
Fast Motion Planning for High-DOF Robot Systems Using Hierarchical System Identification

Biao Jia∗ Zherong Pan∗ Dinesh Manocha

Abstract— We present an efficient algorithm for motion
planning and controlling a robot system with a high number
of degrees-of-freedom (DOF). These systems include high-DOF
soft robots and articulated robots interacting with a deformable
environment. We present a novel technique to accelerate the
evaluations of the forward dynamics function by storing the
results of costly computations in a hierarchical adaptive grid.
Furthermore, we exploit the underactuated properties of the
robot systems and build the grid in a low-dimensional space.
Our approach approximates the forward dynamics function
with guaranteed error bounds and can be used in optimization-
based motion planning and reinforcement-learning-based feed-
back control. We highlight the performance on two high-
DOF robot systems: a line-actuated elastic robot arm and
an underwater swimming robot in water. Compared to prior
techniques based on exact dynamics evaluation, we observe one
to two orders of magnitude improvement in the performance.

I. INTRODUCTION

High-DOF robot systems are increasingly used for dif-
ferent applications. These systems include soft robots with
deformable joints [1], [2], which have a high-dimensional
configuration space, and articulated robots interacting with
highly deformable objects like cloths [3], [4] or deformable
environments like fluids [5], [6]. In these cases, the number
of degrees-of-freedom (DOF C, N = |C|) can be more
than 1000. As we try to satisfy dynamics constraints, the
repeated evaluation of forward dynamics of these robots
becomes a major bottleneck. For example, an elastically
soft robot can be modeled using the finite-element method
(FEM) [7], which discretizes the robot into thousands of
points. However, each forward dynamics evaluation reduces
to factorizing a large, sparse matrix, the complexity of which
is o(N1.5) [8]. An articulated robot swimming in water can
be modeled using the boundary element method (BEM) [5]
by discretizing the fluid potential using thousands of patches
on the robot’s surface. In this case, each evaluation of the
forward dynamics function involves inverting a large, dense
matrix, the complexity of which is O(N2log(N)) [9].

The high computational cost of forward dynamics be-
comes a major bottleneck for dynamics-constrained motion
planning and feedback control algorithms. To compute a
feasible motion plan or optimize a feedback controller, these
algorithms typically evaluate the forward dynamics function
hundreds of times per iteration. For example, a sampling-
based planner [10] evaluates the feasibility of a sample
using a forward dynamics simulator. An optimization-based
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planner [11] requires the Jacobian of the forward dynamics
function to improve the motion plan during each iteration. Fi-
nally, a reinforcement learning algorithm [12] must perform
a large number of forward dynamics evaluations to compute
the policy gradient and improve a feedback controller.

Several methods have been proposed to reduce the number
of forward dynamics evaluations. For sampling-based plan-
ners, the number of samples can be reduced by learning
a prior sampling distribution centered on highly successful
regions [13]. For optimization-based planners, the number of
gradient evaluations can be reduced by using high-order con-
vergent optimizers [14]. Moreover, many sampling-efficient
algorithms [15] have been proposed to optimize feedback
controllers. However, the number of forward dynamics eval-
uations is still on the level of thousands [14] or even millions
[15].

Another method for improving the sampling efficiency is
system identification [16], [17] that approximates the exact
forward dynamics model with a surrogate model. A good
surrogate model should accurately approximate the exact
model while being computationally efficient [18]. These
methods are mostly learning-based and require a training
dataset. However, it is unclear whether the learned surrogate
dynamics model is accurate enough for a given planning task.
Indeed, [19] noticed that the learned dataset could not cover
the subset of a configuration space required to accomplish
the planning or control task.

