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Figure 1: Our high-order diffraction and diffuse reflection algorithms are used to generate plausible sound effects at interactive rates on
large static and dynamic scenes: (left) interior office (154K triangles); (center) oil refinery (245K triangles); (right) city (254K triangles).

Abstract

We present novel algorithms for modeling interactive diffuse re-
flections and higher-order diffraction in large-scale virtual environ-
ments. Our formulation is based on ray-based sound propagation
and is directly applicable to complex geometric datasets. We use an
incremental approach that combines radiosity and path tracing tech-
niques to iteratively compute diffuse reflections. We also present
algorithms for wavelength-dependent simplification and visibility
graph computation to accelerate higher-order diffraction at runtime.
The overall system can generate plausible sound effects at interac-
tive rates in large, dynamic scenes that have multiple sound sources.
We highlight the performance in complex indoor and outdoor envi-
ronments and observe an order of magnitude performance improve-
ment over previous methods.
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1 Introduction

Virtual environment technologies are widely used in different ap-
plications, including engineering design, training, architecture, and
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entertainment. In order to improve realism and immersion, it is im-
portant to augment visual perceptions with matching sound stimuli
and auralize the sound fields. The resulting auditory information
can significantly help the user evaluate the environment in terms of
spaciousness and sound localization.

In this paper, we address the problem of interactive sound propaga-
tion and rendering in large-scale virtual environments composed of
multiple moving sources and objects. These include large urban en-
vironments spanning kilometers and made up of tens or hundreds of
buildings with multiple moving vehicles. Other scenarios include
large indoor environments such as auditoriums, offices, or factories
with volumes up to tens or hundreds of thousands of cubic meters.
The model complexity and large dimensions of these spaces result
in many acoustic effects including reflections, scattering between
the objects, high-order diffraction, late reverberation, echoes, etc.

The most accurate propagation algorithms for modeling various
acoustic effects are based on numerically solving the acoustic wave
equation. However, the complexity of these methods increases as a
linear function of the surface area of the primitives or the volume
of the acoustic space, and as at least a cubic function of the max-
imum simulated frequency. Recently, many wave-based precom-
putation techniques have been proposed for interactive applications
[James et al. 2006; Tsingos et al. 2007; Raghuvanshi et al. 2010;
Mehra et al. 2013; Yeh et al. 2013]. However, current algorithms
are limited to static scenes and the computational and memory re-
quirements increase significantly for large virtual environments.

Some of the widely used techniques for interactive sound propaga-
tion are based on geometric acoustics (GA) and use computations
based on ray theory. These are used to compute early reflections and
diffractions in static scenes [Funkhouser et al. 1998; Tsingos et al.
2001; Chandak et al. 2009] or to precompute reverberation effects
[Tsingos 2009; Antani et al. 2012b]. A major challenge is to ex-
tend these GA techniques to complex virtual worlds with multiple
moving objects or sources. In a large environment, surface scatter-
ing and edge diffraction components tend to overshadow specular
reflections after a few orders of reflection [Kuttruff 1995]. Recent
advances in ray tracing are used to develop fast sound propaga-
tion algorithms for dynamic scenes [Lentz et al. 2007; Pelzer and
Vorländer 2010; Taylor et al. 2012], but these methods still cannot
compute compute high-order edge diffraction or diffuse reflections
at interactive rates.
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Main Results: We present a novel geometric ray-based interac-
tive sound propagation approach to generating plausible sound ef-
fects in large, complex virtual environments. Our formulation is
directly applicable to widely-available, detailed geometric datasets.
We compute early reflections and diffractions using GA and late
reverberation using statistical techniques to automatically handle
large dynamic scenes. In order to achieve interactive performance,
we present three new algorithms (Section 3):

1. Interactive diffuse reflections: We present an iterative ap-
proach that uses a combination of path tracing and radiosity
techniques to compute diffuse reflections. We exploit spa-
tial and temporal coherence to reuse some of the rays traced
during previous frames. We observe an order of magnitude
improvement over prior algorithms.

2. Higher-Order Edge Diffraction: We precompute a global
edge visibility graph. At runtime, we traverse the graph and
compute the higher-order diffraction contributions based on
the uniform theory of diffraction.

3. Automatic Simplification for Edge Diffraction: We present
a wavelength-dependent simplification scheme to signifi-
cantly reduce the number of diffraction edges in a complex
scene. This results in a first practical algorithm to perform
higher-order diffraction in complex scenes.

We demonstrate the performance of our algorithm in large urban
scenes with tens of buildings, as well as complex indoor scenes
corresponding to factories and offices with hundreds of obstacles
(Section 4). The performance scales with the number of cores, and
we are able to perform interactive sound propagation and rendering
at 15 − 50 frames per second using a 4-core CPU. Our approach
scales logarithmically with the model complexity of the scene and
linearly with the number of moving sources and objects. Its accu-
racy for indoor scenes is comparable to prior GA techniques (Sec-
tion 5). To the best of our knowledge, this is the first approach that
can generate plausible acoustic effects for large and complex virtual
environments at interactive rates.

2 Related Work

In this section, we give a brief overview of prior work on sound
propagation. There is considerable literature on acoustical mod-
eling and propagation techniques for room acoustics [Kuttruff
2007] and outdoor environments [Attenborough et al. 2007]. The
most accurate algorithms for sound propagation are based on solv-
ing the acoustic wave equation using numerical techniques, in-
cluding finite-difference time-domain method [Savioja 2010], the
finite-element method [Thompson 2006], the boundary-element
method [Gumerov and Duraiswami 2009], adaptive rectangular
decomposition [Raghuvanshi et al. 2010], the equivalent source
method [Mehra et al. 2013], etc. These are primarily used for
lower frequencies, and combined with GA techniques to simulate
for higher frequencies [Yeh et al. 2013]. Other recent work enables
source and listener directivity for wave-based acoustics [Mehra
et al. 2014]. These techniques are limited to static scenes, and the
precomputation cost can be extremely high (orders of petaflops) for
large virtual environments.

GA techniques have been around since 1950s and have been exten-
sively studied. The commonly used techniques are based on image
source methods [Allen and Berkley 1979; Borish 1984] and ray
tracing [Krokstad et al. 1968; Vorländer 1989]. Many algorithms
have also been designed for interactive sound propagation based on
beam tracing [Funkhouser et al. 1998], frustum tracing [Taylor et al.
2009; Chandak et al. 2009], and ray tracing [Lentz et al. 2007; Tay-
lor et al. 2012; Schissler and Manocha 2011]. Aural proxy objects
have also been investigated for efficiently computing early reflec-

tions, and local visibility and depth used to approximate directional
late reverberation [Antani and Manocha 2013].

