierarchies,” in HPG’ 09: Proceedings of the
Conference on High Performance Graphics, 2009, pp. 7–13.

[55] T. Aila, S. Laine, and T. Karras, “Understanding the efficiency
of ray traversal on GPUs – Kepler and Fermi addendum,”
NVIDIA Corporation, NVIDIA Technical Report NVR-2012-
02, 2012.

[56] I. Wald, C. Benthin, and P. Slusallek, “Distributed interactive
ray tracing of dynamic scenes,” in IEEE Symposium on Parallel
and Large-Data Visualization and Graphics, 2003, pp. 77–86.

[57] M. Ernst and S. Woop, “Ray tracing with shared-plane bound-
ing volume hierarchies,” Journal of Graphics, GPU, and Game
Tools, vol. 15, no. 3, pp. 141–151, 2011.

[58] C. Schissler, R. Mehra, and D. Manocha, “High-order diffrac-
tion and diffuse reflections for interactive sound propagation
in large environments,” ACM Transactions on Graphics (SIG-
GRAPH 2014), vol. 33, no. 4, pp. 39:1–39:12, 2014.

Jae-Ho Nah received the B.S., M.S., and
Ph.D. degrees from the Department of Com-
puter Science, Yonsei University in 2005,
2007, and 2012, respectively. Currently, he
is a senior research engineer at LG Elec-
tronics. His research interests include ray
tracing, rendering algorithms, and graphics
hardware.

Jin-Woo Kim is a PhD candidate of the Me-
dia System Laboratory at Yonsei University,
Seoul, Korea. He received the BS degree
from Sangmyung University, Seoul, Korea, in
2006. His research interests include 2D/3D
graphics hardware, real-time ray tracing, and
GPGPU based parallel programming.

Junho Park currently works at Humax, Ko-
rea. He received his BS and MS degrees
from Soongsil University and Yonsei Univer-
sity, respectively. His main interests include
ray tracing, GPGPU, and computer vision.

Won-Jong Lee is a senior researcher of the
Processor Architecture Lab at Samsung Ad-
vanced Institute of Technology. He received
his PhD and M.S. degree in computer sci-
ence from Yonsei University, Seoul, Korea,
in 2001 and his B.S. degree in computer en-
gineering from Inha University, Incheon, Ko-
rea, in 1999. His research interests include
mobile GPU, graphics hardware, ray tracing,
parallel and distributed rendering. Currently
he is leading a project on designing a mobile

GPU architecture based on ray tracing.
Jeong-Soo Park received the B.S., M.S.,
and Ph.D. degrees from the Department
of Computer Science, Yonsei University in
2003, 2005, and 2014, respectively. Cur-
rently, he is a researcher of the Processor Ar-
chitecture Lab at Samsung Advanced Insti-
tute of Technology. His research interests in-
clude 3D graphics hardware, programmable
shader architecture, and mobile 3D graphics.

Seok-Yoon Jung received the B.S. and M.S.
degrees in control and instrumentation en-
gineering and the Ph.D. degree in electri-
cal engineering from Seoul National Uni-
versity, Seoul, Korea, in 1987, 1989, and
1998, respectively. Since February 1989, he
has been a Member of the Research Staff
of Samsung Advanced Institute of Technol-
ogy, Kyungki, Korea. His current research
interests include image processing, image
and video data compression, and three-

dimensional graphics modeling and representation.

Woo-Chan Park received M.S and Ph.D de-
gree in Computer Science, Yonsei University
in 1995 and 2000, respectively. Currently, he
is a professor at the School of Computer En-
gineering, Sejong University, Seoul, Korea.
His research interests include 3D rendering
processor architecture, ray tracing acceler-
ator, parallel rendering, high performance
computer architecture, computer arithmetic,
and ASIC design.

Dinesh Manocha is currently the Phi Delta
Theta/Mason Distinguished Professor of
Computer Science at the University of North
Carolina at Chapel Hill. He has co-authored
more than 380 papers in the leading con-
ferences and journals on computer graphics,
robotics, and scientific computing. He has
also served program chair for many confer-
ences and editorial boards of many leading
journals. Some of the software systems re-
lated to collision detection, GPU-based al-

gorithms and geometric computing developed by his group have
been downloaded by more than 150,000 users and are widely used
in the industry. Manocha has received awards including Alfred P.
Sloan Fellowship, NSF Career Award, Office of Naval Research
Young Investigator Award, and 14 best paper awards at the leading
conferences. He is a Fellow of ACM, AAAS, and IEEE, and received
Distinguished Alumni Award from Indian Institute of Technology,
Delhi.

Tack-Don Han is a professor in the De-
partment of Computer Science at Yonsei
University, Korea. His research interests in-
clude high performance computer architec-
ture, media system architecture, and wear-
able computing. He received Ph.D. in Com-
puter Engineering from the University of
Massachusetts.

	Introduction
	Previous Work
	Asynchronous BVH Construction
	Dedicated Ray-Tracing Hardware Architecture
	CPU-GPU Hybrid Ray-Tracing System
	Primitive Culling Algorithms for Ray Tracing

	Proposed Architecture
	System Organization
	Traversal Scheme using PrimAABBs
	Geometry and Tree Update Unit
	Traversal and Intersection Unit
	Cache-Data Reuse Scheme

	Simulation Results and Analysis
	The Effect of the Ray-PrimAABB Test Scheme and Asynchronous BVH Construction
	Hardware Complexity and Area Estimation
	Simulation Results in Dynamic Scenes
	Simulation Results in Static Scenes
	Discussion and Limitations

	Conclusions and Future Work
	References
	Biographies
	Jae-Ho Nah
	Jin-Woo Kim
	Junho Park
	Won-Jong Lee
	Jeong-Soo Park
	Seok-Yoon Jung
	Woo-Chan Park
	Dinesh Manocha
	Tack-Don Han