Main Results: In this paper, we present a method of
system identification for high-DOF robot systems. Our key
observation is that, although the configuration space is high-
dimensional, these robot systems are highly underactuated,
with only a few controlled DOFs. The number of controlled
DOFs typically corresponds to the number of actuators in
the system and applications tend to use a small number of
actuators for lower cost [20], [21]. As a result, the state of
the remaining DOFs can be formulated as a function of the
few controlled DOFs, leading to a function f : Cc → C,
where Cc is the space of the controlled DOFs. Since Cc

is low-dimensional, sampling in Cc does not suffer from a
curse-of-dimensionality. Therefore, our method accelerates
the evaluations of f by precomputing and storing f on the
vertices of a hierarchical grid. The hierarchical grid is a high-
dimensional extension of the octree in 3D, where each parent
node has 2|Cc| children. This hierarchical data structure has
two desirable features. First, the error due to our approximate
forward dynamics function can be bounded. Second, we
construct the grid in an on-demand manner, where new
sample points are inserted only when a motion planner
requires more samples. As a result, the sampled dataset
covers exactly the part of the configuration space required
by the given motion planning task and the construction of



the hierarchical grid is efficient.
We have evaluated the performance of our method on two

benchmarks: a 1575-dimensional line-actuated soft robot arm
and a 1415-dimensional underwater swimming robot. Our
use of a hierarchical grid reduces the number of forward
dynamics evaluations by one to two orders of magnitude
and a plan can be computed within 2 hours on a desktop
machine. We show that the error of our system identification
method can be bounded and the algorithm converges to the
exact solution of the dynamics constrained motion planning
problem as the error bound tends to zero.

II. RELATED WORK

In this section, we give a brief overview of prior work on
high-DOF robot systems, motion planning and control with
dynamics constraints, and system identification.

High-DOF Robot Systems are used in various appli-
cations such as soft robots [22]. A popular method for
numerically modeling these soft robots is the finite-element
method (FEM) [7], [23], [24]. Another example is a low-
DOF articulated robot swimming in high-DOF fluid environ-
ments [5], where the boundary element method (BEM) [9] is
used to model robot-fluid interactions. A third example is a
robot arm manipulating a piece of cloth [3], [4], [25], where
the state of the cloth is also discretized using FEM in [25].
Both FEM and BEM induce a forward dynamics function,
the evaluation of which involves matrix factorization and
inversion, where the matrix is of size O(N × N). As a
result, the complexity of each evaluation is o(N1.5) using
FEM [8] and O(N2log(N)) using BEM [9]. Prior work
[26], [27] compromises accuracy for speed by using iterative
linearization and fast matrix solvers. Instead, our method
uses accurate FEM or BEM solvers but stores the solver
results in a hierarchical grid for speedup.

Dynamics-Constrained Motion Planning algorithms
can be optimization-based or sampling-based methods.
Optimization-based methods find locally optimal motion
plans [14], [11], [28], [29], [30], [31] by iteratively mini-
mizing an objective function under the dynamics constraints,
where each iteration involves evaluating the forward dynam-
ics function and its differentials. Sampling-based methods
[10], [32] seek globally optimal motion plans, where the
feasibility of each sampled motion plan is checked by
calling the forward dynamics function. Differential dynamic
programming [33] relies on forward dynamics evaluations to
provide state and control differentials. Finally, reinforcement
learning algorithms [12] requires a large number of forward
dynamics evaluations to compute the policy gradient. Our
method can be combined with all these methods.

System Identification has been widely used to approxi-
mate the forward dynamics function. Most system identifi-
cation methods are data-driven and approximate the system
dynamics using non-parametric models such as the Gaussian
mixture model [34], Gaussian process [16], [35], neural
networks [36], and nearest-neighbor computations [37]. Our
method based on the hierarchical grid is also non-parametric.
In most prior learning methods, training data are collected

before using the identified system for motion planning.
Recently, system identification has been combined with
reinforcement learning [38], [39] for more efficient data-
sampling of low-DOF dynamics systems. However, these
methods do not guarantee the accuracy of the resulting
approximation. In contrast, our method provides guaranteed
accuracy.

III. PROBLEM FORMULATION

In this section, we introduce the formulation of high-
DOF robot systems and forward dynamics evaluations. Next,
we formulate the problem of dynamics-constrained motion
planning for high-DOF robots.