Some of the commonly used techniques to approximate edge
diffraction are based on the uniform theory of diffraction (UTD)
[Kouyoumjian and Pathak 1974] and the Biot-Tolstoy-Medwin
(BTM) model [Svensson et al. 1999]. However, current interactive
diffraction algorithms are limited to static scenes [Tsingos et al.
2001; Antani et al. 2012a] or first-order diffraction in dynamic
scenes [Taylor et al. 2012]. Many techniques have been proposed
for diffuse acoustic reflections based on ray tracing [Lentz et al.
2007; Alarcao et al. 2009; Taylor et al. 2009] and the acoustic ren-
dering equation [Siltanen et al. 2007; Antani et al. 2012b]. Other in-
teractive algorithms use multi-resolution [Wand and Straßer 2004]
and perceptual [Moeck et al. 2007] techniques to accelerate audio
rendering of complex scenes.

3 Overview

In this section, we present novel techniques to compute fast diffuse
reflections, higher-order edge diffraction, and automatic simplifica-
tion of large datasets. Ray tracing has been widely used for offline
and interactive sound propagation [Krokstad et al. 1968; Vorländer
1989; Bertram et al. 2005; Taylor et al. 2012]. In ray tracing, prop-
agation paths are computed by generating rays from each source or
receiver position and propagating them through the scene, modeling
reflection and diffraction effects.

Our approach is targeted towards large and spacious models, and
assumes homogeneous media and a constant sound speed. We use
geometric acoustic (GA) techniques to accurately compute early
reflections (e.g. up to 10 orders) and assume that the surface primi-
tives are large compared to the wavelength. We use statistical meth-
ods to compute late reverberation.

We build on recent advances in interactive ray tracing for visual
and sound rendering. We use ray tracing to accelerate the image-
source method for computing early specular reflections [Vorländer
1989] and use the uniform theory of diffraction (UTD) to approx-
imate edge diffraction. Frequency-dependent effects are modeled
using different absorption and scattering coefficients for discrete
frequency bands.

3.1 Iterative Diffuse Reflections

A diffuse reflection occurs when sound energy is scattered into non-
specular directions. The diffuse sound-energy density w at any
point ~p in space at a time t in is given by Equation (1), where L′

is the distance from the surface element dS′ to the listener, ς ′′ is
the angle of the sound wave which radiates from the surface ele-
ment dS′, α(~p′) is the reflection coefficient as a function of ~p, B is
the irradiation strength, c is the speed of sound, and wd(~p, t) is the
direct sound contribution from the sound source [Embrechts 2000;
Nironen 2004]:

w(~p, t) =
1

πc

∫ ∫
S

α(~p′)B

(
~p′, t− L′

c

)
cos ς ′′

L′2
dS′ + wd(~p, t).

(1)
In order to handle frequency-dependent absorption, α(~p′) may be
represented as a vector of attenuation values for discrete frequency
bands. In sound rendering it is important to model the time and
phase dependence of sound waves. The time dependence is repre-
sented by the L′/c term that computes the delay time due to that
propagation along that path. This delay time is used to determine
the phase relationship between the original and reflected sound and
is responsible for producing acoustic phenomena like echoes.
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Figure 2: An example set of 3rd-order diffuse ray paths. Rays
leave the sound source S, hit the sequence of surface patches
{T0(r0, s0), T1(r1, s1), T2(r2, s2)}, then hit the listener L. Rays
with dashed paths are from previous frames, while rays with solid
paths are from the current frame. Our diffuse reflection algorithm
groups these coherent rays together because they hit the same se-
quence of surface patches. The sound contribution at the listener
is averaged over the time period, using rays from the previous and
current frames.

Since there is no closed-form solution for Equation (1) for gen-
eral scenes, traditional diffuse sound algorithms approximate this
integral using numerical techniques. A commonly used method,
diffuse path tracing [Embrechts 2000], traces many random rays
from each sound source and diffusely reflects these rays through
the scene to solve the acoustic rendering equation [Siltanen et al.
2007; Antani et al. 2012b]. An intersection test is performed for
each ray to calculate its intersection with the listener, who is repre-
sented by a sphere the size of a human head. Rays that intersect with
a given listener position contribute to the final impulse response for
that sound source at that listener’s location. The path tracing algo-
rithm can generate accurate results and is frequently used for offline
acoustic simulation. Since diffuse path tracing is a Monte-Carlo
method, it requires a very high number of ray samples to gener-
ate accurate results. Therefore, current techniques for interactive
diffuse reflections are limited to very simple models and can only
compute 1− 3 orders of reflections [Lentz et al. 2007; Taylor et al.
2009]. Some extensions have been proposed such as ”diffuse rain”
[Dross et al. 2007], which can drastically increase the number of
ray contributions by generating an additional reflection from each
ray hit point to the listener.

In order to accelerate diffuse reflection computation, we use ideas
from radiosity algorithms that are widely used in visual and sound
rendering. Radiosity is an alternate method to path tracing that
models diffuse reflections by decomposing the scene into small sur-
face patches, computing view factors (or form factors) for each pair
of patches, and computing the intensity for each patch as the sum
of the contributions from all other patches. Radiosity has also been
used to compute sound fields [Franzoni et al. 2001]. These ap-
proaches discretize the inner integral of Equation (1) into the fol-
lowing equation for a single surface element [Nironen 2004]:

Ii(t) =
∑
j:j 6=i

mj→iαjIj
(
t− pj→i

c

)
∆Sj + I0→i(t), (2)

where Ii(t) is the incident sound intensity at surface patch i at time
t, I0→i(t) is the direct contribution from the source at patch i at
time t, Ij is the contribution from a surface patch j, and mj→i is
the view factor between patches j and i. The surface intensities for
all patches in the scene are added to compute the resulting sound
field at a listener location ~p at time t:

w(~p, t) =
∑
i

Ii(t)vi(~p, t), (3)

where vi(~p, t) is the visibility function for patch i that has range
[0, 1], which indicates the fraction of that patch visible to point
~p. This formulation of sound-field computation benefits from less
sampling noise than path tracing, but it also requires a high de-
gree of surface subdivision to accurately solve the acoustic render-
ing equation. In addition, current radiosity-based algorithms are
mainly limited to static environments, because recomputing view
factors at runtime is expensive, and because the memory and time
complexity grows with the surface area of the scene. This makes
them unsuitable for large-scale interactive diffuse sound propaga-
tion in dynamic scenes.

Our approach combines path tracing with radiosity-like patch sub-
division to reduce sampling noise for interactive diffuse reflec-
tions. We reuse the rays traced during previous frames for the cur-
rent frame. We assume that the changes in the locations of sound
sources, listeners, and dynamic obstacles are small between succes-
sive frames. Therefore, rays that hit the same sequence of surface
patches during different frames are grouped together. The grouped
rays’ contributions are summed to compute a better estimate of the
reflected sound intensity Ii for that sequence of surface patches, as
shown in Fig. 2. Compared with standard path tracing, our ap-
proach reduces the number of rays required to compute accurate
diffuse sound and improves temporal coherence of the resulting
sound field. By shooting fewer rays per frame, we reduce compu-
tation time and improve the interactivity of path tracing for sound
propagation.

Visual vs. Sound Rendering: The use of frame-to-frame co-
herence along with combining path tracing and radiosity methods
has been investigated in visual rendering [Krivanek et al. 2008].
This includes caching of diffuse illuminance data (e.g. irradiance
caching) to accelerate the computation of global illumination. The
notion of reusing ray paths has been used in visual rendering tech-
niques based on frameless rendering and progressive refinement.
However, sound rendering differs from visual rendering in several
ways. In particular, sound rendering involves computation of phase
and time delay information, which results in different formulations.
Additionally, radiosity algorithms for visual rendering require a fine
subdivision to capture abrupt changes in the view factor such as
with hard shadows [Krivanek et al. 2008]. On the other hand, the
incoherence of diffuse sound rays implies that changes in the in-
cident intensity are usually gradual. This allows us to use larger
surface patches in sound rendering [Nironen 2004].

3.1.1 Subdivision

As part of a preprocessing step, we subdivide the triangles in the
scene into a set of surface patches. This operation can also be done
efficiently at runtime if the scene geometry deforms. For the subdi-
vision, we ensure that each patch is roughly the same size and meets
minimum spatial size criteria. We use Barycentric coordinates to
partition each triangle in the input scene into a grid of quadrilateral
and triangular patches. Patches are arranged as a 2-dimensional grid
of entries with indices (r, s), as shown in Fig. 3. We do not store
these patches explicitly; instead we use the Barycentric coordinates
of each ray-triangle intersection, along with precomputed informa-
tion about the triangle, to determine which surface patch contains
the intersection point at runtime. This formulation requires only a
few extra bytes per triangle.

In order to precompute the subdivision for a given triangle T , we
select a vertex k of T as the key vertex for that triangle: the vertex
is the one that is incident to the longest altitude of T . The length
of the altitude from k, d, is used to determine the number of rows
in the subdivision nr = dd/le, where l is a parameter used to gov-
ern the resolution of the subdivision. In addition, the number of
columns for the largest row is ns = de/le where e is the length of
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Figure 3: An example triangle subdivision. The triangle is subdi-
vided into an array of indexed patches (r, s) based on the subdi-
vision resolution l. We compute the ray intersection point ~p with
Barycentric coordinates (λk, λa, 1 − λk − λa), (e.g. (r, s) =
(1, 3)).

the edge opposite k. The number of columns nr
s for the rth row is

determined by

nr
s =

⌈
nr − r
nr

ns

⌉
. (4)

In order to determine this subdivision at runtime, we only store the
values of nr , ns, and the index of key vertex k for each triangle.
The choice of subdivision size l determines the size of the patches
and accuracy of the approach, as in radiosity-based algorithms. In
general, l should be chosen such that the incident sound intensity
doesn’t change too much across adjacent patches.

3.1.2 Diffuse Path Cache

We maintain a separate hash-table cache of diffuse reflectance
data for each sound source. This cache is used to store
the combined contributions of many sound rays from previous
frames that are grouped based on the surface subdivision. Each
cache entry corresponds to a unique series of surface patches
{T0(r0, s0), ..., Tn(rn, sn)}, where each element of the series indi-
cates one of the triangles Ti and a surface patch (ri, si) on Ti. This
entry represents the n+ 1 diffuse reflections that have occurred for
rays emitted along the path to the listener.

Each cache entry also stores the set of values {η, µ, α̂, δ̂}, η is the
number of rays following this entry’s path that have hit the listener;
µ is the total number of rays emitted from the source for all frames,
while this entry was in the cache; α̂ =

∑
α is the sum of the

total frequency-dependent attenuation α ∈ [0,1] (due to the n+ 1
diffuse reflections for all rays that have traveled the path for this
entry); and δ̂ =

∑
δ is the sum of the path lengths δ for all rays

that have hit this sequence of surface patches while the entry was
in the cache. From these values, the average incident sound source
intensity Ii for this patch sequence i received at the listener as a
fraction of the total emitted energy can be computed by:

Ii =
η

µ

α̂

η
. (5)

The value of η/µ estimates the average of the combined mj→i,
Ij , and I0→i(t) terms from (2). Those terms together determine
the frequency-independent fraction of source energy reflected from

a surface patch, which is the same value estimated by η/µ. α̂/η
approximates the averageαj term from (2). To compute the average
path length δ̄ for a cache entry, we use:

δ̄ =
δ̂

η
. (6)

This average path length is divided by the speed of sound c in the
propagation medium to determine the average delay time for this
path.

3.1.3 Runtime

At the beginning of each simulation step, we trace random rays
from each sound source position and diffusely reflect those rays
through the scene to an arbitrary maximum depth (e.g. 10), as in
traditional path tracing. For each ray-triangle intersection, we first
find the surface patch, T (r, s), for the intersection point ~p on tri-
angle T . We compute the Barycentric coordinates (λ0, λ1, λ2) of
~p with respect to triangle T . Next, we choose two of the three
components of the Barycentric coordinates (λk, λa) from the set
(λ0, λ1, λ2) in order to define the subdivision axes. λk is the com-
ponent corresponding to the key vertex k, and λa is the component
for the vertex a that is to the left of k on triangle T . Given λk

and λa, we can compute the row and column indices (r, s) for the
surface patch containing ~p, as shown in Fig. 3: r = bλk · nrc,
s = bλa · nr

sc. This patch T (r, s) is added to the patch sequence
for the ray that is currently being propagated.

When the ray is reflected, the outgoing ray is tested to see if it inter-
sects the listener’s detection sphere. If so, the sequence of previous
surface patches, {T0(r0, s0), ..., Tn(rn, sn)}, where reflections oc-
curred along this path is used to access the diffuse cache. If there
was an existing cache entry for that specific patch sequence, the
entry is updated with the contribution for that ray:

ηnew = η + 1; α̂new = α̂+ αnew; δ̂new = δ̂ + δnew. (7)

If there is no entry corresponding to this sequence of patches, a new
entry is inserted into the cache and the corresponding parameters
are set as η = 1, µ = 0, α̂ = αnew, δ̂ = δnew.