A. High-DOF Robot System Dynamics

A high-DOF robot can be formulated as a dynamics
system, the configuration space of which is denoted as C.
Each x ∈ C uniquely determines the kinematic state of
the robot and the high-DOF environment with which it is
interacting. To compute the dynamics state of the robot, we
need x and its time derivative ẋ. Given the dynamics state of
the robot, its behavior is governed by the forward dynamics
function:

g(xi, ẋi,ui) = (xi+1, ẋi+1),

where the subscript denotes the timestep index, xi is the
kinematic state at time instance i∆t, and ∆t is the timestep
size. Finally, we denote ui ∈ Cc as the control input to the
dynamics system (e.g., the joint torques for an articulated
robot). In this work, we assume that the robot system is
highly underactuated so that |u| � |x|. This assumption
holds because the number of actuators in a robot is kept small
to reduce manufacturing cost. For example, [2] proposed a
soft robot octopus where each limb is controlled by only
two air pumps. The forward dynamics function g is a result
of discretizing the Euler-Lagrangian equation governing the
dynamics of the robot. In this work, we consider two robot
systems: an elastically soft robot arm and an articulated robot
swimming in water.

B. Elastically Soft Robot

According to [7], [26], [27], the elastically soft robot
is governed by the following partial differential equation
(PDE):

M
∂2x

∂t2
= p(x) + c(x,u), (1)

where p(x) corresponds to the internal and external forces,
M is the mass matrix, and c(x,u) is the control force. This
system is discretized by representing the soft robot as a
tetrahedral mesh with x representing the vertex positions, as
illustrated in Figure 1. Then the governing PDE (Equation 1)
is discretized using an implicit-Euler time integrator as
follows:

M
xi+1 − 2xi + xi−1

∆t2
= p(xi+1) + c(xi+1,ui). (2)

This function g is costly to evaluate because solving for xi+1

involves factorizing a large sparse matrix resulting from FEM
discretization.
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Fig. 1: A 2D soft robot arm modeled
using two materials (a stiffer ma-
terial shown in brown and a softer
material shown in blue), making it
easy to deform. It is discretized by
a tetrahedral mesh with thousands of
vertices (red). However, the robot is
controlled by two lines (green) at-
tached to the left and right edges of
the robot, so that |u| = 2. The con-
trol command is the pulling force on
each line (green circles).

C. Underwater Swimming Robot System
Our second example, the articulated robot has a low-

dimensional configuration space by itself. The configuration
x consists of joint parameters. This robot is interacting with
a fluid, so the combined fluid/robot configuration space is
high-dimensional. According to [6], [5], the fluid’s state can
be simplified as a potential flow represented by the potential
φ. This φ is discretized by sampling on each of the P vertices
of the robot’s surface mesh, as shown in Figure 2. The
kinematic state of the coupled system is (x, φ) ∈ C and
N = |x| + P . However, φ can be computed from x and ẋ
using the BEM method, denoted as φ(x, ẋ). The governing
dynamics equation in this case is:

M(x)
∂2x

∂t2
= C(x, ẋ) + J(x)u+[

d

dt

∂

∂ẋ
− ∂

∂x

] ∫
1

2
φ(x, ẋ)

∂φ(x, ẋ)

∂n
, (3)

where M is the generalized mass matrix, C is the centrifugal
and Coriolis force, and J(x) is the Jacobian matrix. Finally,
the last term in Equation 3 is included to account for the
fluid pressure forces, where the integral is over the surface
of the robot and n is the outward surface normal. Time
discretization of Equation 3 is performed using an explicit-
Euler integrator, as follows:

M(xi)
xi+1 − 2xi + xi−1

∆t2
= C(xi, ẋi) + J(xi)ui+ (4)[

d

dt

∂

∂ẋi
− ∂

∂xi

] ∫
1

2
φ(xi, ẋi)

∂φ(xi, ẋi)

∂n
.

This function g is costly to evaluate because computing
φ(xi, ẋi) involves inverting the large, dense matrix that
results from the BEM discretization.

φp
x np

Fig. 2: An articulated swimming robot consists of 4 rigid
ellipses connected by hinge joints. The configuration space of
the robot is low-dimensional, consisting of joint parameters
(green). The fluid state is high-dimensional and represented
by a potential function φ discretized on the vertices of the
robot’s surface mesh (the pth component of φp in red). The
kinetic energy is computed as a surface integral (the pth
surface normal np in the black arrow).