Impulse Response Computation: After all the rays have been
traced from the source and the cache entries updated for rays that hit
the listener, the cache contains entries that correspond to the accu-
mulated contribution of groups of rays that have traveled along sim-
ilar paths to the listener during the current frame or previous frames.
Next, we compute the final impulse response for this source-listener
combination from the cache by iterating through all entries and gen-
erating a delayed impulse for each entry. For each entry, the value
of µ is increased by the total number of rays emitted from the source
during this frame. We use equation (5) to compute the incident in-
tensity Ii for this cache entry. If this intensity value is less than
some threshold κ, then very few rays have hit the sequence of sur-
face patches corresponding to the cache entry in recent frames. In
this case, the cache entry is removed because it does not signifi-
cantly contribute to the final impulse response at the listener’s lo-
cation. We use a cutoff threshold of κ = −60dB or 1/1000th of
the original source’s energy; this threshold is commonly used in
measuring the reverb time, RT60, of an acoustical space [Eyring
1930]. Cache entries that exceed κ in energy contribute to the out-
put impulse response. The delay time for this entry’s contribution
is computed using the average path length from equation (6) and
the speed of sound. Finally, this contribution is added to the output
sound field at the listener’s location using equation (3), where the
value of the visibility function vi is always 1 as all of the sound
source contributions for the path are known to intersect the listener.
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Figure 4: A top-down view of a portion of a diffraction edge visibil-
ity graph for a small village scene, shown here for edge E. Edges
e1..10 are visible to edgeE and intersect the gray-shaded areas that
represent the shadow regions for E. Our approach only considers
diffraction effects in the shadow regions. These regions are defined
as the set of points where only one of the planes that contain the
neighboring triangles for E has a normal pointing towards a given
point. EdgeE must also intersect the shadow regions for each edge
e1..10 for those edge pairs to be stored in the visibility graph.

In order to avoid storing reflectance data that is no longer accu-
rate for the current scene configuration, we bound the maximum
age in seconds of the data stored in the cache. Any cache entry
that is older than some threshold time τ in seconds is removed.
This threshold determines the maximum temporal span of the mov-
ing average from equations (5) and (6) and the maximum response
time for changes in the scene configuration. A larger value for τ
increases the accuracy for the estimate of Ii by using a bigger aver-
aging window and more rays. However, this may not be consistent
with the current scene configuration if sources, listeners, or objects
in the scene change position abruptly. A small value for τ requires
more rays to be traced per frame to maintain accurate output, since
the temporal averaging for values stored in the cache will have less
effect.

Incremental Computation: This diffuse path caching approach
incrementally computes a moving average of the incident intensity
Ii(t) from equation (2) for each sequence of surface patch reflec-
tions that arrive at the listener. We sample these values using tradi-
tional path tracing, but use a radiosity-like subdivision to take ad-
vantage of the coherence of rays from previous frames and to group
the rays based on the sequence of reflections that have occurred.
By grouping rays over many frames and reusing those results, we
avoid undersampling artifacts, yet need far fewer rays emitted from
the sound sources, thereby reducing the time needed to compute
realistic diffuse reflections. Like radiosity-based algorithms, our
method converges to traditional diffuse path tracing with a suitably
small subdivision resolution l, However, if l is too small, it may
require a greater number of rays to be traced and a larger diffuse
path cache. In this case, fewer rays are grouped together and the
effect of path reuse is reduced, resulting in a smaller benefit over
traditional diffuse path tracing.

3.2 Edge Visibility Graph for High-Order Diffraction

In order to model edge diffraction, we use an approximation based
on the uniform theory of diffraction (UTD), which has been used
in interactive geometric sound propagation systems [Tsingos et al.
2001; Taylor et al. 2009; Taylor et al. 2012; Schissler and Manocha
2011]. However, these algorithms are limited to either static scenes
or can only compute first order edge diffraction in dynamic scenes.
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Figure 5: A second-order diffraction path. Source image positions
i1 and i2 are only valid if they lie behind the plane formed by the
last image position and the current edge. The diffracted sound takes
the shortest path over the edges and is valid only if the image posi-
tions lie on the edge(s) and if the path is not obstructed.

The problem of finding high-order diffraction paths efficiently is
difficult due to the number of edge pairs that need to be consid-
ered. A naive approach has running time that can be exponential
in the maximum diffraction order. This is due to the fact that at
each level of recursive diffraction, all other diffraction edges in the
scene must be considered. Prior methods have used beam tracing
[Tsingos et al. 2001] or frustum tracing [Taylor et al. 2009] to com-
pute secondary diffraction edge visibility at runtime. However, this
becomes expensive for more than 1st order diffraction in complex
scenes, as a large number of complex beam or frustum intersection
tests are required.

We present a novel algorithm to compute high-order diffraction
paths efficiently using a preprocessed edge visibility graph. This
graph structure minimizes the number of diffraction edges that need
to be considered at runtime and avoids any runtime edge-edge vis-
ibility queries. Most importantly, our approach is valid for any
source or listener positions; the visibility graph can be computed
once, between all edges of static objects, and then used for all scene
configurations. Visibility graphs have been used to accelerate the
computation of specular reflections [Funkhouser et al. 1998; Chan-
dak et al. 2009], though our formulation is different.

We compute one visibility graph for all edges of all static objects
in the scene. Moreover, a separate visibility graph is computed for
the edges of each dynamic object. Our formulation does not, how-
ever, take into account the relative visibility of edges of two dif-
ferent dynamic objects or of one static and one dynamic object.
Furthermore, we assume that dynamic objects undergo rigid trans-
formations, and that a precomputed visibility graph for that object’s
static mesh will remain valid. Our formulation allows a simple
graph search to be performed at runtime to find high-order diffrac-
tion paths that occur within a single graph. We do not consider the
visibility between edges belonging to different visibility graphs.

Preprocessing: During the preprocessing step, each edge in a mesh
is classified as a diffracting edge or non-diffracting edge based on
the angle between the edges’ neighboring triangles. We compute a
graph data structure containing information about which edges are
visible to each of the diffraction edges using region-based visibility
algorithms [Antani et al. 2012a]. For each diffraction edge in the
mesh, we check all other diffraction edges to see whether they sat-
isfy the orientation criteria for mutually diffracting edges, as shown
in Fig. 4. If at least some part of either edge in a pair is behind
the plane of the neighboring triangles for the other edge, there is
the possibility that diffraction can occur over that edge pair. This
test is used to cull edge pairs that cannot be combined as diffrac-
tion edges. If two edges can form a diffraction path and are visible
to each other, we add a link to the graph structure between these
edges. Fig. 4 shows the visible edges for a single edge in an exam-
ple visibility graph.
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Figure 6: Stages of our simplification algorithm: surface-voxelization of input mesh; isosurface extractions; surface decimation based on
edge-collapses; merge collinear diffraction edges; visibility graph computation

Runtime Computation: At runtime, our algorithm uses the pri-
mary rays traced in the diffuse step to determine a set of triangles
visible to each source. For each visible triangle, we check to see
if it has any diffraction edges. If so, we search the corresponding
visibility graph, moving towards the listener, with that edge as the
starting point. The recursive graph search proceeds in a depth-first
manner until a maximum depth is reached, at which point the search
backtracks and checks other sequences of edges. At each step in the
graph search, all diffraction edges that were preprocessed as visi-
ble from the current diffraction edge are recursively checked to see
if there is a path to the listener. For each edge, we first compute
the shortest path between the source and the listener over that edge,
then determine the point of closest approach on the edge to the line
connecting the source and listener [Economou et al. 2013]. This
set of closest points represents the source image positions on each
edge in a series of diffractions. A neighboring edge in the graph
is checked for higher-order diffraction paths if the point of closest
approach on the edge lies on the interval of that edge, and if that
point is contained within the previous edge’s diffraction shadow re-
gion, as shown in Fig. 5. Like previous methods, we only consider
diffraction that occurs in the shadow region for an edge [Tsingos
et al. 2001]. A point is contained in the shadow region for an edge
if it is behind the plane formed by the previous image source po-
sition and the edge and is in front of the triangle that defines the
shadow region boundary. These simple, fast tests enable us to avoid
path validation checks for a large fraction of the potential diffrac-
tion paths.

Finally, if the listener is contained within the next diffraction
shadow region, we validate the diffraction path to that listener by
tracing rays between the previously computed sequence of image
positions on the edges. If the ray traced between two consecu-
tive image source positions does not hit an obstacle, that segment
of the path is determined to be valid. If the entire path from the
source to listener over the sequence of edges is found to be unob-
structed, then we compute a frequency-dependent attenuation, us-
ing the UTD model, for that path to account for diffraction. Since
the UTD attenuation from a single edge diffraction only depends
on the local edge geometry and the previous and next source image
positions, the attenuation can be computed separately for each edge
ej along a diffraction path. Multiplying the attenuation coefficients
for all edges in a path produces the total attenuation due from the
high-order diffraction path, similar to the formulation used in [Tsin-
gos et al. 2001]. Each valid path is then added to the final output
impulse response for the sound source.

3.3 Voxel-Based Simplification for Edge Diffraction

Many large databases are designed for visual rendering and include
highly tessellated models with detailed features. Such models may
have higher complexity than that is needed for sound propagation.
GA approaches are valid for surfaces that are large compared to

the wavelength. There has been some work on simplifying geomet-
ric models or use of level-of-detail techniques for acoustic simula-
tion [Siltanen et al. 2008; Pelzer and Vorländer 2010; Tsingos et al.
2007]. However, a key challenge in the field is to automatically gen-
erate a simplification that preserves the basic acoustic principles,
including reflections, scattering and diffraction. For example, some
techniques based on geometric reduction applied to room models
can change the reverberation time of the simplified model [Siltanen
et al. 2008]. And, in many cases, geometric simplification is per-
formed by hand or using authoring tools, but it is hard to extend
these approaches to complex models.

Our approach for computing early reflections and diffractions is
based on ray tracing and we use bounding volume hierarchies to
accelerate ray intersection tests. In general, the cost of updating
the hierarchy for dynamic scenes by refitting is a linear function
of the model complexity of dynamic objects. The cost of intersec-
tion computation is almost a logarithmic function of the number of
polygons. Because of logarithmic complexity, the relative benefit
of model simplification on ray-tracing intersection computation is
not high. We therefore use the original geometric representation for
computing specular and diffuse reflections.

A key aspect of our diffraction algorithm is the identification of im-
portant diffraction edges in the scene. The complexity of visibility-
graph computation and runtime traversal can increase significantly
with the number of edges in the model. Some prior approaches
for UTD-based diffraction computation are either limited to coarse
models [Tsingos et al. 2001] or consider all edges that have neigh-
boring non-planar triangles [Taylor et al. 2009]. The latter ap-
proach can result in large number of small diffraction edges in com-
plex scenes with detailed geometric representations. In practice,
the UTD edge diffraction algorithm tends to be more accurate for
longer edges; the presence of a high number of small edges can
result in inaccurate results.

We present a simplification technique that generates a reduced set of
diffraction edges for interactive acoustic simulation. To be specific,
we generate meshes corresponding to different simulation wave-
lengths. Since this simplified mesh is used only for UTD-based
edge diffraction computation, the simplification does not affect the
the accuracy of reflections. Figure 6 shows an overview of the mesh
processing pipeline that we use. This pipeline extends the one de-
scribed in [Nooruddin and Turk 2003] with additional edge merging
and visibility graph steps.

Wavelength-based Simplification: In a preprocessing step, a hier-
archical surface voxelization of each object is computed; a voxel’s
value is determined based on the distance to the closest triangle
[Huang et al. 1998]. This allows our method to handle non-closed
geometric primitives better than traditional voxelization algorithms,
which are based on scan-conversion. The voxelization results in a
tree of voxels, where the voxel resolution doubles at each succes-



sive tree depth. This tree is used to generate surface approximations
corresponding to different wavelengths; we simply choose the tree
depth where the voxel resolution is at least half the required wave-
length. This resolution is chosen based on the spatial Nyquist dis-
tance h = c/fmax, where fmax is the highest simulated frequency
[Yeh et al. 2013]. The discretization imposed by the voxelization
removes details that are smaller than the voxel resolution.

Next, our approach triangulates a level in the voxel tree by apply-
ing the marching cubes algorithm [Lorensen and Cline 1987]. This
generates a triangular mesh corresponding to an isosurface in the
voxel grid. However, this mesh may not be suitable for computing a
reduced set of diffraction edges. For instance, the voxelization and
triangulation computation approximate large triangles in the orig-
inal model with many smaller ones that lie in the same plane. In
order to address this issue we first compute the adjacency informa-
tion for the mesh by merging coincident vertices. Next, we apply
the edge-collapse algorithm based on the quadric error metric [Gar-
land and Heckbert 1997] till we exceed an error threshold. These
decimation operations progressively merge vertices that share an
edge into a single vertex by minimizing the resulting error in the
mesh’s shape. This results in a highly simplified mesh that pre-
serves the largest features from the original model, while remov-
ing small details that would produce extraneous diffraction edges.
Finally, we determine a set of candidate diffraction edges using a
heuristic that chooses edges with a significant deviation from being
planar. More details are given in the appendix. Given this simpli-
fied model, we compute the visibility graph and use that for higher
order edge diffraction computation.

Reducing Memory Overhead: In order to process very large mod-
els efficiently, our algorithm splits the input scene into regions of a
maximum size. These regions are voxelized, triangulated, and sim-
plified in parallel. The simplified regions are combined to form the
output simplified mesh. The edge collapse algorithm preserves the
boundaries of each region in order to avoid seams between them.
Since we independently process many smaller regions rather than
an entire large mesh at once, the memory footprint of the algorithm
is only a few hundred MBs, whereas naively processing an entire
large scene could take 10’s of GB of RAM.