D. Dynamics-Constrained Motion Planning and Control
We mainly focus on the specific problem of dynamics-

constrained motion planning and feedback control. In the

case of motion planning, we are given a reward function
R(xi,ui) and our goal is to find a series of control com-
mands u1, · · · ,uK−1 that maximizes the cumulative reward
over a trajectory: x1, · · · ,xK , where K is the planning
horizon. This maximization is performed under dynamics
constraints, i.e. g must hold for every timestep:

argmax
u1,··· ,uK�1

K∑
i=1

R(xi,ui) s.t. g(xi, ẋi,ui) = (xi+1, ẋi+1). (5)

In the case of feedback control, our goal is still to compute
the control commands, but the commands are generated
by a feedback controller π(xi,w) = ui, where w is the
optimizable parameters of π:

argmax
w

K∑
i=1

R(xi,ui) s.t. g(xi, ẋi, π(xi,w)) = (xi+1, ẋi+1). (6)

In both formulations, g must be evaluated tens of thousands
of times to find the motion plan or controller parameters.
In the next section, we propose a method to accelerate the
evaluation of g.

IV. HIERARCHICAL SYSTEM IDENTIFICATION

Our method is based on the observation that high-DOF
robot systems are highly underactuated. As a result, we
can identify a novel function f that maps from the low-
dimensional control input u to the high-dimensional kine-
matic state x. When the evaluation of f is involved in the
evaluation of g, it causes a bottleneck. We approximate f ,
instead of g, using our hierarchical system identification
method. We first show how to identify this function for
different robot systems and then describe our approach to
constructing the hierarchical grid.

A. Function fs for an Elastically Soft Robot

We identify function fs for an elastically soft robot (sub-
script s for short). We first consider a quasistatic procedure in
which all the dynamics behaviors are discarded and only the
kinematic behaviors are considered. In this case, Equation 2
becomes:

0 = p(xi+1) + c(xi+1,ui). (7)
Equation 7 defines our function fs(ui) , xi+1 implicitly,
whose domain has dimension |u| and range has dimension
N . We can also compute fs explicitly using Newton’s method
as shown in [27]. This computation is costly due to the
inversion of a large, sparse matrix ∂p(xi+1)/∂xi+1.

Given fs that only models kinematics, we can also com-
pute the dynamics function. To do this, we reinterpret fs as
a shape embedding function such that for each x there exists
a latent parameter α and fs(α) = x. Note that although we
used the forward kinematic function to define fs, fs does not
have a physical meaning when used as a shape embedding
function and the input α is a dimensionless latent variable.
This relationship can be plugged into Equation 1 to derive a
projected dynamics system in the space of α as:

∂fs(αi+1)

∂αi+1

T

M
fs(αi+1)− 2fs(αi) + fs(αi−1)

∆t2
= (8)

∂fs(αi+1)

∂αi+1

T

[p(fs(αi+1)) + c(fs(αi+1),ui)] ,



where the left multiplication by ∂fs(αi+1)/∂αi+1
T is due

to Galerkin projection (see [40] for more details). This
technique is similar to reduced order method [41] but we
use a special shape space defined by the forward kinematic
function. Using Equation 8, we can compute αi+1 from
αi,αi−1 via Newton’s method and then recover xi+1 using
xi+1 = fs(αi+1). Computing αi+1 is very efficient because
Equation 7 represents a low-dimensional dynamics system.
In summary, the computational bottleneck of g lies in the
computation of fs, which is a mapping from the low-
dimensional variables α to the high-dimensional variable x.

B. Function fu for an Underwater Swimming Robot

We present our fu for the underwater swimming robot in
this section (subscript u for short). The kinematic state x
is low-dimensional and the fluid potential φ(x, ẋ) is high
dimensional. We interpret this case as an underactuation
because the state of the high-dimensional fluid changes due
to the low-dimensional state of the articulated robot. The
fluid potential is computed by the boundary condition that
fluids and an articulated robot should have the same normal
velocities at every boundary point:[

∂

∂np

]
φ = npTJ(x)ẋ, (9)

where
[

∂
∂ni

]
is a linear operator that is used to compute φ’s

directional derivative along the normal direction np at the
pth surface sample (see Figure 2), which corresponds to the
fluid’s normal velocity. The right-hand side corresponds to
the robot’s normal velocity. Finally, we compute φ as:

φ =

[
∂

∂n

]−1

nTJ(x)ẋ,

where we assemble all the equations on all the P surface
samples from Equation 9. Since there are a lot of surface
sample points,

[
∂
∂n

]
is a large, dense P × P matrix and

inverting it can be computationally cost. Therefore, we
define:

fu(x) ,

[
∂

∂n

]−1

nTJ(x), (10)

which encodes the computationally costly part of the forward
dynamics function g. fu has a domain of dimension |x| and
a range of dimension P × |x|. Finally, fu is a kinematics
function like fs because ẋ is excluded from fu. This choice
reduces the dimension of the domain of fu.