4 Implementation and Performance

In this section we describe our implementation and highlight its
performance on different benchmarks. We also evaluate the error in
diffuse reflection computation.

4.1 Implementation

Ray Tracing: We trace rays in a random uniform distribution from
each source location to compute diffuse sound. These rays are prop-
agated through the scene via diffuse reflections up to an arbitrary
maximum reflection depth (e.g. 10). The number of rays needed to
achieve accurate sound is scene-dependent. For all of our bench-
marks we traced 1000 rays from each source except where noted.
We can use far fewer rays for diffuse sound path tracing than for vi-
sual rendering because the listener detection sphere is usually much
larger than a camera pixel, and because human hearing is more tol-
erant of error than visual perception. In addition, the diffuse cache
accumulates the results of rays traced on previous frames, thus re-
quiring less rays. Specular reflections are computed separately from
diffuse reflections by tracing uniform random rays from the lis-
tener’s position to sample the set of possible specular paths. We
specularly reflect these rays to a chosen maximum depth and use
this information to build a set of candidate paths with each path
represented as a series of triangle reflectors. Finally, we check each
candidate path to see if there is a valid specular reflection along the

path from the listener to each source in the scene using the image-
source method. If so, an output specular path is produced. This
is similar to [Lentz et al. 2007; Schissler and Manocha 2011]. We
accelerate ray tracing using bounding volume hierarchies that can
be efficiently updated for moving or deforming objects. We use 4-
band frequency-dependent reflection attenuation coefficients α that
are applied for each material type with the frequency bands: 0−250
Hz, 250− 1000 Hz, 1000− 4000 Hz, and 4000− 22100 Hz. Each
surface material is also assigned a scattering coefficient that deter-
mines the fraction of reflected sound that is scattered.

Parallelization: We exploit the SIMD and multi-threading capa-
bilities of current CPUs to accelerate the computation. We run the
different components of our sound propagation system separately
and in parallel. The diffuse and edge-diffraction components for
every sound source are each computed on separate threads that run
concurrently. The specular contributions are computed by tracing
rays from the listener’s position. Once all the threads finish the
current frame, the resulting propagation paths for each thread are
gathered and sent to the audio rendering subsystem. Our imple-
mentation makes use of all available CPU hardware threads. Our
sound propagation algorithms are implemented in C++ and make
use of SIMD instructions and fast ray tracing. All the timings re-
ported in this paper are measured on a PC with 4-core Intel Core i7
4770K, running at 3.5 GHz with 32 GB of RAM. We use 8 threads
on this machine to accelerate the sound computation.

Number of Sources: Our system handles each source separately
and the performance changes almost linearly with the number of
sources. In Figure 7, we give the breakdown between the differ-
ent components of our system and how the performance of each
component scales with the number of sound sources in large, dy-
namic outdoor scene with moving sources. In our benchmarks, the
diffuse reflections and diffraction dominate the computation, espe-
cially for large numbers of sources, since the number of path val-
idation checks scales linearly with the number of sources. This is
due to the fact that each source requires many additional rays to
be traced. The computation of the specular part is less sensitive to
the number of sources because it uses rays traced from the listener
rather than each source.

Dynamic Scenes: Our diffuse system supports scenes with moving
sound sources, listeners, and objects. The diffuse triangle subdi-
vision (Section 3.1.1) is valid for objects undergoing rigid motion
and can be updated in real time if an object deforms or undergoes
topological changes. The subdivision can be recomputed for the
large city benchmark (254,903 triangles) in 11.5ms using a single
CPU core. The bounding volume hierarchy used for ray tracing can
also be updated in less than 1ms when objects in a scene undergo
rigid motion, and allows fast refitting if objects deform. Since our
diffuse technique uses a persistent cache to do time-averaging of
diffuse paths, it may also be necessary to clear the cache if there is
a large sudden change in the scene. Our diffraction algorithm can
also handle moving sources, listeners, and objects, but with only a
limited level of dynamism. The high-order diffraction assumes that
the visibility relationship between the edges doesn’t change. As a
result, it doesn’t model diffraction effects between the edges of two
different dynamic objects or between one dynamic and one static
object. However, our approach can model high-order diffraction
that occurs between edges of the same dynamic object undergoing
affine transformations.

Audio Rendering: In order to render the audio output of our sound
propagation algorithms, we use a linearly interpolating delay line
for each propagation path [Tsingos et al. 2003]. The smooth-
ness of the interpolation is determined by a parameter that speci-
fies the time for a change in propagation path amplitude or delay.
Longer interpolation time produces smoother audio, especially at



Scene Complexity Simplification Visibility Graph Runtime
Scene #Tris #Edges Vol.(m3) #Edges Time(s) Size(MB) Time(s) #Sources #Specular #Diffuse #Diffraction Time(ms)

Sibenik 79942 39082 35.4K 19148 7.90 2.50 6.46 1 10 10 4 22.1
Office 154020 69598 2.2K 4644 10.35 0.32 0.78 6 10 10 5 33.6
Refinery 245828 93046 11.5M 30082 41.52 7.71 23.59 4 10 10 6 27.4
Small City 89792 64853 13.8M 25656 52.55 5.18 31.54 8 10 6 6 19.3
Large City 254903 222680 51.3M 70605 178.5 23.8 299.5 14 10 6 4 71.0

Table 1: We highlight the model complexity and the performance of simplification and visibility graph computation algorithms. The simplifi-
cation reduces the number of edges by 3− 14 times (shown as simplification-edges). The visibility graph computation is fast and has a small
memory overhead. The runtime components include the number of sources in the scene, the maximum order of specular/diffuse reflections
and edge diffractions. The frame-time is calculated using 8 threads on a 4-core CPU.

0 

50 

100 

150 

200 

250 

300 

350 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Ti
m

e 
Pe

r 
Fr

am
e 

(m
s)

 

# Sources 

Diffraction 
Diffuse 
Specular 

Figure 7: We highlight the time taken by the different components
of our system (specular, diffuse, and diffraction) as the number of
sources in the scene increase. All of these times are generated on a
single core.

the boundary between the lit and diffraction shadow region, but re-
sults in a higher latency for these transitions. The source audio
is split at runtime into 4 frequency bands that correspond to the
bands used for material properties with Linkwitz-Riley 4th-order
crossover filters. This allows our renderer to efficiently model
frequency-dependent effects by applying different gains to each
band. Audio for all frequency bands is rendered separately based
on the frequency-dependent attenuation coefficients for the path,
then mixed (added) together at the output to produce the final au-
dio. We perform vector-based amplitude panning to spatialize the
audio for each propagation path separately using the path’s direc-
tion from the listener. As the audio for each path is rendered, it is
accumulated in a common output audio buffer. We use a statistical
model for late-reverberation based on the Eyring reverb time equa-
tion [Eyring 1930] that dynamically estimates the mean free path
and visible surface area in the scene using diffuse sound rays. The
mean free path is used to approximate the effective scene volume
with the well-known equation V = l̄S/4, relating the volume (V),
mean free path (l̄), and surface area (S) of the environment: The
RT60 from this model is used as input for a Schroeder-type rever-
berator [Schroeder 1962] that is mixed with the early propagation
paths computed by our GA algorithm. A delay based on the short-
est diffuse path delay time is applied to the reverb to align it with
the early diffuse reflections. All audio rendering is performed at
44.1 kHz and we use SIMD instructions to vectorize the rendering
of frequency bands.

4.2 Benchmarks

We evaluated our sound propagation system on indoor and outdoor
scenes with large volumes and high model complexity. Our ap-
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Figure 8: We highlight how the performance of our diffuse algo-
rithm scales with the maximum diffuse reflection order on a single
CPU core. Note that in outdoor scenes, most rays escape the scene
after the 4th or 5th bounce. In the indoor office scene, the complex-
ity is linear with respect to the maximum diffuse order.

proach can generate plausible acoustic effects, including specular
and diffuse reflections and edge-diffraction at interactive rates on a
4-core CPU (see Table 1).

Office: The listener walks through a moderate-sized office environ-
ment with six sound sources. We demonstrate fourth order diffrac-
tion effects around corners that produce low-pass filtering for oc-
cluded sources. Diffuse reflections are a significant component of
this indoor scene due to material properties with high scattering co-
efficients.

Refinery: This large outdoor scene of an oil refinery demonstrates
the need for high-order diffraction computation, as the sound waves
diffract around curved obstacles like oil tanks and smoke stacks. A
helicopter flies through the scene and passes behind these obstacles,
demonstrating the performance of our high-order diffraction. Our
simplification scheme removes the small details from the original
mesh, resulting in a smaller set of diffraction edges.

Small City: This small city scene demonstrates that our system can
handle both moving sources, listeners, and obstacles. The listener
sits in a vehicle that drives through a city scene, where it passes
other cars that are moving sound sources as well as obstacles.

Big City: A pedestrian listener walks along the sidewalk at an in-
tersection in a large city model with more than 50 buildings over an
area of 0.5 km2. There are 14 moving sound sources (cars, ambu-
lance) that pass by the pedestrian listener. These vehicles are also
moving obstacles. This scene shows how our approach can scale
well with the number of sources and maintain interactive frame
rates for large scenes.
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Figure 9: We show the performance of our graph-based diffraction
algorithm up to 10th order for 4 benchmark scenes. Since the per-
formance varies as a function of the source and listener locations,
we show the average time spent in edge diffraction as well as the
maximum time. Please note the logarithmic scale on the time axis.

4.3 Diffuse Reflections

We have analyzed the runtime performance as well as accuracy of
our diffuse reflection computation algorithms. We chose to use a
value of l = 0.5m for our simulations. We give more details on the
accuracy of the algorithm as a function of patch size (l) in the ap-
pendix. Fig. 8 shows that the performance of our algorithm scales
for increasing maximum diffuse reflection order. In practice, our in-
cremental algorithm is able to simulate over 10 orders of reflection
in the scenes at around 50−60Hz for a single sound source. We also
compared the accuracy of our algorithm with traditional path trac-
ing (see Fig. 10). While we use 1000 rays with our approach, we
compare its accuracy with two versions of path tracing: 1000 rays
and 10000 rays, and perform 10 orders of reflection. The accuracy
of our algorithm is comparable to that of path tracing with 10000
rays, with an average error of of 2.27 dB. On the other hand, path
tracing with only 1000 rays, results in noisier results and average
error of 6.69 dB. The temporal averaging of our method dramati-
cally improves the results for a given number of emitted rays (i.e.
1000 rays). Our approach is effective at improving the accuracy
of low-intensity sound in the left and right portions of the graph.
Our supplementary video includes audio samples that compare path
tracing with our approach.

4.4 Edge Diffraction

In order to evaluate the performance of high order edge diffraction
algorithm, we measured how our approach scales with the maxi-
mum diffraction order in Fig 9. In the worst case, the complexity
of GA-based diffraction algorithms is of the form O(nd) where n
is the number of neighbors for each edge in the visibility graph and
d is the maximum diffraction order. We report both the average
time to compute diffraction for the benchmark scenes, as well as
the maximum time spent for any instance of the source and location.
This is due to the fact that the performance of our diffraction varies
considerably with the source and listener positions. For example,
for certain positions, the time spent in searching the visibility graph
can be high, as some of the vertices in the visibility graph may
have a high number of neighbors. In practice, our approach enables
computation of 5th or 6th order diffraction at real-time rates in our
benchmarks. Since we use precomputed visibility information, no
runtime edge-edge visibility checks are performed. This dramati-
cally reduces the number of edge pairs that need to be considered
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Figure 10: We compare the sound intensity received at the listener
computed by our diffuse reflection method with that of the tradi-
tional path tracing algorithm in the office benchmark. We compute
reflections up to 10th order and average the sound intensity over
the frequency bands described in Section 4.1. The accuracy of our
algorithm (with 1000 rays) is comparable to the path tracing al-
gorithm (using 10000 rays). On the other hand, path tracing with
1000 rays misses many contributions and results in inaccurate dif-
fuse contributions.

for high-order diffraction paths.

4.5 Simplification

Our simplification algorithm can generate different approximations
as a function of the wavelength (see the appendix for details). In our
implementation, we generated the simplifications based on wave-
length λ = 0.25m, corresponding to a frequency of 1.3kHz, and a
voxel size of 0.125m. We found that our simplification algorithm
significantly reduces the number of diffraction edges for the bench-
mark scenes. Table 1 shows that the number of edges is reduced
to around 30 − 90% of the original number of diffraction edges
for the unsimplified model. For small scenes, the simplification
algorithm takes only a few seconds while large scenes that are as
large as 50 million m3 can be simplified in minutes. In general, the
simplification time increases with the scene volume because more
voxels are needed to meet the wavelength spatial resolution. The
voxelization approach is O(n logn) with respect to the number of
triangles in original mesh. We use simplified models for visibility
graph computation. Since we reduce the number of edges, it signif-
icantly speeds up visibility graph computation and also reduces the
size of visibility graph.

5 Comparison with Previous Works

In this section we compare the results of our algorithms with prior
techniques. This includes diffuse reflections, edge diffraction, as
well as interactive geometric propagation systems.