C. Constructing the Hierarchical Grid

The evaluation of the forward dynamics function g re-
quires the time-consuming evaluation of function f (fs or
fu). Moreover, certain motion planning algorithms require
∂f/∂x to solve Equation 5 or Equation 6. In this section, we
develop an approach to approximate function f efficiently.

We accelerate f using a hierarchical grid-based structure,
as shown in Figure 3 (a). Since the domain of f is low-
dimensional, this formulation does not suffer from a-curse-
of-dimensionality. To evaluate f(x) using a |x|-dimensional
grid with a grid size of ∆x. We first identify the grid cell

that contains x. This grid cell has an interior:
{y|∀i, bxi/∆xc = byi/∆xc, dxi/∆xe = dyi/∆xe}.

Each grid cell has 2|x| corner points xc that satisfies
bxc/∆xc = dxc/∆xe. For every corner point xc, we
precompute f(xc) and ∂f/∂xc. Next, we can approximate
f(x), ∂f/∂x at an arbitrary point inside the grid cell using
a multivariate cubic spline interpolation [42]. Using a gird-
based structure, we can improve the approximation accuracy
by refining the grid and halving the grid size to ∆x/2. After
repeated refinements, a hierarchy of grids is constructed.

We first show how to build the grid at a fixed resolution.
Evaluating f on every grid point is infeasible, but we do
not know which grid points will be required before solving
Equation 5. We therefore choose to build the grid on demand.
When the motion planner requires the evaluation of g and
∂g/∂x, ẋ, the evaluation of f , ∂f/∂x is also required. Next,
we check each of the 2|x| corner points, xc. When f(xc) and
∂f/∂xc have not been computed, we invoke the costly pro-
cedure of computing f exactly (Equation 7 and Equation 10)
and then store the results in our database. After all the corner
points have been evaluated, we perform multivariate spline
interpolation.

(a) (b)

Fig. 3: (a): We check and precompute f on 22 = 4 corner
points (blue). The initial guess of a motion plan is the straight
red line and the converged plan is the curved line. (b): During
the next execution, we refine the grid using the last motion
plan (red) as the initial guess. The next execution updates
the red curve to the green curve. The two curves are close
and the number of corner points on the fine grid is limited.

Our on-demand scheme only constructs the grid at a
fixed resolution or grid size. Our method allows the user
to define a threshold η and continually refines the grid for
R = dlog(∆x/η)e times until ∆x/2R < η. Therefore,
for each evaluation of f and ∂f/∂x, we need to compute
the appropriate resolution. Almost all motion planning [14]
and control [12] algorithms start from an initial motion plan
or controller parameters and update iteratively until conver-
gence. We want to use coarser grids when the algorithm
is far from convergence and finer grids when it is close
to converging. However, measuring the convergence of an
algorithm is difficult and we do not have a unified solution
for different motion planning algorithms. As a result, we
choose to interleave motion planning or control algorithms
with grid refinement. Specifically, we execute the motion
planning or control algorithms R times. During the rth
execution of the algorithm, we use the result of the (r−1)th
execution as the initial guess and use a grid resolution
of ∆x/2r, as shown in Algorithm 1. Note that the only
difference between the rth execution and (r−1)th execution
is that the accuracy of the approximation for f is improved.
Therefore, the rth execution will only disturb the solution



slightly. This property will confine the solution space covered
by the rth execution and limit the number of new evaluations
on the fine grid, as shown in Figure 3 (b). Finally, we show
that under mild assumptions, the solution for Equation 5 and
Equation 6 found using an approximate f will converge to
that of the original problem with the exact f as the number
of refinements R→∞:

Lemma IV.1. Assuming the functions R,g are sufficiently smooth,
the solution space of x is bounded, and the forward kinematic
function is non-singular, then there exists a small enough ∆t such
that solutions u of Algorithm 1 will converge to a local minimum
of Equation 5 or Equation 6 as R → ∞, as long as the local
minimum is strict (the Hessian of R has full rank).