The prior geometric techniques for diffuse reflections are based on
path tracing [Lentz et al. 2007; Alarcao et al. 2009; Taylor et al.
2009]. We have compared the accuracy as well as runtime perfor-
mance with path tracing algorithms in Fig. 10. The main benefit of
our method arises from the fact that we can to shoot almost one or-
der of magnitude fewer rays as compared to path tracing to achieve
similar accuracy. This is due to the fact that we perform tempo-
ral averaging that can significantly improve the accuracy. The RE-
Sound system [Taylor et al. 2009] takes about 250−500ms to com-
pute up to 3 orders of diffuse reflections (with 200K rays) on mod-
els with 60 − 280K triangles using seven threads on a multi-core



CPU. On the other, our algorithm takes less than 15ms per source to
compute up to 10 orders of diffuse reflections. Other recent work is
based on the acoustic rendering equation [Siltanen et al. 2007; An-
tani et al. 2012b] and is used to precompute higher order reflections
and diffraction for mostly static scenes. These approaches are com-
plimentary to our formulation. For example, our diffuse algorithm
can be used to accelerate early reflection computation in [Antani
et al. 2012b].

In terms of edge diffraction, prior techniques are limited to coarse
static models [Tsingos et al. 2001] or first order edge diffraction in
dynamic scenes [Taylor et al. 2012; Schissler and Manocha 2011].
These approaches make no assumptions on edge visibility at run-
time and therefore must compute a visible set of high-order diffrac-
tion edges for each edge on every frame. Generally this operation
is performed by intersecting shadow-region frusta with the scene or
by sampling edge visibility by tracing rays in the shadow region.
This must be performed recursively for each edge considered for
diffraction and becomes non-interactive (i.e. more than 500−1000
ms) at more than one or two orders of diffraction. Furthermore,
we use wavelength-based simplification, which makes it possible
to perform high-order edge diffraction in complex scenes.

We compared our UTD-based diffraction technique with the offline
BTM diffraction model [Svensson et al. 1999] on a simple scene
with a rectangular obstacle (12 edges) and a single sound source.
The BTM model integrates the diffraction that occurs over the entire
extent of each edge, whereas UTD only considers diffraction over
a single point on an edge. Figure 11 summarizes the results of this
comparison for 3 different listener locations corresponding to direct
sound, 1st order diffraction, and 2nd order diffraction. We observed
that our formulation based on UTD diffraction model overestimates
the amount of high-frequency attenuation versus BTM. The error
in the frequency response was 3.10dB for 1st-order diffraction and
3.61dB for 2nd-order diffraction. We have also performed an audio
comparison of our approach and the BTM approach and included
the results in the supplementary video.

In terms of overall system comparisons, our geometric propaga-
tion system has many additional capabilities and improved perfor-
mance as compared to prior approaches that are based on ray trac-
ing and can handle dynamic scenes. The RAVEN system [Lentz
et al. 2007; Pelzer and Vorländer 2010] is a state of the art inter-
active geometric sound propagation system. It is mainly designed
of indoor scenes and supports specular reflections based on image
source method, diffuse reflections based on path tracing, diffrac-
tion, and also uses simplified models. Our underlying diffuse reflec-
tion algorithm is significantly faster. Plus we can perform efficient
high-order diffraction and also handle complex outdoor scenes. The
RESound system [Taylor et al. 2009] only supports first-order edge
diffraction and our diffuse reflection computation is significantly
faster. The guided multi-view ray tracing algorithm [Taylor et al.
2012] can be used to choose the ray-budget in our approach. Fur-
thermore, that algorithm uses a parallel GPU-based ray tracer to
accelerate the computations. It takes about 93 ms using a CPU and
a GPU to compute three orders of specular reflections and one order
of edge diffraction on the Sibenik model. On the other hand, our
approach can handle models with higher complexity with ten orders
of specular and diffuse reflections and five orders edge diffraction
in 27− 33ms on a 4-core CPU.

6 Conclusions, Limitations, and Future Work

We have presented different algorithms to enable interactive geo-
metric sound propagation in complex scenes. Our main contribu-
tions include a novel algorithm for diffuse reflections and higher
order diffraction. We also present an approach to simplify the scene
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Figure 11: This graph compares the 1/3 octave frequency response
of our diffraction approach to that of the more-accurate offline BTM
method for 3 different listener locations corresponding to direct
sound, 1st-order diffraction, and 2nd-order diffraction. We ob-
serve that the UTD diffraction model overestimates the attenuation
of high frequencies. The average errors for the 3 listeners were
0.67dB, 3.10dB, and 3.61dB, respectively.

for edge diffraction and thereby making it possible to automatically
handle large geometric databases for sound propagation. We have
highlighted the performance on many large and complex dynamic
scenes. We observe more than an order-of-magnitude performance
improvement over prior methods and the accuracy is comparable to
those methods. To the best of our knowledge, this is the first ap-
proach that can interactively compute higher-order diffraction and
diffuse reflections in complex environments to generate plausible
sound effects.

Limitations: Our approach is based on ray tracing, and there-
fore all standard limitations of GA are inherent to our formulation.
These include potential inaccuracies for low frequencies where
we assume that primitives are larger than the wavelength. Our
approach assumes that the medium is homogeneous and doesn’t
model any changes in temperature or pressure in large outdoor
scenes. Since we model all sound sources as point sources, the
audio may not match the visual representations of large objects
such as the helicopter shown in the supplementary video. We com-
pute specular, diffuse, and diffraction sound components separately,
then combine them for audio rendering. This approach loses some
energy because combinations of diffraction and reflection are not
computed.

Our diffuse reflection algorithm can have some error as compared
to path tracing methods, especially if there is a large relative change
in the position of sources, objects, or the listener between two suc-
cessive frames. In this case, the diffuse cache can be reset to avoid
any errors in the diffuse component of the sound generated for fu-
ture frames The subdivision size used may also cause error in the
delay time or the direction of propagation paths.

As discussed in Section 4.1, our high-order diffraction algorithm
only supports a limited level of dynamism due to the use of pre-
computed edge visibility.

It is possible that our simplification algorithm can introduce inaccu-
racies in diffraction computation, since large voxel sizes may pro-
duce significant error in the resulting diffraction edges. This can
cause discontinuities in the transition between direct and diffracted
sound at the shadow region boundary. To reduce this error, we can
choose a small voxel size for simplification and use slower interpo-
lation for audio rendering as discussed in Section 4.1. Furthermore,



the simplified representation for edge diffraction is stored in addi-
tion to the original model representation (and hierarchy) for reflec-
tions. This moderately increases the storage overhead.

In the future, we would like to apply the more accurate, but also
more expensive, BTM diffraction model to our high-order diffrac-
tion path finding. We would also like to further extend our simpli-
fication algorithm to handle reflections as well as material proper-
ties. We would like to extend to heterogeneous environments using
non-linear ray tracing. It would be useful to combine with per-
ceptual techniques [Moeck et al. 2007] to handle large number of
sources and accelerate sound rendering. Furthermore, we would
like to evaluate the benefits of our approach based on user-studies.
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