The proof of Lemma IV.1 is straightforward and we
provide it in our extended report downloadable from [43].

Algorithm 1 Motion planner with system identification

1: if Solve motion planning problem then
2: Input: Initial guess P0 ← u1, . . . ,uK−1

3: else
4: Input: Initial guess P0 ← w0

5: end if
6: Input: Threshold of accuracy, η
7: . Run multiple times of motion planning or control
8: for r = 0, 1, · · · , R = dlog(∆x/η)e do
9: Set grid resolution to ∆x/2r . Refine the grid

10: . Use previous solution as initial guess
11: if Solve motion planning problem then
12: Solve Equation 5 from initial guess Pr

13: Pr+1 ← u∗
1, . . . ,u

∗
K−1

14: else
15: Solve Equation 6 from initial guess Pr

16: Pr+1 ← w∗

17: end if
18: end for
19: Return PR

V. IMPLEMENTATION AND PERFORMANCE

We have evaluated our method on the 3D versions of the
two robot systems described in Section III. The computa-
tional cost of each substep of our algorithm is summarized
in Table I.

The 3D soft robot arm is controlled by four lines attached
to four corners of the arm so that the control signal is 4-
dimensional, |u| = 4, and each evaluation of fs requires 24 =
16 grid corner point evaluations. To simulate its dynamics
behavior, the soft arm is discretized using a tetrahedral mesh
with 525 vertices so that C has N = 3 × 525 = 1575
dimensions. To set up the hierarchical grid, we use an initial
grid size of ∆x = 0.5 and η = 0.2, so we will execute
the planning algorithm for R = 3 times. In this example,
we simulate a laser cutter attached to the top of the soft
arm and the goal of our motion planning is to have the
laser cut out a circle on the metal surface, as shown in
Figure 5 (a). We use an optimization-based motion planner
[14] that solves Equation 5. The computed motion plan
is a trajectory discretized into K = 200 timesteps and
the trajectory is initialized to zero control forces at every

timestep. In this case, if we evaluate fs(x) exactly each time,
then 200 evaluations of fs are needed in each iteration of the
optimization. To measure the rate of acceleration achieved
by our method, we plot the number of exact fs evaluations
on grid corner points against the number of iterations of
trajectory optimization with and without hierarchical system
identification in Figure 4 (a). Our method requires 22 times
fewer evaluations and the total computational time is 20
times faster. The total number of evaluations of function fs
for the elastically soft arm is 216 with system identification
and is 4800 without system identification. We can also add
various reward functions to accomplish different planning
tasks, such as obstacle avoidance shown in Figure 5 (b).

Example N |Cc| f (s) g (s) g̃ (s) +HSI (s) -HSI (s) Speedup #Corner Err

Deformation Arm
Trajectory Optimization 1575 4 1.5 1.51 0.01 5.5 305 20 216 7e− 6

Swimming Robot
Trajectory Optimization 1415 3 0.9 0.902 0.02 3.1 183 190 732 2e− 5

Swimming Robot
Reinforcement Learning 1415 3 0.9 0.902 0.02 42 16424 1590 1973 5e− 5

TABLE I: Summary of computational cost. From left to
right: name of example, DOF of the robot system, dimen-
sion of |Cc|, cost of evaluating f , cost of evaluating g,
cost of evaluating g using system identification (g̃), cost
of each iteration of the planning algorithm with system
identification, cost of each iteration without system identi-
fication (estimated), overall speedup, number of grid cor-
ner points evaluated, relative approximation error computed
from: ‖g(xi, ẋi,ui)− g̃(xi, ẋi,ui)‖/‖g(xi, ẋi,ui)‖.

For the 3D underwater robot swimmer, the robot has 3
hinge joints, so x is 3-dimensional and 23 = 8 grid corner
points are needed to evaluate fu. The fluid potential φ is
discretized on the robot surface with 1412 vertices, so C of
the robot system has N = 3 + 1412 = 1415 dimensions.
To set up the hierarchical grid, we use an initial grid size
of ∆x = 0.3 and η = 0.1, so we will execute the planning
algorithm for R = 3 times. Our goal is to have the robot
move forward like a fish, as shown in Figure 5 (c). We
use two algorithms to plan the motions for this robot. The
first algorithm is an optimization-based planner [14], which
solves Equation 5 from an initial motion plan with zero
control forces. The resulting plot of the exact number of
fu evaluations on grid corner points is shown in Figure 4
(b). Our method requires 205 times fewer evaluations and
the estimated total computational time is 190 times faster.
We have also tested our method with reinforcement learning
[44], which solves Equation 6 and optimizes a feedback
swimming controller parameterized by a neural network. The
neural network is fully connected with one hidden layer and
SmoothReLU activation function, which is initialized using
random weights. This algorithm is also iterative and, in each
iteration, [44] calls the function g 16384 times. The resulting
plot of the number of exact function fu evaluations during
reinforcement learning with and without hierarchical system
identification is given in Figure 4 (c). Our method requires
1638 times fewer evaluations and the total computational
time is 1590 times faster.
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Fig. 4: Number of evaluations of f plotted against the number of planning iterations with (red) and without (green) our
method. (a): Optimization-based motion planning for the deformation soft arm. (b): Optimization-based motion planning for
the underwater robot swimmer. (c): Reinforcement learning for the underwater robot swimmer.

(a)

(b)

(c)

Fig. 5: (a): A frame of a 3D soft robot arm attached with a laser cutter carving out a circle (yellow) on a metal surface.
The arm is controlled by four lines attached to the four corners (green). (b): 3D soft robot arm steering the laser beam to
avoid obstacles (yellow). (c): Several frames of a 3D underwater swimming robot moving forward. The robot is controlled
by the 3-dimensional joint torques. The black line is the locus of the center-of-mass.
A. Comparisons

Several prior works solve problems similar to those in our
work. To control an elastically soft robot arm, [45] evaluates
g and its differentials using finite difference in the space
of control signals, Cc. However, this method does not take
dynamics into consideration and takes minutes to compute
each motion plan in 2D workspaces. Other methods [46] only
consider soft robots with a very coarse FEM discretization
and do not scale to high-DOF cases. To control an underwater
swimming robot, [47] achieves real-time performance in
terms of evaluating the forward dynamics function, but
they used a simplified fluid drag model; we use the more
accurate potential flow model [5] for the fluid. Finally, the
key difference between our method and previous system
identification methods such as [34], [16], [35], [36], [37] is
that we do not identify the entire forward dynamics function
g. Instead, we choose to identify a novel function f from g
that encodes the computationally costly part of g and does
not suffer from a-curse-of-dimensionality.

VI. CONCLUSION AND LIMITATIONS

We present a hierarchical, grid-based data structure for
performing system identification for high-DOF soft robots.
Our key observation is that these robots are highly under-
actuated. We identify a low-dimension to high-dimension
mapping function f and store that function in our grid
to accelerate the computation. Since the domain is low-
dimensional, we can precompute f on a grid without suf-
fering from a curse-of-dimensionality. The construction is
performed in an on-demand manner and the entire hierarchy

construction is interleaved with the motion planning or
control algorithms. These techniques effectively reduce the
number of grid corner points to be evaluated and thus reduce
the total running time by one to two orders of magnitude.

One major limitation of the current method is that the
function f cannot always be identified and there is no general
method known to identify such a function for all types of
robot systems. However, in our two examples, the domain
of f has a dimension equal to the number of controlled
DOFs and the function f itself does not account for dynamics
(although we finally model dynamics when f is built into g).
These two observations indicate that the forward kinematic
function is a good candidate of f . Moreover, our method
is only effective when Cc is very low-dimensional. Another
issue is that we cannot guarantee that function f is a one-
to-one mapping. Indeed, a single control input can lead to
multiple quasistatic poses for a soft robot arm. In addition,
our method does not scale well to a many-actuator system,
where the space of control inputs is also high-dimensional.
For future research, a direction is to extend our grid-based
structure to handle functions with special properties such as
one-to-many function mappings and discontinuous functions.
Finally, to further reduce the number of grid corner points to
be evaluated, we are interested in using a spatially varying
grid resolution in which higher grid resolutions are used in
regions where function f changes rapidly.
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